
8

Adaptive Workload-Aware Task Scheduling for Single-ISA
Asymmetric Multicore Architectures

QUAN CHEN and MINYI GUO, Department of Computer Science and Engineering,
Shanghai Jiao Tong University

Single-ISA Asymmetric Multicore (AMC) architectures have shown high performance as well as power
efficiency. However, current parallel programming environments do not perform well on AMC because they
are designed for symmetric multicore architectures in which all cores provide equal performance. Their
random task scheduling policies can result in unbalanced workloads in AMC and severely degrade the
performance of parallel applications. To balance the workloads of parallel applications in AMC, this article
proposes an adaptive Workload-Aware Task Scheduler (WATS) that consists of a history-based task allocator
and a preference-based task scheduler. The history-based task allocator is based on a near-optimal, static
task allocation using the historical statistics collected during the execution of a parallel application. The
preference-based task scheduler, which schedules tasks based on a preference list, can dynamically adjust
the workloads in AMC if the task allocation is less optimal due to approximation in the history-based task
allocator. Experimental results show that WATS can improve both the performance and energy efficiency of
task-based applications, with the performance gain up to 66.1% compared with traditional task schedulers.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Task grouping, history-based task allocation, dynamic task scheduling

ACM Reference Format:
Quan Chen and Minyi Guo. 2014. Adaptive workload-aware task scheduling in single-ISA asymmetric
multicore architectures. ACM Trans. Architec. Code Optim. 11, 1, Article 8 (February 2014), 25 pages.
DOI: http://dx.doi.org/10.1145/2579674

This article is extended from our previous conference paper, WATS: Workload-Aware Task Scheduling in
Asymmetric Multicore Architecture [Chen et al. 2012a], which was published in IPDPS 2012. The 30% new
material comes from the following aspects. (1) In the previous paper, WATS relied on a strong assumption
that the percentage of tasks executing the same function among all tasks is almost the same during the
execution of a parallel application. For batch-based programs, WATS in this article does not rely on this strong
assumption; (2) We have updated WATS for supporting the generalized scenario without the aforementioned
strong assumption. In addition, the new history-based task allocator does not rely on the frequencies of cores
any more; thus, WATS can work in all single-ISA multicore architectures; (3) This article has also significantly
enhanced the experimental evaluation. We have evaluated both the performance and the energy efficiency
of WATS on much more asymmetric architectures.
Minyi Guo is the corresponding author of this article. Authors’ addresses: Q. Chen and M. Guo, 3-119/3-417,
SEIEE Building, No. 800 Dongchuan Road, Shanghai, China; email: chen-quan@situ.edu.cn; guo-my@cs.
situ.edu.cn.
This work was partially supported by 863 program 2011AA01A202, Shanghai Excellent Academic Leaders
Plan (No. 11XD1402900), Program for Changjiang Scholars and Innovative Research Team in University
(IRT1158, PCSIRT) China, NSFC (Grant No. 60725208, 61003012).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1544-3566/2014/02-ART8 $15.00

DOI: http://dx.doi.org/10.1145/2579674

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

http://dx.doi.org/10.1145/2579674
http://dx.doi.org/10.1145/2579674

8:2 Q. Chen and M. Guo

1. INTRODUCTION

Although chip manufacturers such as AMD and Intel keep producing new CPU chips
with more symmetric cores, researchers are investigating alternative multicore orga-
nizations such as Asymmetric Multicore (AMC) architectures. In AMC architectures,
individual cores have different computational capabilities [Kumar et al. 2004, 2005;
Balakrishnan et al. 2005; Hill and Marty 2008].

AMC is attractive because it has the potential to improve system performance, to
reduce power consumption, and to mitigate Amdahl’s law [Kumar et al. 2005; Hill
and Marty 2008]. Since an AMC architecture consists of a mix of fast cores and slow
cores, it can better cater to applications with a heterogeneous mix of workloads [Kumar
et al. 2004; Balakrishnan et al. 2005]. For example, fast, complex cores can be used
to execute the serial code sections, whereas slow, simple cores can be used to crunch
numbers in parallel, which is more power efficient. For example, Nintendo Wii and
Nintendo DS use AMC processors. In addition, many modern multicore chips offer
Dynamic Voltage and Frequency Scaling (DVFS), which can dynamically adjust the
operating frequency of each core and thus is able to turn a symmetric multicore chip
into a performance-asymmetric multicore chip.

Despite the rapid development of the AMC technology, current parallel programming
environments, as listed later, still assume that all cores provide equal performance. Due
to this assumption, parallel applications cannot utilize the asymmetric cores of an AMC
architecture effectively.

Most current parallel programming environments adopt either work-sharing or
work-stealing policies for task scheduling. By dynamically scheduling the parallel
tasks, the workloads can be balanced in multicore architectures. For example, Cilk
[Blumofe et al. 1996], TBB [Reinders 2007], and X10 [Lee and Palsberg 2010] adopt
work stealing, whereas OpenMP [Ayguadé et al. 2009] uses work sharing.

However, both work stealing and work sharing do not consider tasks’ workloads
when allocating tasks to different cores, which is not a problem for symmetric cores
but can cause unbalanced workloads among asymmetric cores. For example, a long task
may be scheduled to a slow core, whereas a short task is executed by a fast core. This
problem of unbalanced workloads, which will be further discussed in detail in Section 2,
can significantly degrade the performance of parallel applications. To the best of our
knowledge, no study has addressed this problem and investigated the optimal task
scheduling in parallel programming environments so that applications comprised of
parallel tasks with different workloads can perform efficiently in AMC.

The techniques proposed in this article are used to improve the performance of
parallel programs (especially batch-based programs and pipeline-based programs) on
single-ISA AMC architectures where different types of cores in an AMC have the
same Instruction Set Architecture (ISA). All of the tasks of a parallel program can be
executed by any core in a single-ISA AMC architecture directly. Similar to Koufaty et al.
[2010], Rosenberg and Chiang [2010], and Bhadauria and McKee [2010], we assume
that different tasks have different requirements on the computation resources.

The rest of this article is organized as follows. Section 2 describes the problem of
unbalanced workloads in AMC and the proposed solutions. Section 3 presents WATS,
which comprises a history-based task allocator and a preference-based task sched-
uler. Section 4 evaluates WATS and provides limitations of WATS. Section 5 discusses
related work. Section 6 summarizes our contributions and draws conclusions.

