
Adaptive Cache Aware Bitier Work-Stealing
in Multisocket Multicore Architectures

Quan Chen, Minyi Guo, Senior Member, IEEE, and Zhiyi Huang

Abstract—Modern multicore computers often adopt a multisocket multicore architecture with shared caches in each socket. However,

traditional work-stealing schedulers tend to pollute the shared cache and incur more cache misses due to their random stealing. To

relieve this problem, this paper proposes an Adaptive Cache-Aware Bi-tier work-stealing (A-CAB) scheduler. A-CAB improves the

performance of memory-bound applications by reducing memory footprint and cache misses of tasks running inside the same CPU

socket. A-CAB adaptively uses a DAG partitioner to divide an execution Directed Acyclic Graph (DAG) into the intersocket tier and the

intrasocket tier. Tasks in the intersocket tier are scheduled across sockets while tasks in the intrasocket tier are scheduled within the

same socket. Experimental results tell us that A-CAB can improve the performance of memory-bound applications up to 74.4 percent

compared with the traditional work-stealing.

Index Terms—Cache aware, work-stealing, multisocket multicore architectures, divide-and-conquer programs

Ç

1 INTRODUCTION

MULTICORE processors have become mainstream because
they have better performance per watt and larger

computational capacity than complex single-core proces-
sors. However, a single CPU die can hardly contain too
many cores (e.g., more than 128 cores) due to the physical
limitations in industrial manufacture. To fulfill the urgent
demand on powerful computers, many multicore CPUs are
integrated together into a Multisocket multicore (MSMC)
architecture. In an MSMC architecture, each CPU die is
plugged into a socket and the cores in the same socket have
a shared cache; however, the cores from different sockets
can only share the main memory.

To fully utilize the MSMC architectures, many parallel
programming environments have been proposed. In some
of them, such as Pthread [10], MPI [18], and Maotai [31],
parallelism is expressed through multithreading. Program-
mers need to launch threads and assign tasks to these
threads manually in multithreading. However, the manual
assignment of tasks is often burdensome for developing
applications. To relieve the burden of parallelization and
task assignment, parallel programming environments, such
as MIT Cilk [9], Cilk++ [26], TBB [29], X10 [24], and
OpenMP [2], assign and schedule tasks automatically.
Work-sharing [2] and work-stealing [8] are the two most
famous task scheduling strategies.

In work-sharing, workers (i.e., threads) push new tasks
into a central task pool when they are generated. Tasks are

popped out from the task pool when workers are free to
execute them. The push and pop operations need to lock the
central task pool, which often causes serious lock contention.

Work-stealing, on the other hand, provides an individual
task pool for each worker. Most often each worker pushes
tasks to and pops tasks from its own task pool without
locking. Only when a worker’s task pool is empty, it tries to
steal tasks from other workers with locking. Since there are
multiple task pools for stealing, the lock contention is much
lower than work-sharing even at task steals. Therefore,
work-stealing performs better than work-sharing as the
number of workers increases.

However, both work-sharing and work-stealing strate-
gies schedule tasks without considering the data locality
issue. The strategies can cause shared cache misses and
degrade the performance of memory-bound applications
on MSMC architectures (to be discussed in Section 2). A
memory-bound application is an application whose perfor-
mance is decided by the data access time. For example, two
tasks with shared data may be allocated to different sockets
due to the randomness in these strategies. In this case, both
tasks cannot share the data loaded to the shared cache but
have to read the shared data from the main memory, which
could be hundreds times slower than the shared cache. If
the two tasks are scheduled to the same socket, only one of
them needs to read the shared data from the main memory
while the other task can access the data from the shared
cache directly.

Based on this observation, this paper proposes an
Adaptive Cache-Aware Bi-tier (A-CAB) work-stealing
scheduler that automatically schedules tasks with shared
data into the same socket. It is targeting divide-and-conquer
(D&C) memory-bound applications, which covers a wide
range of scientific applications in fluid dynamics, quantum
dynamics, binary alloys, electromagnetism, superconduc-
tivity, thermodynamics, environmental systems, and so on.
The simulation of these systems has data parallelism that is
often exploited with stencil-based approaches [4]. These

2334 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 12, DECEMBER 2013

. Q. Chen and M. Guo are with the Departiment of Computer Science and
Engineering, Shanghai Jiao Tong University, Room 3-415 SEIEE building,
No. 800 Dongchuan Road, Shanghai 200240, China.
E-mail: chen-quan@sjtu.edu.cn, guo-my@cs.sjtu.edu.cn.

. Z. Huang is with the Department of Computer Science, University of
Otago, PO Box 56, Dunedin 9054, New Zealand.
E-mail: hzy@cs.otago.ac.nz.

Manuscript received 22 Aug. 2012; revised 31 Oct. 2012; accepted 1 Nov.
2012; published online 28 Nov. 2012.
Recommended for acceptance by S.-Q. Zheng.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-08-0756.
Digital Object Identifier no. 10.1109/TPDS.2012.322.

1045-9219/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

applications are often iterative since the computation is
repeated in steps of time. Their execution Directed Acyclic
Graph (DAGs) in systems like MIT Cilk are tree-shaped,
which is ideally suitable for A-CAB.

A-CAB consists of a DAG partitioner and a bitier work-

stealing scheduler. The DAG partitioner divides the execu-
tion DAG of a program into the intersocket tier and the
intrasocket tier. The bitier work-stealing scheduler allows
tasks in the intersocket tier to be stolen across sockets,

while tasks in the intrasocket tier are scheduled within the
same socket.

The contributions of this paper are as follows:

. We propose a profiling-based method and a compiling-
based method that collect the data access feature of
tasks for iterative programs and noniterative pro-
grams. Based on the collected information, a DAG
partitioner divides tasks into the intersocket tier and
the intrasocket tier.

. We propose a bitier work-stealing scheme that
schedules tasks with shared data to the same socket.

. We demonstrate that A-CAB significantly reduces
the shared cache misses and, thus, improves the
performance of memory-bound applications. The
experiment shows that A-CAB can achieve a
performance gain of up to 74.4 percent compared
with traditional work-stealing.

