Homework 2 Solution Reference

1. (2.15).

The surface area in terms of V(d) and A(d): $area = A(d-1) \cdot r^{d-1} + hA(d-2) \cdot r^{d-2}$ $volume = r^d V(d) + hA(d-1) \cdot r^{d-1}$

2. (2.16).(The answer is just as a reference. It may be incorrect.) Volume= $V(d) \times 2^d = \frac{2\pi^{\frac{d}{2}}}{d\Gamma(\frac{d}{2})} = \frac{2\pi^{\frac{d}{2}}}{(\frac{d}{2})!} 2^d \approx \frac{\pi^{\frac{d}{2}}}{(\frac{d}{2e})^{\frac{d}{2}}} 2^d = (\frac{8\pi e}{d})^{\frac{d}{2}}$ when radius is r, the volume should be: $volume = (\frac{4\pi r e}{d})^{\frac{d}{2}} \Rightarrow ln(volume) = \frac{d}{2}(ln(4\pi r e) - ln(d))$ only when $ln(4\pi r e) - ln(d) = \frac{1}{d}c$, that is $4\pi r e = de^{\frac{c}{d}}$ So only when $r \to +\infty$, the volume is a constant.

```
3. (2.21).
```

- (a) Give $f(x) = e^x x 1$, So $f'(x) = e^x 1 \begin{cases} > 0 & (x > 0) \\ = 0 & (x = 0) \\ < 0 & (x < 0) \end{cases}$ $\therefore f(x)$ has minimal value at point x = 0, as (x) = 0, $\therefore e^x \ge x + 1$ is always achieved.
- (b) Taylor expression of e^x : $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^k}{k!} + \dots$ $\therefore |e^x - (x+1)| \approx \frac{x^2}{2} \le 0.01 \Rightarrow x \in [-\frac{\sqrt{2}}{10}, \frac{\sqrt{2}}{10}]$
- 4. (2.27).

Extract the features of every web pages and transform them into 0,1 vectors; Calculate the distance of each two web pages;

If the distance > the setting threshold value, then there are similar. Otherwise, they are not similar.

5.
$$(2.38)$$
.

- (a) Prove that the representation of any vector in this basis is unique: Suppose a = a₁e₁ + a₂e₂ + ··· + a_de_d = b = b₁e₁ + b₂e₂ + ··· + b_de_d a₁, a₂, ··· , a_d and b₁, b₂, ··· , b_d are not same. ∴ 0 = (a₁ - b₁)e₁ + (a₂ - b₂)e₂ + ··· + (a_d - b_d)e_d ∴ e₁, e₂, ··· e_d are linear independent ∴ a₁ - b₁ = 0, a₂ - b₂ = 0, ··· , a_d - b_d = 0, it is a contradiction. So the assumption is not achieved, the representation of any vector in this basis is unique.
 (b) Z = (√2/2, 1)(e₁) = √2/2(1, 0) + (-√2/2, √2/2) = (0, √2/2)
- (b) $Z = (\frac{\sqrt{2}}{2}, 1) {\binom{e_1}{e_2}} = \frac{\sqrt{2}}{2} (1, 0) + (-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}) = (0, \frac{\sqrt{2}}{2})$ $\left| \vec{Z} \right|^2 = \frac{1}{2}$
- (c) It is Not necessary. as shown in the figure, $a_1 < b_1$ and $a_2 < b_2$, but |Z| < |Y|
- (d) suppose $(0,1) = a_1 \vec{e_1} + a_2 \vec{e_2}$, then $\Rightarrow a_1 = 1, a_2 = \sqrt{2} \Rightarrow (0,1) = (1,\sqrt{2})_e$ suppose $(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}) = a_1 \vec{e_1} + a_2 \vec{e_2}$, then $\Rightarrow a_1 = \sqrt{2}, a_2 = 1 \Rightarrow (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}) = (\sqrt{2}, 1)_e$ suppose $(1,2) = a_1 \vec{e_1} + a_2 \vec{e_2}$, then $\Rightarrow a_1 = 3, a_2 = 2\sqrt{2} \Rightarrow (1,2) = (3,3\sqrt{2})_e$

bı aı a2 b2