2. MOTIVATION AND SOLUTIONS

Let us use an example to explain the problem of unbalanced workloads in AMC. Sup-
pose that a parallel application has four parallel tasks: γ1, γ2, γ3, and γ4. We assume

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

Adaptive Workload-Aware Task Scheduling in Single-ISA Asymmetric Multicore Architectures 8:3

Fig. 1. Two possible allocations of γ1, γ2, γ3, and γ4.

that the application runs on an AMC architecture as shown in Figure 1, with one fast
core (c0) and three slow cores (c1, c2, and c3). Suppose that γ1, γ2, γ3, and γ4 take times
f1, f2, f3, and f4 on the fast core c0, respectively, and that f1 > f2 > f3 > f4. As the
counterpart, γ1, γ2, γ3, and γ4 take times s1, s2, s3, and s4 on the slow cores, respectively.
We can reasonably deduce that s1 > f1, s2 > f2, s3 > f3, and s4 > f4. Without loss of
generality, we further assume that f1 > s2, f1 > s3, and f1 > s4.

Figure 1 shows two possible allocations of γ1, γ2, γ3, and γ4 to the cores. Figure 1(a)
is an optimal allocation where γ1 is allocated to the fast core c0 and the shorter tasks
are allocated to the slow cores. The makespan (i.e., the overall completion time) for
γ1, γ2, γ3, and γ4 is Topt = max{ f1, s2, s3, s4} = f1. Because f1 < s1, we can find that
Topt < s1.

However, with traditional task scheduling policies such as work stealing, γ1, γ2, γ3,
and γ4 are likely to be allocated as in Figure 1(b), where γ3 is allocated to the fast core
but the long task γ1 is scheduled to a slow core. In this case, the makespan for γ1, γ2, γ3,
and γ4 is Tbad = max{s1, s2, f3, s4} ≥ s1 > f1 = Topt. Obviously, allocating a long task to
a slow core can degrade the overall performance seriously.

Some studies (e.g., Bender and Rabin [2000]) tried to improve the random scheduling
on AMC by allowing idle fast cores to snatch tasks from slow cores. For example, with
this rescuing policy, for the situation in Figure 1(b), c0 is allowed to snatch γ1 from c3
after finishing γ4. Suppose that c0 snatches γ1 from c3 after finishing γ4 (which takes
time f4). c0 still needs (s1− f4

s1
) × f1 to finish γ1 because c3 has only finished s1− f4

s1
of γ1.

Let �s represent the time of the snatching operation. Then, the overall time for c0 to
finish both γ4 and γ1 is f4 + s1− f4

s1
× f1 + �s. Therefore, with the snatching policy, the

makespan for γ1, γ2, γ3, and γ4 is Tres = max{ f4 + s1− f4
s1

× f1 + �s, s2, s3, f4}. Because
f4 + s1− f4

s1
× f1 +�s − f1 >

f1
s1

× f4 + s1− f4
s1

× f1 − f1 +�s = f4
s1

× f1 + s1− f4
s1

× f1 − f1 +�s = �s,

we can deduce that f4 + s1− f4
s1

× f1 + �s > f1. In addition, since f1 is larger than s2, s3,

and f4, Tres = f4 + s1− f4
s1

× f1 + �s > f1 = Topt and the rescuing policy is still not as
efficient as the optimal allocation.

Furthermore, since Tres − Tbad = f4 + s1− f4
s1

× f1 + �s − s1 = (s1 − f4) × (f1
s1

− 1) + �s

and (s1 − f4) × (f1
s1

− 1) < 0, if the system knows the execution time of each task on all
the cores and �s is not too large, the snatching policy can improve the performance of
random scheduling.

However, the execution time of the tasks on different cores are unknown to the exist-
ing random schedulers. Therefore, idle fast cores have to snatch tasks randomly, and
thus the snatching policy will still suffer from the randomness in the random schedul-
ing. For example, in Figure 1(b), with the random snatching, the worst case could be
that c0 first snatches γ2 and γ3 before snatching γ1, where the makespan is larger.

In summary, the knowledge of tasks’ execution time on different cores is essential
to optimal task scheduling in AMC. This knowledge can help a scheduler allocate long

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

8:4 Q. Chen and M. Guo

Fig. 2. The optimal task allocation problem in AMC. Allocate m independent tasks with different workloads
to k c-groups with different computational capacities.

Table I. ETT of the Program That Has m Tasks on an AMC with k C-groups
�����������Tasks

C-groups G1 G2 ... Gi ... Gk

γ1 t11 t12 ... t1i ... t1k
γ2 t21 t22 ... t2i ... t2k
...
γ j tj1 tj2 ... tji ... tjk

...
γm tm1 tm2 ... tmi ... tmk

tasks to fast cores, which is often optimal. It can also help idle fast cores to steal or
snatch the long tasks if steal and snatch are necessary. It is worth noting that an initial
optimal allocation based on the knowledge of workloads is more crucial to the makespan
than the snatching policy that tries to rescue a nonoptimal allocation.

We generalize the task allocation problem, assuming that the execution time of tasks
on all cores are known. We will give theoretical analysis on the optimal task allocation,
which will guide our design and implementation of task scheduling in AMC.

Figure 2 illustrates the general problem of optimal task allocation in AMC. Suppose
that there are m independent tasks (γ1, . . . , γm) with different workloads and an AMC
with k types of cores. We group cores of the same type into a core group (denoted as
c-group). We use G1, . . . , Gk to represent the k c-group in descending order of their
computational capacities and use Ni (1 ≤ i ≤ k) to represent the number of cores in
Gi. The problem can be expressed as how to divide the m tasks into k groups that are
assigned to the k c-groups, respectively, so that the makespan is minimum? Once tasks
are assigned to c-groups, many existing task scheduling policies (e.g., work sharing
and work stealing) can be adopted to balance workloads among symmetric cores in the
same c-group.

To solve the problem, we construct an Execution Time Table (ETT) for the parallel
program that has m tasks on the AMC that has k c-groups in Table I. The item tji in
row γ j and column Gi is the expected execution time of γ j on a core in c-group Gi.

2.1. Theoretical Ideal Solution

The following theorem provides theoretical guidance to optimal task allocation.

THEOREM 2.1. For tasks γ1, . . . , γm, if γpi−1+1, . . . , γpi (1 ≤ i ≤ k, p0 = 0, pk = m) are
allocated to c-group Gi, their makespan is minimum only when p1, . . . , pk−1 satisfy

p1∑

n=1

tn1 : · · · :
pi∑

n=pi−1+1

tni : · · · :
m∑

n=pk−1+1

tnk = N1 : · · · : Ni : · · · : Nk (1)

Moreover, the task allocation is optimal and the optimal makespan Topt =
∑p1

n=1 tn1

N1
=

· · · =
∑pi

n=pi−1+1 tni

Ni
· · · =

∑m
n=pk−1+1 tnk

Nk
.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

Adaptive Workload-Aware Task Scheduling in Single-ISA Asymmetric Multicore Architectures 8:5

Table II. Allocate m Tasks with Different Workloads to k C-groups
��������Tasks

C-groups G1 G2 ... Gi ... Gk

γ1 t11 t12 ... t1i ... t1k

...