This paper is extended from our previous work [12].
The rest of this paper is organized as follows: Section 2
describes the problem and explains the motivation of A-

CAB. Section 3 presents A-CAB, including the DAG
partitioner and the bi-tier work-stealing scheduler. Section
4 shows the experimental results and the limitations of A-
CAB. Section 5 discusses the related work. Section 6 draws
conclusions and sheds light on future work.

2 PROBLEM AND MOTIVATION

For many parallel programming environments such as MIT
Cilk, the execution of a parallel program can often be
expressed by a Directed Acyclic Graph G ¼ ðV ;EÞ, where

V is a set of nodes, and E is a set of directed edges [17].
Each node in a DAG represents a task (i.e., a set of
instructions) that must be executed sequentially without
preemption, and the edges in a DAG correspond to the
dependence relationship among the nodes. Fig. 1 shows

execution DAG of a general parallel program. In the figure,
the solid lines represent the task generating relationship

and the strings by the side of nodes are the identifiers of the
corresponding tasks.

2.1 The Problem

We use Fig. 1 as an example to explain the problem of
shared cache pollution in an MSMC architecture. In many
parallel D&C programs, neighbor tasks need to access some
shared data. For example, Five-point heat distribution is an
example of such parallel programs. Therefore, �1 and �2, �3

and �4 in Fig. 1 have shared data, respectively.
We assume the program in Fig. 1 runs on a dual-socket

dual-core computer. If �1, �2, �3, and �4 are scheduled as
shown in Fig. 2a, the shared data between �1 and �2 and
the shared data between �3 and �4 is only read into the
shared cache once from the main memory. Since most tasks
can access the shared data in the shared cache, cache
misses are reduced.

However, for traditional work-stealing, because it ran-
domly chooses a victim to steal tasks, �1, �2, �3, and �4 are
likely to be scheduled to the cores as shown in Fig. 2b. In
this case, each task needs to read all its data from the main
memory. This larger memory footprint leads to more
compulsory cache misses. Even worse, if the memory
footprint exceeds the capacity of the shared cache, the
situation leads to more capacity cache misses and increases
the chances of conflict cache misses. The resulted larger
number of cache misses will lead to the worse performance
of memory-bound applications.

Though there were some task schedulers proposed to
reduce cache misses, they are not general enough for
MSMC architectures [5], [6].

2.2 Proposed Solution

If a work-stealing scheduler can ensure tasks with shared
data are scheduled to the same socket as shown in Fig. 2a,
the shared cache misses will be minimized and the
performance of memory-bound applications can be im-
proved. To achieve the purpose, we propose the Adaptive
Cache Aware Bi-tier work-stealing scheduler for memory-
bound D&C parallel programs.1

A-CAB divides an execution DAG into the intersocket
tier and the intrasocket tier. For example in Fig. 1, A-CAB
may divide the execution DAG into two tiers separated by
the shaded tasks. The shaded tasks are called leaf intersocket
tasks. Tasks above the leaf intersocket tasks, including the
leaf intersocket tasks, are called intersocket tasks, which
belong to the intersocket tier. Tasks in a subtree rooted with

CHEN ET AL.: ADAPTIVE CACHE AWARE BITIER WORK-STEALING IN MULTISOCKET MULTICORE ARCHITECTURES 2335

Fig. 1. A general execution DAG for D&C programs.

Fig. 2. Two possible scheduling of �1, �2, �3, and �4 on a dual-socket
dual-core architecture. The first scheduling can gain performance
improvement due to cache sharing and reduction of memory footprint.

1. All the programs mentioned below are memory-bound D&C parallel
programs.

a leaf intersocket task are called intrasocket tasks, which
belong to the intrasocket tier. A subtree rooted with a leaf
intersocket task is called an intrasocket subtree. For example,
in Fig. 1, tasks in an ellipse consist in an intrasocket subtree.
The goal of A-CAB is to schedule tasks in the same
intrasocket subtree within the same socket. In this way, A-
CAB can ensure �1 and �2 (or �3 and �4) to be executed in
the same socket.

However, if an intrasocket subtree is too large, the
involved data can be too large to fit into the shared cache of
the socket. On the other hand, if an intrasocket subtree is too
small, the workload of the subtree can be too small to get
better balanced among the cores of the same socket.

To find the proper leaf intersocket tasks, A-CAB should
find out the involved data size of all the tasks first. The
DAG partitioner of A-CAB finds out the involved data size
of tasks using a profiling-based method for iterative programs
and a compiling-based method for noniterative programs.

Based on the involved data sizes of tasks that are either
collected in profiling-based method or compiling-based
method, the DAG partitioner in A-CAB adaptively divide
the execution DAG into two tiers (to be discussed in
Section 3.2).

After the partitioning of the DAG, a bitier work-stealing
algorithm is adopted in A-CAB to schedule tasks in the two
tiers differently. The intersocket tasks are scheduled across
sockets, while the tasks in the same intrasocket subtree are
scheduled within the same socket. A-CAB ensures that each
socket can only execute one intrasocket subtree at the same
time to avoid cache pollution. In this way, the shared data
can be reused without reloading among tasks within an
intrasocket subtree. Fig. 3 illustrates the detailed processing
flow of a parallel program in A-CAB.

3 ADAPTIVE CACHE AWARE BITIER

WORK-STEALING

This section presents A-CAB, an Adaptive Cache Aware
Bi-tier work-stealing scheduler. First, we give the A-CAB
runtime environment. Then, we describe the DAG
partitioner, including the profiling-based method and
the compiling-based method for calculating the involved
data size of tasks and the way of dividing the execution
DAG into two tiers. Lastly, we present the bitier work-
stealing algorithm.

In addition, in Section 2 of the supplemental document,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPDS.
2012.322, we present the task-generating policy in A-CAB.
In Section 3 of the supplemental document, available online,

we present the implementation of A-CAB. In addition, we
discuss the theoretical time and space bounds of A-CAB in
Section 4 of the supplemental document, available online.

A-CAB is proposed based on the following three
observations on the execution of D&C parallel programs
as shown in Fig. 1. First, parallel tasks create child tasks
recursively until the data set for each leaf task is small
enough. During the procedure, only the leaf tasks physically
touch the data. Second, neighbor tasks usually share some
data. Lastly, if the parallel program is iterative, it often
works on the same data set for a large number of iterations.

3.1 A-CAB Runtime Environment

To support the processing flow in Fig. 3, we have built a
runtime environment for A-CAB as follows: For anM-socket
N-core architecture, A-CAB launches M �N workers (i.e.,
threads) at runtime and affiliates each worker with one
individual hardware core as shown in Fig. 4. For conve-
nience of presentation, we use the term core to mean a
worker in the rest of the paper.

In each socket, only one core is selected as the head core
of the socket to look after the intersocket task scheduling. In
A-CAB, we choose “core 0” in each socket as the socket’s
header core.

To schedule intersocket tasks and intrasocket tasks in
different ways in bitier work-stealing, A-CAB creates an
intersocket task pool for each socket to store intersocket tasks,
and an intrasocket task pool for each core to store intrasocket
tasks, as shown in Fig. 4. Note a task pool is a double-ended
queue here.

For an iterative program, during its first iteration, all the
tasks are generated and pushed into intrasocket task pools
when they are generated. In this case, tasks are scheduled
adopting traditional work-stealing policy. That is, in the
first iteration, tasks in intrasocket task pools can be
scheduled across sockets because the profiling information
has not been collected and, thus, the execution DAG has not
been partitioned. In the following iterations, tasks are
generated and pushed into different pools accordingly.

For a noniterative program, the DAG partitioner divides
the execution DAG directly on the basis of user-provided
information and information provided by compiler. There-
fore, for the program, all the tasks are generated and
pushed into different pools directly.

In bitier work-stealing, if core c in socket � generates a
task � that is an intersocket task, � is pushed into �’s
intertask pool. Otherwise, if � is an intrasocket task, it is
pushed into c’s intrasocket task pool.

2336 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 12, DECEMBER 2013

Fig. 3. The processing flow of a parallel program in A-CAB. Fig. 4. A-CAB runtime environment in a dual-socket dual-core
architecture.

3.2 DAG Partitioner

To partition an execution DAG into two tiers appropriately,
the most challenging problem is to find the proper leaf
intersocket tasks. Once the proper leaf intersocket tasks are
identified, the DAG can be easily divided into two tiers: all
the tasks above the leaf intersocket tasks (including the leaf
intersocket tasks) belong to the intersocket tier, and those
tasks in the subtrees rooted with leaf intersocket tasks
belong to the intrasocket tier.

An appropriate partitioning of an execution DAG should
satisfy two constraints. The first constraint is that, for any
intra-socket subtree ST, the involved data of all the tasks in
ST is small enough to fit into the shared cache of a socket.
The second constraint is that an intrasocket subtree ST
should be large enough to allow a socket to have sufficient
intrasocket tasks.

To fulfill the two constraints, for any task � in the
execution DAG, A-CAB should collects its involved data
size. For convenience of description, we use Size Of Involved
Data (SOID) to represent the involved data size of a task �.
That is, SOID includes the data accessed by all tasks in the
subtree rooted with �. Once the SOIDs for all tasks in the
execution DAG are known, the DAG partitioner can divide
the execution DAG into two tiers appropriately.

As stated before, A-CAB uses the profiling-based
method to collect SOIDs of tasks for iterative programs
while using the compiling-based method to collect SOIDs of
tasks for noniterative programs.

3.2.1 Profiling-Based Method

According to our observation of iterative D&C parallel
programs, the collected profiling information in the first
iteration can be used to predict the execution behavior of
the following iterations. Therefore, an optimal partitioning
of DAG based on the profiling information of the first
iteration will also be optimal for the following iterations.

Therefore, for an iterative program, A-CAB profiles the
program during the first iteration of the execution. During
the online profiling, we use the hardware Performance
Monitoring Counters (PMC) [3] to collect cache misses,
based on which the SOIDs for all tasks are calculated. The
performance counter event we have used is the last level
private data cache (e.g., L2 in AMD Quad-core Opteron
8380) misses. That is, we have used the performance
counter event “07Eh” with mask of “02h” to collect the last
level private data cache misses in AMD Quad-core Opteron
8380. For detailed information of the performance counter
events, refer to BIOS and Kernel Developer’s Guide of the
corresponding processor. Though it is straightforward to
collect the event statistics of the last level private data cache
misses in modern multicore machines like X86_64, it is very
tricky to calculate the SOIDs of the tasks based on the last
level private data cache misses.

First, limited by the hardware PMCs, a core can only
collect the cache misses of its own, but a task may have
multiple child tasks executing on different cores. Therefore,
it is impossible to collect the overall cache misses for a
task directly.

Second, it is nontrivial to relate the private cache misses
to the SOID of a task. For a task � that runs on a core c in

socket �, if � fails to get its data from the last level private
cache of c, it requests the data from the shared cache of �.
Since c does not execute other tasks when it is executing �,
the last level private cache misses of c are totally caused by
�. The last level private cache misses of c can be used to
approximate to the size of data accessed by � for the
following reasons. Many memory-bound applications adopt
data parallelism. As mentioned in our second observation in
Section 2.2, only the leaf tasks physically access data. The
data of leaf tasks do not have much overlapping with each
other. Even when two neighbor leaf tasks have a small
portion of shared data, the chances for them to be executed
in the same core are small in a traditional work-stealing
scheduler, which is adopted during the profiling stage.
Therefore, the above approximation is accurate enough for
us to calculate the SOIDs of all tasks.

Based on the collected last level private cache misses of
�, its SOID is calculated as follows: If � is a leaf task, the
number of cache misses of � times the cache line size (e.g.,
64 bytes in AMD Quad-core Opteron 8380) is �’s SOID.
Otherwise, if � is not a leaf task, its SOID is the sum of its
cache misses times the cache line size plus the SOIDs of all
its child tasks. Given a task � with n subtasks �1; �2; . . . ; �n.
Suppose M is �’s number of cache misses times the size of
cache line, and the SOIDs of its child tasks are
S1; S2; . . . ; Sn, respectively, then �’s SOID, denoted by S�,
is calculated as in

S� ¼M þ
Xn

i¼1

Si: ð1Þ

Based on (1), Fig. 5 presents an example of calculating
SOIDs for all the tasks. In the figure, Si is the SOID for leaf
task �i, but represents the size of data physically accessed
by the task itself for nonleaf tasks. In fact, for many
memory-bound applications, Si for nonleaf tasks is very
small, if it is not zero, since nonleaf tasks do not physically
access data.