γp1 t(p1)1 t(p1)2 ... t(p1)i ... t(p1)k

γp1+1 t(p1+1)1 t(p1+1)2 ... t(p1+1)i ... t(p1+1)k

...

γp2 t(p2)1 t(p2)2 ... t(p2)i ... t(p2)k

...

γpi−1+1 t(pi−1+1)1 t(pi−1+1)2 ... t(pi−1+1)i ... t(pi−1+1)k

...

γpi t(pi)1 t(pi)2 ... t(pi)i ... t(pi)k

...

γpk−1+1 t(pk−1+1)1 t(pk−1+1)2 ... t(pk−1+1)i ... t(pk−1+1)k

...

γm tm1 tm2 ... tmi ... tmk

PROOF. Straightforward. If tasks are divided into groups in Equation 1, the workloads
are balanced among the k c-groups in terms of the computation capacities of the cores
in different c-groups. Since all the workloads are fully balanced during the time period
Topt and the lower bound is achieved, this task allocation is optimal. Therefore, the
execution time for the group of tasks allocated on the k c-groups can be calculated as
∑p1

n=1 tn1

N1
= · · · =

∑pi
n=pi−1+1 tni

Ni
· · · =

∑m
n=pk−1+1 tnk

Nk
= Topt.

2.2. Proposed Solution

It is not feasible to find the ideal solution to Theorem 2.1 because one may not exist in
real situations. Even if one does exist, the problem is defined as the minimum maksspan
problem on uniform parallel machines [Liu and Liu 1974] which is NP-hard.

Due to the reasons presented earlier, we relax the conditions of Theorem 2.1 and
propose a heuristical solution for the task allocation problem in AMC, as shown in
Table II.

In the solution, the m independent tasks are sorted in descending order of their
execution time on the fastest core (any core in G1). If the fastest core needs longer time
to execute a task a than another task b, the workload of a is heavier than the workload
of b. Based on the sorted tasks, we choose p1, . . . , pk−1 to divide the m tasks into k
groups that are allocated to the k c-groups (i.e., G1, . . . , Gk) according to Algorithm 1.

We assume that there are enough tasks to be allocated to the c-groups and that each
c-group will be allocated at least 1 task (i.e., pi < pk if i < k). Observed from Table II,
once p1, . . . , pk−1 are determined, the m tasks are divided into k groups. Because the
values of p1, . . . , pk−1 could be 1, 2, . . . , m−1, the number of possible choices of dividing
the m tasks equals the number of possible choices of selecting k − 1 numbers from
1, 2, . . . , m− 1. The earlier problem is a combination problem, and the overall number
of choices is Ck−1

m−1. Therefore, in Algorithm 1, we compare the estimated makespan of
the tasks for each of all Ck−1

m−1 combinations of p1, . . . , pk−1 and choose the combination
of p1, . . . , pk−1 that results in the minimum makespan.

Ck−1
m−1 will be very large if both m and k are large. In the worst case, Algorithm 1 is of

an exponential time complexity. Fortunately, AMC architectures only have two types

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

8:6 Q. Chen and M. Guo

of cores in most cases (i.e., k = 2) [Van Craeynest et al. 2012; Joao et al. 2012; Saez
et al. 2010b]. If k = 2, Ck−1

m−1 = C1
m−1 = m− 1, which increases with the number of tasks

linearly. In addition, by grouping tasks into task classes, WATS can further greatly
reduce m and thus can further significantly reduce Ck−1

m−1 (the details will be explained
in Section 3.2.3). Because both mand k are small in WATS, the overhead of Algorithm 1
is negligible for real-world applications and real AMC architectures.

ALGORITHM 1: Static near-optimal task allocation
Input: A set of tasks {γ1, . . . , γm}; The ETT of tasks on k c-groups: t[m][k]
Input: The numbers of cores in c-groups G1, . . . , Gk: N1, . . . , Nk
Output: p[k-1]: {p1, . . . , pk−1}
Func.: AllocateTask
int p[k-1], q[k-1] ; // q[k-1] stores the to-be-evaluated combination of p1, . . . , pk−1
int i= 0, min span = MAXMUM INT;
while Not all the settings are evaluated do

Get a new setting from Ck−1
m−1 possible settings and update q[k-1];

if any of {
∑q[0]

n=0 t[n][0]
N1

, . . . ,

∑m−1
n=q[k−2]+1 t[n][k−1]

Nk
} > min span then continue;

else min span = max {
∑q[0]

n=0 t[n][0]
N1

, . . . ,

∑m−1
n=q[k−2]+1 t[n][k−1]

Nk
}; Copy q[k-1] to p[k-1];

return p[k-1];

In the heuristical near-optimal solution presented, we assume that the ETT of the
program has been constructed and that all of the items in ETT are known. However,
in real parallel applications, this assumption is not valid because these information
is not known until they complete. How to apply the theoretical solution to parallel
programming environments is a challenging issue.

In WATS, we propose a history-based task allocator to initially allocate tasks to the
right c-groups. Tasks are classified into task classes according to their function names.
Instead of allocating tasks directly, we allocate the task classes to different c-groups.
For the same function f , we can collect the average execution time of the f -named tasks
on cores in every c-group, respectively, in the history. Because the average execution
time of each task class in every c-group is known from history, we can adopt Algorithm 1
to allocate the functions to different c-groups. Based on this allocation, tasks will be
allocated to the c-group where its function name is allocated.

In seldom cases where history cannot precisely predict the future, the allocation
suggested by the earlier history-based task allocator is only an approximation of the
optimal allocation. In order to further balance the workload, we propose a preference-
based task scheduler to adjust the workloads dynamically among different c-groups.

If the number and workloads of tasks in the same task class are totally repeatable
and can be estimated accurately, similar to our history-based task allocator, some other
task allocating algorithms [Hochbaum and Shmoys 1988; Miguet and Pierson 1997]
can provide a near optimal scheduling. However, for real applications, the workloads
of tasks in the same task class are similar but are not totally repeatable. As far as we
know, the linear programming–based technique cannot tolerate the nonrepeatability
due to its static scheduling. On the contrary, WATS can tolerate some nonrepeatability
due to the dynamic preference-based task scheduler.

3. WORKLOAD-AWARE TASK SCHEDULING

The philosophy behind WATS is based on our previous theoretical analysis: an optimal
task allocation is more crucial to the makespan of parallel tasks than the rescuing

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

Adaptive Workload-Aware Task Scheduling in Single-ISA Asymmetric Multicore Architectures 8:7

policies like task snatching or stealing, and a workload-aware task snatching/stealing
is better than random snatching/stealing. The history-based task allocator and the
preference-based task scheduler are used to fulfill the philosophy.

Without loss of generality, we assume that the asymmetric cores in AMC can be
divided into k c-groups G1, . . . , Gk, where Gi has Ni cores, and the cores in Gi are faster
than the cores in Gj if i < j.

3.1. Overview of WATS

As presented earlier, in WATS, instead of allocating the dynamically spawned tasks, we
allocate the task classes to different c-groups. To support the strategy, WATS creates
one task pool for each task class to store its tasks. When a task γ with a function name
f is generated, its task pool is checked first. If the task pool for f-named tasks exists, γ
is pushed into the correspondence task pool. If there is no task pool for f-named tasks,
then a new task pool is created and γ is pushed into the new task pool.

Generally, we use a data structure TC(f, ipc, n1, . . . , nk, t1, . . . , tk) to represent a task
class, where f is the function name, ipc is the Instruction Per Cycle (IPC) of a task in
the task class on a core in the fastest c-group G1, ni (1 ≤ i ≤ k) is the number of tasks
executed by cores in c-group Gi in history, and ti (1 ≤ i ≤ k) is the estimated execution
time of a task in the task class on a core in c-group Gi. Note that in any task class
TC(f, ipc, n1, . . . , nk, t1, . . . , tk), for any 1 ≤ i ≤ k, ni and ti cannot be obtained directly
because the tasks are spawned dynamically and their real execution time on different
cores cannot be obtained until they are completed.

To allocate task classes to c-groups appropriately, the key issue is to obtain ipc, ni
(1 ≤ i ≤ k), and ti (1 ≤ i ≤ k) of all task classes precisely. Targeting this issue, WATS
uses a history-based task allocator to collect ipc, ni (1 ≤ i ≤ k), and ti (1 ≤ i ≤ k) of all
task classes based on historical statistics. Once the information of all task classes are
determined, the history-based task allocator can allocate the task classes to different
c-groups near optimally using Algorithm 1.

After the task classes are allocated, WATS uses a preference-based task scheduler to
balance tasks among cores in the same c-group and among different c-groups dynami-
cally. In the preference-based task scheduler, once cores in one c-group finish all of the
tasks allocated to the c-group, the cores help other c-groups to execute their tasks. To
achieve this purpose, each core is given a preference list of task clusters (to be defined
shortly). An idle core obtains a task according to the order of its preference list.

3.2. History-Based Task Allocator

During the execution of a parallel program, WATS assumes that tasks executing the
same function in the current run have similar workloads. As for the assumption, al-
though a function may show divergent behaviors depending on the inputs, the inputs
of the tasks in the same task class in one run are often similar due to data parallelism.
Empirically, in order to parallelize a serial program, the whole dataset of the serial
program has often been divided into many equal-size data blocks, and each task will
work on a single data block. Therefore, most well-designed data parallel programs
obey this assumption. For example, in pipeline programs (such as Dedup and Ferret in
Parsec benchmark suite [Bienia et al. 2008]), tasks in different stages run in parallel.
Tasks in the same stage execute the same function and have similar workloads, but
tasks in different stages execute different functions and have different workloads. For
programs that do not obey this assumption (such as divide-and-conquer programs),
traditional work-stealing strategy is used to schedule the programs.

Based on the assumption presented, WATS uses the historical statistics collected
during the execution of a program to estimate the workloads of future tasks in the
same run. WATS collects the execution time and IPC of all completed tasks.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

8:8 Q. Chen and M. Guo

3.2.1. Build Task Classes for Nonbatch Programs. In parallel programs whose tasks are
not processed in batches, such as pipeline programs, the parallel tasks are generated
dynamically at runtime. Because the tasks are spawned continually, it is not possible
to group the unprocessed tasks and determine the appropriate allocation directly.

Therefore, for nonbatch programs, WATS further assumes that the percentage of
tasks executing the same function among all tasks is almost the same during the
execution of a parallel application. As for this assumption, in many signal-processing
programs, different signals are input into the programs at a constant rate, where
tasks processing different signals are created at a constant rate. As another example,
most pipeline programs also obey this assumption. In pipeline programs, the data are
divided into many data chunks and the data processing are divided into several stages.
Because a task is launched for a data chunk at every stage and every data chunk needs
to go through all of the stages, the assumption is approved.

Under this assumption, the near-optimal task allocation for the completed tasks are
also near optimal for the future tasks. Therefore, in this case, the history-based core
allocator searches the near-optimal task allocation for the completed tasks instead and
then allocates the newly spawned tasks in the same allocation strategy. To find the
appropriate allocation for the completed tasks, the tasks completed in history are also
organized as task classes according to their function names.

We still use TC(f, ipc, n1, . . . , nk, t1, . . . , tk) to represent a task class that is comprised
of the completed tasks. In WATS, the task classes of completed tasks are updated in a
timely manner. Once a task γ is completed, WATS collects its execution time and its
IPC. Suppose that the execution time and IPC of γ are tγ and ipcγ , respectively. If γ is
executed by a core in G1, then its task class TC(f, ipc, n1, . . . , nk, t1, . . . , tk) is updated
to TC(f, ipc×n1+ipcγ

n1+1 , n1 + 1, . . . , nk,
t1×n1+tγ

n1+1 , . . . , tk). If γ is executed by a core in Gi (i > 1),

ni in its task class is updated to ni + 1, and ti in its task class is updated to
ti×ni+t1× ipc

ipcγ

ni+1 .
If there is no such class, a new task class TC(f, ipc, n1, . . . , nk, t1, . . . , tk) is created for
f . In the newly created task class, ni = 1, ti = tγ and all other items are 0.

Note that for task γ executed by a core in c-group Gi, WATS does not use its real
execution time tγ to update ti in its task class TC(f, ipc, n, t1, . . . , ti, . . . , tk) but uses
its IPC ipcγ to update ti. This is because the execution time of a task on a core may
increase due to events that the runtime system cannot control. This could be the case
of the execution of an interrupt handler on the core where the task was scheduled,
page-fault processing, or any bottom-half processing done by the operating system
(OS) (load balancing or I/O-related operations). Fortunately, we can use t1 × ipc

ipcγ
to

calculate the execution time of γ when it is not interrupted by any other events. Using
the expected execution time of γ , the information in the task classes is accurate enough
for construction of the ETT of the correspondence program.

Based on the information about the task classes, the next step is to allocate the task
classes of the completed tasks to the k c-groups in Section 3.2.3.