As shown in Fig. 5, the SOID of a task is returned to its
parent task when it is completed. For example, in Fig. 5, �2’s
SOID is added to �1’s SOID when �1 is completed.
Therefore, when all the tasks in the first iteration are
completed, the SOIDs of all the tasks can be calculated.

3.2.2 Compiling-Based Method

The profiling-based method is not applicable for nonitera-
tive programs because the programs only access the target

CHEN ET AL.: ADAPTIVE CACHE AWARE BITIER WORK-STEALING IN MULTISOCKET MULTICORE ARCHITECTURES 2337

Fig. 5. Collect size of involved data for tasks in the profiling-based
method.

data set once. For noniterative programs, the DAG parti-
tioner calculates the SOIDs of tasks in the semiautomatic
compiling-based method.

In the compiling-based method, for any task �, we
calculate its SOID S� using the effective input data size of
the program and the branching degree of all its ancestors in
the DAG. Note that, in the following calculation, we assume
a task divides its data set into several parts evenly
according to its branching degree. This assumption is true
in most of current D&C programs.

Suppose the effective input data size of the application is
Sinput, the ancestors of task � in the DAG are �0; �1; . . . ; �i
whose branching degrees are B0; B1; . . . ; Bi accordingly.
Then, the SOID of � can be calculated with (2). Most D&C
programs satisfy this equation:

S� ¼
SinputQi
j¼0 Bj

: ð2Þ

We automatically acquires the branching degree of each
task by analyzing the task generating pattern in the source
code through the compiler. The shared cache size can be
obtained from proc/cpuinfo by our runtime system. However,
the effective input data size of the application Sinput has to be
provided through a command line argument.

3.2.3 DAG Partitioning

Once the SOIDs of all the tasks are calculated, the DAG
partitioner divides the execution DAG into intersocket tier
and intrasocket tier automatically.

To satisfy the aforementioned constraints, the DAG
partitioner identifies leaf intersocket tasks as follows: For
a task � and its parent task �p, let D� and D�p represent
SOIDs of � and �p, respectively. � is a leaf intersocket task if
and only if D� is smaller than the size of the shared cache
and D�p is larger than the size of the shared cache. More
precisely, given a task � and its parent task �p, our DAG
partitioning method determines �’s tier as follows:

. If both D�p and D� are larger than the shared cache
of a socket, � is an intersocket task, as shown in
Fig. 6a.

. If D�p is larger than the shared cache and D� equals
to or is smaller than the shared cache, � is a leaf
inter-socket task, as shown in Fig. 6b.

. If D�p equals to or is smaller than the shared cache
and D� is smaller than the shared cache, � is an
intrasocket task, as shown in Fig. 6c.

After the partitioning, the DAG partitioner has already
divided the execution DAG into two tiers appropriately.

Then, based on the partitioning, bitier work-stealing can be
adopted to schedule tasks for optimizing shared cache in
the following iterations.

For iterative programs, to identify the same task in the
following iterations, during the execution of a parallel
program, each task is given an identifier (a string)
according to the spawning relationship between tasks. If a
task �’s identifier is S, then its ith subtask’s identifier is S i.
For example, Fig. 1 shows the way of constructing
identifiers for tasks. The strings beside the tasks are the
identifiers in Fig. 1. The identifiers of all the completed
tasks are saved in a hash table with their SOIDs. When a
new task is spawned, A-CAB tries to find its identifier in
the hash table. If the identifier is found, it means the first
iteration has completed because a new task in the same
location of the execution DAG has been spawned. In this
case, A-CAB uses the bitier work-stealing scheduler to
schedule tasks based on their tiers, which are decided
according to their SOIDs as shown above.

It is worth noting that, in our implementation, for
iterative programs, all the needed information for optimal
bitier work-stealing is obtained automatically by the
runtime system of A-CAB. In this way, A-CAB automati-
cally improves the performance of iterative programs
without any human intervention. For noniterative pro-
grams, A-CAB only needs users to provide the input data
size of the programs while all the other information is
obtained by the compiler automatically. Compared with
our previous work CAB [13] that also needs human
intervention to divide execution DAG, the profiling-based
method and the compiling-based method are adaptive to
irregular and unbalanced DAGs where the leaf intersocket
tasks do not have the same depth, because it determines the
leaf intersocket tasks according to the SOIDs of tasks
instead of the task’s depth in the execution DAG.

3.3 Bitier Work-Stealing Scheduler

When A-CAB starts to execute a parallel program, if the
program is an iterative program, A-CAB has not partitioned
its execution DAG into two tiers during the first iteration.
Therefore, the cores adopt the traditional work-stealing
algorithm to obtain or steal a new task in the first iteration.
In the following iterations, A-CAB adopts a bitier work-
stealing algorithm to schedule tasks so that tasks in a
subtree rooted with a leaf intersocket task are scheduled to
the same socket. If the program is a noniterative program,
A-CAB directly adopts the bitier work-stealing algorithm to
schedule tasks. A command line argument is used to
indicate whether a program is iterative or not.

Since traditional work-stealing has been discussed
in detail in [8], we only present the bitier work-stealing in
A-CAB here.

When a core c in socket � is free, it first tries to obtain a
task from its own intrasocket task pool. If its task pool is
empty, c tries to steal a task from the intrasocket task pools
of other cores in �. If the task pools of all the cores in � are
empty, the head core of � tries to obtain a task from its
intersocket task pool. If its intersocket task pool is empty, the
head core tries to steal an intersocket task from other sockets.

In A-CAB, only the head core of each socket can steal
intersocket tasks so that the lock contention of the
intersocket task pools is reduced. In addition, cores in the

2338 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 12, DECEMBER 2013

Fig. 6. Conditions that � is an intersocket task, a leaf intersocket task or
an intrasocket task.

same socket are not allowed to execute tasks in different
intrasocket subtrees at the same time. This policy can
avoid the situation where different intrasocket subtrees
pollute the shared caches with different data sets. The
downside of the policy is that some cores in a socket may be
idle waiting for other cores to finish their tasks. An
alternative policy is to allow a socket to execute tasks from
more than one intrasocket subtrees at the same time. This
alternative policy can ensure most cores are busy, but
different intrasocket subtrees may pollute the shared
caches, which leads to more cache misses. For the
memory-bound applications that A-CAB is targeting, the
cache misses are more critical to the performance according
to our experimental results. Therefore, we have adopted the
first policy in A-CAB.

To fulfill the first policy, we use a Boolean variable
busy_state in each socket to indicate whether there is an
intersocket task running in the socket. If a socket obtains or
steals an intersocket task successfully, its busy_state is set
true. Once the socket finishes its intersocket task, its
busy_state is set false. Only if busy_state is false, should the
socket obtain or steal another intersocket task. Suppose w is
a core in a socket �, and w is free and trying to get a new task.

4 EVALUATION

We use a Dell 16-core computer that has four AMD Quad-
core Opteron 8380 processors (codenamed “Shanghai”)
running at 2.5 GHz to evaluate the performance of A-CAB.
Each Quad-core socket has a 512K private L2 cache for each
core and a 6M L3 cache shared by all four cores. The
computer has 16-GB RAM and runs Linux 2.6.29.

Since A-CAB is proposed to reduce cache misses, we use
memory-bound benchmarks to evaluate the performance of
A-CAB. However, CPU-bound benchmarks are also used to
measure the extra overhead of A-CAB compared with
traditional work-stealing.

To evaluate the performance of A-CAB in different
scenarios, we use only benchmarks that have both balanced
and unbalanced execution DAGs in the experiments;
however, A-CAB can improve the performance of many
stencil-based simulation programs [4], as we mentioned
before. Table 1 lists the used benchmarks. Since we can
configure the iteration number of the memory-bound
benchmarks, we can evaluate the compiling-based method
for noniterative programs by adjusting the benchmarks to
run only 1 iteration.

We manually construct benchmarks whose execution
DAGs are unbalanced trees (i.e., Heat-ub, GE-ub, and SOR-
ub) because it is hard to find benchmarks whose execution
DAGs are unbalanced trees natively. For example, we
implement Heat-ub in Algorithm 1 in the supplemental
document, available online.

As mentioned before, A-CAB affiliates each worker with
a hardware core. However, MIT Cilk does not affiliate
workers with the cores. Therefore, we have modified the
MIT Cilk (denoted as Cilk) to affiliate each worker with a
hardware core (denoted as Cilk-a) to ensure fair compar-
ison, because the affiliation of workers with cores can
improve the performance of memory-bound applications
(to be shown in Fig. 7). We implement Cilk-a and A-CAB
based on MIT Cilk. The MIT Cilk programs run with Cilk-a
and A-CAB without any modification.

All benchmarks are compiled with “cilk2c -O2”, which is
based on gcc 4.4.3. Furthermore, for each test, every
benchmark runs 10 times. Since the execution time is very
stable, the average execution time is used in the final results.

4.1 Performance of Memory-Bound Applications

Fig. 7 shows the performance of memory-bound bench-
marks in Cilk, Cilk-a, and A-CAB with a 1;024� 512 matrix
as the input data. For GE and GE-ub, the used input data are
a 1;024� 1;024 matrix. All the benchmarks consist of
200 iterations in this experiment. Since the benchmarks
are iterative, the DAG partitioner of A-CAB adopts the
profiling-based method to calculate the SOIDs of tasks at
the first iteration of the benchmarks.

As we can see from Fig. 7, A-CAB with the profiling-
based method can significantly improve the performance of
iterative memory-bound applications compared to Cilk-a
while the performance improvement ranges from 35.3 to
74.4 percent.

To explain why A-CAB can improve the performance of
memory-bound applications compared with Cilk-a, we
collect the cache misses of all the benchmarks and list them
in Table 2. Observed from the table, we can find that the
shared cache (L3) misses are prominently reduced while the
private cache (L1 and L2) misses are also slightly reduced in
A-CAB compared with Cilk-a. Since A-CAB schedules tasks
with shared data into the same socket, the shared cache
misses have been significantly reduced.

Although scheduling tasks with shared data to the same
socket only reduces the shared L3 cache misses, the affiliation
of an intrasocket subtree with a socket in A-CAB can help

CHEN ET AL.: ADAPTIVE CACHE AWARE BITIER WORK-STEALING IN MULTISOCKET MULTICORE ARCHITECTURES 2339

TABLE 1
Benchmarks Used in the Experiments

Fig. 7. The performance of iterative memory-bound benchmarks in
Cilk-a, Cilk, and A-CAB.

reduce the L2 cache misses slightly. In A-CAB, for a task �i in
an intrasocket subtree, if it is executed by core c in socket �, its
neighbor tasks (i.e., �i�1 and �iþ1) are also executed by c as
well unless they are stolen by other cores in �. Compared
with traditional work-stealing where any free cores can
steal �i’s neighbor tasks, there are fewer cores that can steal
�i’s neighbor tasks in A-CAB. Therefore, the probability
that neighbor tasks are executed by the same core is larger in
A-CAB. For this reason, the private cache (e.g., L1 and L2)
misses have also been slightly reduced in A-CAB.

Fig. 8 shows the SOIDs of tasks in Heat with a 2;048�
512 matrix as input data that are calculated with (1). The
real involved data size of tasks in Fig. 8 are shown in the
circles. Since Heat uses two matrices of “double” during
the execution, the overall input data size is 2;048� 512�
8� 2 ¼ 16 MB. Then, the real data set is evenly divided
every time when the tasks are spawned. From the figure,
we can find that the calculated SOIDs are close to the real
involved data sizes, which shows the profiling-based
method is reasonably accurate. In future, to calculate
SOIDs more accurately, we will explore more hardware
performance counters.

To evaluate the compiling-based method, Fig. 9 shows
the performance of noniterative benchmarks in Cilk, Cilk-a,
and A-CAB. We create the noniterative benchmarks by
setting their iteration number as 1.