3.2.2. Build Task Classes for Batch Programs. In batch programs, the parallel tasks are
launched and processed in batches. Only when all tasks in a batch are completed, the
program launches another batch of tasks.

If a batch program enters a new batch, in WATS, the workers do not execute the
tasks immediately but let the program generate all tasks in the batch first. Because
the tasks are divided into task classes and are distributed to different task pools
when they are generated, once all of the tasks in the batch are spawned, WATS gets
many task classes of unexecuted tasks and the correspondence task pools.

WATS uses a simplified data structure TC(f, ipc, n, t1, . . . , tk) to represent a task class
in a batch program, in which n is the number of f -named tasks in the current batch
and ti (1 ≤ i ≤ k) is the estimated execution time of the tasks in the task class on a core

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

Adaptive Workload-Aware Task Scheduling in Single-ISA Asymmetric Multicore Architectures 8:9

Table III. ETT of a Nonbatch Program with m Task Classes on an AMC with k C-groups
������������Task classes

C-groups
G1 ... Ga ... Gk

TC1
∑k

j=1 n1 j · t11 ...
∑k

j=1 n1 j · t1a ...
∑k

j=1 n1 j · t1k

TC2
∑k

j=1 n2 j · t21 ...
∑k

j=1 n2 j · t2a ...
∑k

j=1 n2 j · t2k

...

TCi
∑k

j=1 nij · ti1 ...
∑k

j=1 nij · tia ...
∑k

j=1 nij · tik

...

TCm
∑k

j=1 nmj · tm1 ...
∑k

j=1 nmj · tma ...
∑k

j=1 nmj · tmk

Table IV. ETT of a Batch Program with m Task Classes on an AMC with k C-groups
������������Task classes

C-groups
G1 ... Ga ... Gk

TC1 n1 · t11 ... n1 · t1a ... n1 · t1k
TC2 n2 · t21 ... n2 · t2a ... n2 · t2k
...
TCi ni · ti1 ... ni · tia ... ni · tik
...
TCm nm · tm1 ... nm · tma ... nm · tmk

in c-group Gi. In TC(f, ipc, n, t1, . . . , tk), n can be collected by counting the number of
tasks in the correspondence task pool. Based on the historical statistics, we calculate
tj (1 ≤ j ≤ k) in TC(f, ipc, n, t1, . . . , tk). Let r represent the number of f -named tasks
completed by cores in c-group Gi in history, and let ipc j1, . . . , ipc jr represent their IPCs.
We can calculate tj in TC(f, ipc, n, t1, . . . , tj, . . . , tk) in Equation 2:

tj = t1 × ipc∑r
m=1 ipc jm/r

. (2)

Once WATS collects n and calculates t1, . . . , tk for each task class in the batch, the
history-based task allocator can allocate the task classes to the c-groups as follows.

3.2.3. Allocate Task Classes to c-Groups. Suppose that there are overall m task classes.
If the parallel program is not a batch program, the m task classes are denoted
by TC1(f1, ipc1, n11 . . . , n1k, t11, . . . , t1k), . . . , TCm(fm, ipcm, nm1 . . . , nmk, tm1, . . . , tmk). Oth-
erwise, if the parallel program is a batch program, the m task classes are denoted
by TC1(f1, ipc1, n1, t11, . . . , t1k), . . . , TCm(fm, ipcm, nm, tm1, . . . , tmk). Note that the m task
classes TC1, . . . , TCm are sorted in the descending order of ti1 (1 ≤ i ≤ m).

If the task classes are ready, we apply Algorithm 1 to divide the task classes into
k groups and allocate them to the k c-groups accordingly. In order to apply Algorithm 1,
we need to build ETT for the m task classes first. Table III and Table IV give the ETT
for a nonbatch program and a batch program, respectively.

Similar to Table I, in Tables III and IV, the very item at row TCi and column Ga
represents the time needed by a core in c-group Ga to execute all tasks in task class
TCi. Recall that the expected execution time of a task in TCi on a core in c-group Ga
is tia. Based on the expected execution time, we can calculate the items in Table III
and Table IV. For a nonbatch program, because

∑k
j=1 nij tasks in task class TCi are

completed in history, the very item in row TCi and column Ga is
∑k

j=1 nij ·tia. Meanwhile,
for a batch program, because there are overall ni tasks in task class TC i are generated
in the current batch, the very item in row TCi and column Ga of Table IV is ni · tia.

Based on Tables III and IV, we apply Algorithm 1 to divide the task classes into
k groups and allocate them to the k c-groups accordingly. We call the k groups of task

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

8:10 Q. Chen and M. Guo

Fig. 3. Allocating m task classes to k c-groups in the history-based task allocator.

classes task clusters. Since task clusters and c-groups are a one-to-one mapping, for the
sake of convenience, we use Gi to represent both a task cluster and a c-group in the
following discussion. Figure 3 illustrates how the history-based task allocator works.
In the figure, task pool Pj (1 ≤ j ≤ m) stores tasks in task class TCj .

As mentioned earlier, in Tables III and IV, the m task classes are sorted in the
descending order of ti1 (1 ≤ i ≤ m), not

∑k
j=1 nij · ti1 (1 ≤ i ≤ m) or ni · ti1 (1 ≤ i ≤ m).

In this way, if we unfold the task classes into tasks, the tasks in the new ETT are
sorted in the descending order of their execution time on the fastest core as in Table I,
which is the basis of Algorithm 1. However, if we unfold the task classes in Tables III
and IV into tasks, the new ETTs will have M = ∑m

a=1
∑k

b=1nab rows and M = ∑m
a=1 na

rows, respectively. In this case, Algorithm 1 has to check Ck−1
M−1 possible combinations

of p1, . . . , pk−1 to search for the optimal allocation of tasks to c-groups. On the other
hand, if the tasks are grouped into task classes as in Tables III and IV, Algorithm 1
only needs to check Ck−1

m−1 possible combinations. Because a parallel program often
has a great amount of tasks but only a small number of task classes, m � M and
Ck−1

m−1 � Ck−1
M−1. Essentially, by grouping tasks into task classes, we make sure that the

tasks executing the same function are allocated to the same c-group. In this way, we
can greatly reduce the tries needed to search for the appropriate allocation of tasks to
c-groups. For instance, suppose 200 tasks that can be classified into 10 task classes are
completed. If the program runs on an AMC with four types of cores (normally, there
are only two types of cores in an AMC), the number of combinations of p1, . . . , pk−1
is reduced from C3

199 = 1,293,699 to C3
9 = 84 by grouping tasks into task classes.

Therefore, the overhead of Algorithm 1 in WATS is small.
It is worth noting that all of the information used in the history-based task alloca-

tor is collected automatically. The number of cores in every c-group can be acquired
from the OS. The execution time and IPC of a task are acquired at runtime. Once
a task is completed, the information about its task class is updated as presented in
Section 3.2.1.