With the compiling-based method, A-CAB significantly
improves the performance of noniterative memory-bound
applications compared to Cilk-a while the performance
improvement ranges from 22.3 to 55.1 percent. Same as
iterative benchmarks, the good performance of noniterative
applications in A-CAB origins from the reduced shared
cache misses as well.

From Figs. 7 and 9, we can find that Cilk-a provides
better performance compared with Cilk. For memory-bound

applications, the better performance in Cilk-a results from
the affiliation of the workers with the cores. In the rest of our
experiments, we only compare the performance of A-CAB
with Cilk-a.

In summary, with the profiling-based method for
iterative programs and the compiling-based method for
noniterative programs, A-CAB is effective for memory-
bound D&C programs.

4.2 Scalability of A-CAB

To evaluate scalability of A-CAB in different scenarios, we
use benchmarks that have both balanced and unbalanced
execution DAGs. We list the experiment results for bench-
marks with unbalanced execution DAGs in Section 5.2 of
the supplemental document, available online. In this
experiment, we execute benchmarks with different input
data sizes in A-CAB and Cilk-a to compare their scalability.

During the execution of all the benchmarks, every task
divides its data set into several parts by rows to generate
child tasks unless the task meets the cutoff point (i.e., the
data set size of a leaf task). Since the data set size of the leaf
tasks affects the measurement of scalability, we should
ensure that the data set size of the leaf tasks is constant in
our experiment. To satisfy this requirement, we use a
constant cutoff point, eight rows, for the leaf tasks, and a
constant number of columns, 512, for the input data. We
only adjust the number of rows of the input matrix in the
experiment. In this way, we can measure the scalability of
A-CAB without the impact of the granularity of the leaf
tasks. In all the following figures, the x-axis represents the
number of rows of the input matrix.

We use Heat and SOR as benchmarks to evaluate the
scalability of A-CAB for applications with balanced
execution DAGs. Other benchmarks, such as GE, have
similar results.

Fig. 10 shows the performance of Heat and SOR with
different input data sizes in Cilk-a and A-CAB. From

2340 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 12, DECEMBER 2013

TABLE 2
Cache Misses in Cilk-a and A-CAB (�1E6)

Fig. 8. SOIDs of tasks in Heat with a 2;048� 512 matrix as input data.

Fig. 9. The performance of noniterative memory-bound benchmarks in
Cilk-a, Cilk, and A-CAB.

Fig. 10. Performance of Heat and SOR with different input data sizes.

Fig. 10, we can see that Heat and SOR achieve better
performance in A-CAB for all sizes of the input data up to
8,192 rows compared with Cilk-a. When the input data size
is small (i.e., 1;024� 512), A-CAB reduces 40.4 percent
execution time of Heat and reduces 56.1 percent execution
time of SOR. When the input data size is large (i.e.,
8;192� 512), A-CAB reduces 12.3 percent execution time of
Heat and reduces 21.1 percent execution time of SOR.

Fig. 11 shows the L2 and L3 cache misses of Heat with
different input data sizes in Cilk-a and A-CAB. Observed
from the figure, we can find that both the shared cache
misses and the private cache misses are reduced in A-CAB
compared with Cilk-a. The better performance of Heat in A-
CAB results from the less cache misses in A-CAB compared
with Cilk-a. When the input data size is small (1;024� 512),
A-CAB can reduce 76.1 percent L3 cache misses and
15.2 percent L2 cache misses compared with Cilk-a. When
the input data size is large (8;192� 512), A-CAB can reduce
55.9 percent L3 cache misses and 3.6 percent L2 cache
misses compared with Cilk-a. Therefore, when A-CAB
schedules regular applications with balanced execution
DAGS, it is scalable. Other benchmarks show similar results
of cache misses.

In addition, Fig. 11 further verifies that A-CAB can also
slightly reduce private cache misses by scheduling tasks
with shared data into the same socket, which is due to the
same reason explained previously.

We further discuss the impact of task granularity on the
performance of memory-bound applications in A-CAB, and
prove that the extra overhead of A-CAB for CPU-bound
applications is negligible in Sections 5.3 and 5.4 of the
supplemental document, available online.

5 RELATED WORK

Work-stealing is increasingly popular for automatic load
balancing inside parallel applications. There has been a lot
of research work on its adaptation and improvement [21],
[11], [30], [22], [27], [13].

There are generally two policies for work-stealing:
child-first and parent-first. In [19], the performance of
the two policies was compared. Both child-first and
parent-first policies have their strengths and are used
pervasively in work-stealing schedulers. For example, MIT
Cilk [9], Cilk++ [26], and Intel TBB [29] use the child-first
policy, while Java’s fork-join framework [23] and Task
Parallel Library (TPL) [25] use the parent-first policy. Also
there are some work-stealing schedulers that adopt both
policies, for example, SLAW [20]. In SLAW, tasks are
generated following either the child-first policy or the

parent-first policy according to the stack pressure and
work-stealing conditions. Although SLAW uses both
policies as in our A-CAB scheduler, it does not associate
the policies to the DAG tiers as we do in A-CAB.

Cache awareness is an interesting issue in work-stealing.
In [1], a theoretical bound on the number of cache misses for
traditional work-stealing was presented and a locality-
guided work-stealing algorithm was implemented on a
single-socket SMP. In [15], the authors analyzed the cache
misses of algorithms using traditional work-stealing, focus-
ing on the effects of false sharing. In [14], cache behaviors of
work-stealing and a parallel depth-first scheduler were
compared and analyzed on a multicore simulator that has
shared L2 caches among cores. It was proposed to promote
constructive cache sharing through controlling task granu-
larity. However, the above studies did not take the MSMC
architecture into consideration.

In [28], Probability Work-Stealing (PWS) and Hierarch-
ical Work-Stealing (HWS) were proposed to reduce com-
munications among different computers for hierarchical
distributed platform. In PWS, processors had higher
probability to steal tasks from processors in the same
computer. HWS used a rigid boundary level to divide tasks
into global tasks and local tasks which are similar to
intersocket tasks and intrasocket tasks in A-CAB. It is also
worth noting that PWS and HWS were proposed for
reduction of communications in distributed environments.

Similar to HWS, our previous work CAB [13] used a
rigid boundary level to divide tasks into global tasks and
local tasks. Though the boundary level is calculated at
runtime, users have to provide a number of command line
arguments for the scheduler to calculate the boundary level.
If the arguments are not correct, the performance of
applications may degrade seriously. In addition, CAB is
not as adaptive as A-CAB because it cannot work with
irregular and unbalanced execution DAGs that A-CAB
works with.

The method of dividing an execution DAG into sub-
DAGs for reducing cache misses was also used in other
studies. In [5], CONTROLLED-PDF was proposed to reduce
cache misses in single-socket multicore architecture. The
scheduler divided nodes of a DAG into L2-supernodes that
contain data fit for the shared L2 cache and further divided
L2-supernodes into L1-supernodes with data fit for the
private L1 cache. By executing L1-supernodes in the same
L2-supernode in parallel but executing L2-supernodes
sequentially, the cache misses can be reduced. The
scheduler needed users to provide space complexity
function of the executed program and was only applicable
to single-socket multicore architecture. Also, the paper did
not provide the detailed method for creating L1-supernodes
and L2-supernodes and did not evaluate the proposed
scheduler through experiment as we do.

There are also some studies aiming at good cache
performance based on other techniques. Cache-oblivious
algorithms can achieve good cache performance by tuning
the original algorithms carefully [7]. In [16], ULCC was
proposed to explicitly manage and optimize last level cache
usage by allocating proper cache space for different data
sets of different threads based on a page-coloring technique.
Although ULCC provides a good way to manage the last

CHEN ET AL.: ADAPTIVE CACHE AWARE BITIER WORK-STEALING IN MULTISOCKET MULTICORE ARCHITECTURES 2341

Fig. 11. L2 and L3 cache misses of Heat with different input data sizes.

level cache, the management is still burdensome for
programming. In contrast, A-CAB can improve the last
level cache (L3) performance of memory-bound applica-
tions automatically.

6 CONCLUSIONS AND FUTURE WORK

Although traditional work-stealing works efficiently in a
multicore processor, it tends to pollute the shared caches
in MSMC architectures. To solve the problem, we have
designed and implemented A-CAB that consists of a DAG
partitioner and a bitier work-stealing scheduler. For an
iterative program, by profiling it at its first iteration, The
DAG partitioner uses the profiling-based method to divide
the execution DAG into intersocket tier and intrasocket
tier without human intervention. For a noniterative
program, with the profiling-based method, the DAG
partitioner divides the execution DAG into intersocket
tier and intrasocket tier based on compiler-provided
and user-provided information. With bitier work-stealing,
A-CAB reduces the shared cache misses significantly by
scheduling tasks of an intrasocket subtree within the same
socket. Experimental results demonstrate that A-CAB
can achieve up to 74.4 percent performance gain for
memory-bound applications compared with traditional
work-stealing. The extra overhead of A-CAB for CPU-
bound applications is negligible.

One future research direction is to improve A-CAB for
more complex architectures such as NUMA and cc-NUMA
architectures.

ACKNOWLEDGMENTS

This work was partially supported by 863 program
2011AA01A202, Shanghai Excellent Academic Leaders Plan
(No. 11XD1402900), NSFC (Grant No. 60725208, 61003012),
and National Science Fund for Distinguished Young
Scholars with Grant Nos. 61028005. Quan Chen would like
to thank the University of Otago for hosting his internship
during the course of this research.

REFERENCES

[1] U. Acar, G. Blelloch, and R. Blumofe, “The Data Locality of Work
Stealing,” Theory of Computing Systems, vol. 35, no. 3, pp. 321-347,
2002.

[2] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan, and G. Zhang, “The Design of
OpenMP Tasks,” IEEE Trans. Parallel and Distributed Systems,
vol. 20, no. 3, pp. 404-418, Mar. 2009.

[3] R. Azimi, M. Stumm, and R. Wisniewski, “Online Performance
Analysis by Statistical Sampling of Microprocessor Performance
Counters,” Proc. 19th Ann. Int’l Conf. Supercomputing, pp. 101-110,
2005.

[4] M. Berger and J. Oliger, “Adaptive Mesh Refinement for
Hyperbolic Partial Differential Equations,” J. Computational
Physics, vol. 53, no. 3, pp. 484-512, 1984.

[5] G. Blelloch, R. Chowdhury, P. Gibbons, V. Ramachandran, S. Chen,
and M. Kozuch, “Provably Good Multicore Cache Performance for
Divide-and-Conquer Algorithms,” Proc. 19th Ann. ACM-SIAM
Symp. Discrete Algorithms, pp. 501-510, 2008.

[6] G. Blelloch, J. Fineman, P. Gibbons, and H.V. Simhadri,
“Scheduling Irregular Parallel Computations on Hierarchical
Caches,” Proc. 20th ACM Symp. Parallel Algorithms and Architec-
tures, June 2011.

[7] G. Blelloch, P. Gibbons, and H. Simhadri, “Low Depth Cache-
Oblivious Algorithms,” Proc. 22nd ACM Symp. Parallelism in
Algorithms and Architectures, pp. 189-199, 2010.

[8] R.D. Blumofe, “Executing Multithreaded Programs Efficiently,”
PhD thesis, Dept. of Electrical Eng. and Computer Science,
Massachusetts Inst. of Technology, Technical Report MIT/LCS/
TR-677, MIT Laboratory for Computer Science, Sept. 1995.

[9] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H.
Randall, and Y. Zhou, “Cilk: An Efficient Multithreaded Runtime
System,” J. Parallel and Distributed computing, vol. 37, no. 1, pp. 55-
69, Aug. 1996.

[10] D. Butenhof, Programming with POSIX Threads. Addison-Wesley
Longman Publishing Co., Inc., 1997.

[11] D. Chase and Y. Lev, “Dynamic Circular Work-Stealing Deque,”
Proc. 17th Ann. ACM Symp. Parallelism Algorithms and Architectures,
pp. 21-28, 2005.