In addition, the execution time of a memory-intensive task can vary from run to
run due to the contention on shared resources. The contention may result in a slightly
unbalanced workload in WATS. For a newly generated task, since we use the IPCs of
all tasks completed in history in its task class to estimate its execution time, the calcu-
lated execution time is close to its real execution time. Even though the contention on
shared resources incurs slight load unbalancing, the preference-based task scheduler
can further balance the workload dynamically by scheduling the tasks at runtime.

3.3. Preference-Based Task Scheduler

WATS uses a preference-based task scheduler to balance workloads dynamically. In
our situation, task scheduling is complex since there are overall m task pools, labeled
as P1, . . . , Pm, corresponding to the m task classes TC1, . . . , TCm.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

Adaptive Workload-Aware Task Scheduling in Single-ISA Asymmetric Multicore Architectures 8:11

Fig. 4. Preference list of the cores in the c-group Gi .

We use a core c from the c-group Gi in Figure 3 as an example to explain the details
of the preference-based task scheduler.

3.3.1. Scheduling within a c-Group. If c is free, it first tries to obtain tasks from the
task pools that store tasks allocated to its c-group Gi (i.e., Pa(i−1)+1, . . . , Pai as shown in
Figure 3). Since multiple task pools are allocated to Gi, c needs to decide to obtain a
task from which pool first.

A basic strategy for choosing a victim task pool to obtain a task is choosing task pools
in the order of Pa(i−1)+1, . . . , Pai , which is the order of task classes in Figure 3. Only when
the task pool Pj (a(i−1) + 1 ≤ j < ai) is empty does c try to obtain a task from the next
task pool Pj+1 until it gets a task.

This basic strategy is similar to a work-sharing strategy in, which all of the cores
share a single task pool. In the basic strategy, cores in Gi try to execute all of the tasks
in one task pool before moving to the next task pool allocated to Gi. Therefore, the basic
strategy often causes serious lock contention on the task pools similar to work sharing,
since many cores in Gi may try to lock the same task pool for obtaining new tasks. The
serious lock contention may degrade the performance of WATS.

To reduce lock contention, we decide to use a strategy borrowed from random work-
stealing that has been proved to be effective.1 In WATS, if c is free, it randomly chooses
a task pool Pj from Pa(i−1)+1, . . . , Pai and tries to obtain a task from Pj . If Pj is empty, it
randomly chooses another task pool and tries to obtain a task from the new chosen task
pool until c gets a task. In this case, since there are multiple task pools for obtaining
tasks, the lock contention is much lower and the performance would be better.

3.3.2. Scheduling among c-Groups. If all of the task pools allocated to Gi are empty,
which means that all tasks allocated to Gi are completed, WATS allows c to execute
tasks allocated to other c-groups in order to balance the workloads among different
c-groups dynamically. The complexity arises when deciding which c-group to choose in
this situation. The following preference-based strategy gives our solution.

In the preference-based task scheduler, each core is given a preference list of task
clusters. Each task cluster contains multiple task pools. The preference list of a core
contains all of the k task clusters that are ordered as detailed next.

For core c in the c-group Gi, its preference list is created as {Gi, Gi+1, . . . , Gk, Gi−1,
Gi−2, . . . , G1} as shown in Figure 4.

The preference list in Figure 4 is generated based on the help-the-weaker-first princi-
ple. This principle can help reduce the makespan. For example, if a core obtains a task
that is allocated to faster cores, it needs a long time to execute the obtained task, which
may prolong the makespan. On the contrary, if a core obtains a task that is allocated to
slower cores, it can execute the obtained task in a shorter time and relieve the pressure
on slow cores. However, this preference list does not prevent slow cores to obtain tasks

1In random work stealing, each core has a task pool. When a core is free, a core randomly chooses a victim
core and tries to steal a task from the victim core’s task pool. In our scenario, there are multiple task pools
as well, but they are associated with task classes and not cores.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

8:12 Q. Chen and M. Guo

Fig. 5. An example runtime structure of WATS and the corresponding preference lists.

from fast cores. When the slow cores have no tasks, they can obtain tasks from the
busy fast cores.

Once c decides to help c-group Gj (1 ≤ j ≤ k), it randomly selects the victim task
pool from the task pools allocated to Gj following the same strategy described in
Section 3.3.1. Algorithm 2 shows the preference-based task scheduling algorithm
adopted by each core for obtaining a new task.

ALGORITHM 2: Preference-based task scheduling
Input: A core c from the c-group Gi
Input: c’s preference list {Gi, . . . , Gk, Gi−1 . . . , G1}
Func.: ObtainNewTask
while c has not obtained a task do

for each Gj ∈ {Gi, . . . , Gk, Gi−1 . . . , G1} do
while not all the task pools allocated to Gj are empty do

c randomly chooses a task pool Pa allocated to Gj ;
c tries to obtain a task t from Pa;
if succeed then return t;

Figure 5(a) shows an example runtime structure of WATS on an asymmetric quad-
core architecture with three different types of cores. That is, there are three c-groups:
G1 (with core c0), G2 (with c1 and c2), and G3 (with c3).

Therefore, task classes are classified into three task clusters (G1, G2, and G3) accord-
ingly. The preference lists of the four cores are generated as in Figure 5(b), based on the
help-the-weaker-first principle in Figure 4. For example, c3 will always look for tasks
from the G3 pools first, which have the tasks that are allocated to c3’s c-group using the
history-based task allocator. Then, it will search the G2 pools and finally the G1 pools.

3.4. Implementation

WATS has been implemented by modifying MIT Cilk, which consists of a compiler
and a scheduler. MIT Cilk is one of the earliest open source parallel programming
environments that implement work stealing [Frigo et al. 1998]. The Cilk compiler,
named cilk2c, is a source-to-source translator that transforms a Cilk source program
into a C program.

We have ported MIT Cilk to support the preference-based task scheduler. To help
task classification, we have modified cilk2c to record a task’s function name in the task
frame. When a new task is spawned, it is subsumed into its task class and pushed into
the corresponding task pool according to its function name stored in the task frame. In
WATS, each worker tracks the execution time of the tasks executed by it. Once a task
is completed, the worker updates the information of the correspondence task class.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

Adaptive Workload-Aware Task Scheduling in Single-ISA Asymmetric Multicore Architectures 8:13

Two types of task-generating policies, parent-first and child-first, can be adopted for
generating tasks in current work-stealing schedulers. In the parent-first policy, a core
continually executes the parent task after spawning a child task, leaving the child task
for later execution or for stealing by other cores. One such example is the help-first
policy proposed in Guo et al. [2009]. In the child-first policy, however, a core executes
the child task immediately after the child is spawned, leaving the parent task for
later execution or for stealing by other cores. With child-first policy, for example, the
MIT Cilk uses the child-first policy, also known as work-first in Blumofe et al. [1996].
Compared to the child-first policy, tasks are generated much faster in the parent-first
policy.