[12] Q. Chen, M. Guo, and Z. Huang, “Cats: Cache Aware Task-
Stealing Based on Online Profiling in Multi-Socket Multi-Core
Architectures,” Proc. 26th Int’l Conf. Supercomputing, pp 163-172,
2012.

[13] Q. Chen, Z. Huang, M. Guo, and J. Zhou, “CAB: CachE-Aware
Bi-Tier Task-Stealing In Multi-Socket Multi-Core Architecture,”
Proc. 40th Int’l Conf. Parallel Processing, pp. 722-732, 2011.

[14] S. Chen et al., “Scheduling Threads for Constructive Cache
Sharing on CMPs,” Proc. 19th Ann. ACM Symp. Parallel Algorithms
and Architectures, pp. 105-115, 2007.

[15] R. Cole and V. Ramachandran, “Analysis of Randomized Work
Stealing with False Sharing,” ArXiv e-prints, Mar. 2011.

[16] X. Ding, K. Wang, and X. Zhang, “ULCC: A User-Level Facility for
Optimizing Shared Cache Performance on Multicores,” Proc. ACM
SIGPLAN Symp. Principles and Practice Parallel Programming,
pp. 103-112, 2011.

[17] A. Gerasoulis and T. Yang, “A Comparison of Clustering
Heuristics for Scheduling Directed Acyclic Graphs on Multi-
processors,” J. Parallel and Distributed Computing, vol. 16, no. 4,
pp. 276-291, 1992.

[18] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message Passing Interface. MIT Press, 1999.

[19] Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-First and Help-
First Scheduling Policies for Async-Finish Task Parallelism,” Proc.
IEEE 23th Int’l Parallel and Distributed Processing Symp., pp. 1-12,
2009.

[20] Y. Guo, J. Zhao, V. Cave, and V. Sarkar, “Slaw: A Scalable
Locality-Aware Adaptive Work-Stealing Scheduler,” Proc. IEEE
24th Int’l Parallel and Distributed Processing Symp., pp. 1-12, 2010.

[21] D. Hendler, Y. Lev, M. Moir, and N. Shavit, “A Dynamic-Sized
Nonblocking Work Stealing Deque,” Technical Report TR-2005-
144, Sun Microsystems, Inc., p. 69, 2005.

[22] D. Hendler and N. Shavit, “Non-Blocking Steal-Half Work
Queues,” Proc. 21th Ann. Symp. Principles Distributed Computing,
pp. 280-289, 2002.

[23] D. Lea, “A Java Fork/Join Framework,” Proc. ACM Conf. Java
Grande, pp. 36-43, 2000.

[24] J. Lee and J. Palsberg, “Featherweight X10: A Core Calculus for
Async-Finish Parallelism,” Proc. 15th ACM SIGPLAN Symp.
Principles and Practice of Parallel Computing, pp. 25-36, 2010.

[25] D. Leijen, W. Schulte, and S. Burckhardt, “The Design of a Task
Parallel Library,” ACM SIGPLAN Notices, vol. 44, no. 10, pp. 227-
242, 2009.

[26] C. Leiserson, “The Cilk++ Concurrency Platform,” Proc. 46th Ann.
Design Automation Conf., pp. 522-527, 2009.

[27] M.M. Michael, M.T. Vechev, and V.A. Saraswat, “Idempotent
Work Stealing,” Proc. 14th ACM SIGPLAN Symp. Principles and
Practice Parallel Programming, pp. 45-54, 2009.

[28] J.-N. Quintin and F. Wagner, “Hierarchical Work-Stealing,” Proc.
16th Int’l Euro-Par Conf. Parallel processing: Part I, pp. 217-229, 2010.

[29] J. Reinders, Intel Threading Building Blocks. O’Reilly, 2007.
[30] L. Wang, H. Cui, Y. Duan, F. Lu, X. Feng, and P. Yew, “An

Adaptive Task Creation Strategy for Work-Stealing Scheduling,”
Proc. IEEE/ACM Eighth Ann. Int’l Symp. Code Generation and
Optimization, pp. 266-277, 2010.

[31] J. Zhang, Z. Huang, W. Chen, Q. Huang, and W. Zheng, “Maotai:
View-Oriented Parallel Programming on CMT Processors,” Proc.
37th Int’l Conf. Parallel Processing, pp. 636-643, 2008.

2342 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 12, DECEMBER 2013

Quan Chen received the BS degree in computer
science from Tongji University, China, in 2007,
the MS degree in computer science from the
Shanghai Jiao Tong University, China, in 2009,
and is currently working toward the PhD degree
at Embedded and Pervasive Computing Center
(EPCC), Department of Computer Science and
Engineering, Shanghai Jiao Tong University. His
research interests include parallel and distribu-
ted processing, task scheduling, cloud comput-

ing, and chip multiprocessor.

Minyi Guo received the BS and ME degrees in
computer science from Nanjing University,
China, in 1982 and 1986, respectively, and the
PhD degree in information science from the
University of Tsukuba, Japan, in 1998. From
1998 to 2000, he had been a research associate
of NEC Soft, Ltd. Japan. He was a visiting
professor at the Department of Computer
Science, Georgia Institute of Technology. He
was a full professor at the University of Aizu,

Japan, and is the head of the Department of Computer Science and
Engineering at Shanghai Jiao Tong University, China. His primary
interests include automatic parallelization and data-parallel languages,
bioinformatics, compiler optimization, high-performance computing,
and pervasive computing. He is a senior member of the IEEE and
has published more than 150 papers in well-known conferences
and journals.

Zhiyi Huang received the BSc degree in 1986
and the PhD degree in 1992 in computer science
from the National University of Defense Tech-
nology (NUDT) in China. He is an associate
professor at the Department of Computer
Science, University of Otago, New Zealand. He
was a visiting professor at EPFL (Swiss Federal
Institute of Technology Lausanne) and Tsinghua
University in 2005, and a visiting scientist at MIT
CSAIL in 2009. His research fields include

parallel/distributed computing, multicore architectures, operating sys-
tems, green computing, cluster/grid/cloud computing, high-performance
computing, and computer networks.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHEN ET AL.: ADAPTIVE CACHE AWARE BITIER WORK-STEALING IN MULTISOCKET MULTICORE ARCHITECTURES 2343

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