We have ported Cilk to spawn tasks adopting the parent-first policy since WATS
tends to generate all of the tasks as soon as possible so that the history-based task
allocator can allocate them to different c-groups in a short time. In addition, it is
difficult to collect the workload information of tasks with the child-first policy. If a core
is executing a task γ , with the child-first policy, it is very likely that the core will also
execute γ ’s child tasks before γ is completed. Therefore, γ ’s workload information may
not be collected correctly, as it could include the workloads of γ ’s child tasks. As a
result, we have modified cilk2c to spawn tasks with the parent-first policy.

In order to construct the ETT of a program, for each task class, we need to collect
the IPCs of its tasks on cores of all c-groups using hardware performance counters.
Based on ETT, we can apply Algorithm 1 to allocate task classes to c-groups. If not
all items in the ETT are determined, the task classes cannot be allocated to different
c-groups appropriately. To collect the information as soon as possible, motivated by
random work-stealing strategy [Frigo et al. 1998], any core c will grab a task from a
random task pool when c is free. After all task classes are built, the history-based task
allocator can allocate task classes to c-groups and then WATS adopts preference-based
task scheduler to balance the workloads dynamically.

An interesting detail of the WATS implementation is that WATS schedules the main
task of a parallel program on the fastest core, as in Saez et al. [2010a]. This is because
the main task often has time-consuming serial initialization code before spawning
tasks. If the main task is executed by a slow core, it will increase the makespan of the
program. To exclude the impact of this optimization, we make all other schedulers
in the experiment section launch the main task on the fastest core, although those
schedulers may launch the main task on a randomly chosen core. If the chosen core is
slow, which is very likely, their performance will be even worse.

4. EVALUATION

We now evaluate WATS, including its performance over the current task schedulers,
and the effectiveness of the preference-based task scheduler in WATS. Then, we eval-
uate the energy efficiency and scalability of WATS. After that, we also compare WATS
with our previous scheduler, WATS-OLD, and discuss whether we should integrate
task snatching into WATS or not. Last, we discuss other issues related to WATS.

4.1. Experiment Configurations

We use a 16-core server that has four AMD Quad-core Opteron 8380 processors (code
named “Shanghai”) and a 32-core server that has four Intel Octal-core Xeon X7560
processors to evaluate the performance of WATS. In the AMD Opteron 8380 processor,
each core can run at 2.5GHz, 1.8GHz, 1.3GHz, and 0.8GHz. In the Intel Xeon X7560
processor, each core can run at 11 different frequencies. We adjust the frequency of
each core to emulate different single-ISA AMC architectures in the experiment. To
emulate AMC architectures, we use all 4 possible frequencies in the server built with

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

8:14 Q. Chen and M. Guo

Fig. 6. Topology of the emulated AMC architectures. The numbers of cores running at four different fre-
quencies are a, b, c, and d, respectively.

Table V. The Emulated AMC Architectures in the Experiment

AMD Server 2.5GHz 1.8GHz 1.3GHz 0.8GHz
A-2-2-2-10 2 2 2 10
A-4-4-4-4 4 4 4 4
A-2-0-0-14 2 0 0 14
A-4-0-0-12 4 0 0 12
A-8-0-0-8 8 0 0 8
A-12-0-0-4 12 0 0 4
A-16-0-0-0 16 0 0 0

Intel Server 2.262GHz 1.862GHz 1.463GHz 1.064GHz
I-8-0-0-24 8 0 0 24
I-8-8-8-8 8 8 8 8
I-16-0-0-16 16 0 0 16
I-24-0-0-8 24 0 0 8
I-32-0-0-0 32 0 0 0

Table VI. Benchmarks Used in the Experiment

Name Type Description
BWT Batch based Burrows Wheeler Transform
DMC Batch based Dynamic Markov Coding
GA Batch based Island model of Genetic Algorithm [Zheng et al. 2011]
LZW Batch based Lempel-Ziv-Welch data compression
MD5 Batch based Message Digest Algorithm
SHA-1 Batch based SHA-1 cryptographic hash function
Dedup Pipeline based Dedup from PARSEC [Bienia et al. 2008]
Ferret Pipeline based Ferret from PARSEC [Bienia et al. 2008]

AMD processors and use 2.262GHz, 1.862GHz, 1.463GHz, and 1.064GHz in the server
built with Intel processors.

Figure 6 provides the topology of the emulated AMC architectures. We use A-a-b-c-d
to represent the emulated AMC architecture on an AMD server that has a cores running
at 2.5GHz, b cores running at 1.8GHz, c cores running at 1.3GHz, and d cores running
at 0.8GHz. Similarly, we use I-a-b-c-d to represent the emulated AMC architecture on
an Intel server that has a cores running at 2.262GHz, b cores running at 1.862GHz,
c cores running at 1.463GHz, and d cores running at 1.064GHz. Table V lists the
emulated AMC architectures.

Because WATS is proposed to improve the performance of both batch and nonbatch
applications with tasks that have different workloads, we use benchmarks listed in
Table VI to evaluate the performance of WATS.

The source code of benchmarks are from their official Web sites [Mahoney 2013] but
are adapted to run on MIT Cilk. In the batch-based benchmarks, the program launches
different numbers of independent tasks (more than 128 tasks on an AMD server and
256 tasks on an Intel server) in different batches. In these benchmarks, tasks work on
independent datasets of different sizes in parallel. In the pipeline-based benchmarks,

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

Adaptive Workload-Aware Task Scheduling in Single-ISA Asymmetric Multicore Architectures 8:15

the execution of a program has several parallel stages. Tasks in different stages run in
parallel but communicate with each other via pipelines. For each test, every benchmark
is run 10 times. Because the execution time is quite stable, the average execution time
is used as the result.

For pipeline-based benchmarks, WATS allocates tasks to c-groups adopting the
method in Section 3.2.1. For batch-based benchmarks, WATS allocates tasks to c-groups
adopting the method in Section 3.2.2.

We compare the performance of WATS with the performance of three other task
schedulers: MIT Cilk, PFWS, and RTS in AMC architectures. Although MIT Cilk
is originally proposed to balance fine-grained tasks [Blumofe et al. 1996], the inter-
nal work-stealing strategy is still one of the most efficient dynamic load-balancing
strategies to balance coarse-grained tasks, such as tasks in batch-based programs and
pipeline-based programs [Navarro et al. 2009; Mattheis et al. 2012; Maia et al. 2013].

In MIT Cilk (denoted as Cilk for short) [Blumofe et al. 1996], tasks are spawned
with the child-first policy and scheduled with the traditional work-stealing policy.
In PFWS (Parent-First Work Stealing) [Guo et al. 2009], parallel tasks are spawned
with the parent-first policy and scheduled with the traditional work-stealing policy. In
RTS (Random Task Snatching) [Bender and Rabin 2000], tasks are also spawned and
scheduled as in Cilk, but a faster core snatches tasks from a randomly chosen slower
core if the faster core cannot steal any task. The snatch operation is implemented by
swapping the two threads on the faster core and the slower core.

To evaluate the effectiveness of the help-the-weaker-first policy, we also compare the
performance of WATS with WATS-NP, a scheduler that adopts the history-based task
allocator, but cores in one c-group are not allowed to obtain tasks that are allocated
to other c-groups. In this way, WATS-NP is able to show only the performance of the
history-based task allocator. To ensure fairness of comparison, WATS, PFWS, RTS, and
WATS-NP are implemented by modifying MIT Cilk.

We also emulate an AMC architecture that consists of four Out-of-Order Xeon cores
and four In-Order Atom cores using a Marss-86 [Patel et al. 2011] simulator and eval-
uate the performance of WATS on it. However, although the benchmarks in Table VI
can run successfully in this emulated architecture, the simulator is too slow for us to
collect the execution time of all benchmarks. From the successfully collected experi-
mental result of GA and Dedup with a very small work set on this architecture, we find
that WATS greatly outperforms all other schedulers. Therefore, to collect experimental
results in reasonable time, we mainly use the fast architectures in Table V to evaluate
the performance of WATS.

4.2. Performance of WATS

We have tested the performance of the benchmarks in all of the 6 + 4 = 10 AMC
architectures and 1 + 1 = 2 symmetric multicore architectures. Figure 7 presents the
performance of the batch-based benchmarks in all of the emulated AMC architectures,
and Figure 8 presents the performance of the pipeline-based benchmarks in all of the
emulated AMC architectures. In Figures 7 and 8, the y axis on the left is the execution
time of the benchmarks in AMC emulated on the AMD server, and the y axis on the
right is the execution time of the benchmarks in AMC emulated on the Intel server.

From Figure 7, we can find that WATS can significantly improve the performance
of the batch-based benchmarks in all the emulated AMC architectures. In A-2-2-2-10
to A-12-0-0-4 that are emulated on the AMD server, WATS improves the performance
of batch-based benchmarks, with the performance gains ranging from 10.7% to 66.1%
compared to Cilk and PFWS, and with performance gains ranging from 2.4% to 65.6%
compared to RTS. In I-8-0-0-24 to I-24-0-0-8 that are emulated on the Intel server,
WATS improves the performance of batch-based benchmarks, with the performance

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

8:16 Q. Chen and M. Guo

Fig. 7. Performance of the batch-based benchmarks in the emulated AMC architectures.

Fig. 8. Performance of the pipeline-based benchmarks in the emulated AMC architectures.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

Adaptive Workload-Aware Task Scheduling in Single-ISA Asymmetric Multicore Architectures 8:17

gains ranging from 3.3% to 38.1% compared to Cilk and PFWS, and with the perfor-
mance gains ranging from 4.2% to 51.1% compared to RTS. For example, for SHA-1
in A-4-0-0-12 in Figure 7(e), WATS reduces the execution time up to 66.1% compared
to Cilk. For LZW in I-8-8-8-8 in Figure 7(c), WATS reduces the execution time up to
38.1% compared to Cilk.

Figure 8 shows that WATS can significantly improve the performance of the pipeline-
based benchmarks in all of the AMC architectures. In A-2-2-2-10 to A-12-0-0-4 , WATS
improves the performance of pipeline-based benchmarks, with the performance gains
up to 29.1% compared to Cilk and PFWS, and with performance gains up to 28.2% com-
pared to RTS. In I-8-0-0-24 to I-24-0-0-8, WATS improves the performance of pipeline-
based benchmarks, with the performance gains up to 44.9% compared to Cilk and
PFWS, and with the performance gains up to 36.8% compared to RTS.

Careful readers may find that the performance of WATS in this article is similar to
the performance of the scheduler in our previous conference paper [Chen et al. 2012a].
However, the scheduler in Chen et al. [2012a] cannot perfectly schedule the batch-based
benchmarks in Figure 7, in which the percentage of tasks executing the same function
among all tasks is not same in different batches. WATS in this article has removed this
limitation by generating all of the tasks in a batch first and then allocating task classes
to c-groups based on the real workloads. We will discuss this issue in Section 4.6. In
addition, our scheduler in Chen et al. [2012a] only works for CPU-bound applications.
By collecting the execution time of every task class on cores in every c-group, WATS in
this article has removed this limitation as well.

The good performance of WATS comes from its balanced workloads in the AMC
architectures. With the history-based task allocator, WATS allocates tasks with a heavy
workload to fast cores and tasks with a light workload to slow cores. Even if the
workloads are not balanced as expected due to approximation, WATS can dynamically
balance the workloads in AMC using the preference-based task scheduler.

On the contrary, in Cilk and PFWS, it is very likely that long tasks are scheduled to
slow cores since tasks are stolen randomly. Scheduling a task with a heavy workload
to a slow core can seriously prolong the makespan of parallel tasks.

From Figure 7, we can find that WATS performs better for batch-based programs in
the AMCs emulated on the AMD server than the AMCs emulated on the Intel server.
The better performance on the AMD server comes from the large gap between the fast
core speed and the slow core speed. As shown in Table V, the speed of the slowest
cores is only 0.8

2.5 = 32% of the speed of the fastest cores in A-2-2-2-10 to A-12-0-0-4,
whereas the speed of the slowest cores is 1.064

2.262 = 47% of the speed of the fastest cores
in I-8-0-0-24 to I-24-0-0-8. A task with heavy workload is slowed down by more times
in A-2-2-2-10 to A-12-0-0-4 if the task is scheduled to a slow core. Therefore, the larger
the gap between the fastest cores and the slowest cores in an AMC architecture, the
more WATS can improve the performance of applications that have tasks with different
workloads.

Compared to Cilk and PFWS, RTS can also improve the performance of most bench-
marks in AMC architectures. This is because in RTS faster cores can randomly snatch
tasks from slower cores and the snatched tasks can be completed earlier, which can
reduce the makespan of the parallel tasks. As a result, comparing to Cilk and PFWS,
for most benchmarks, RTS improves the performance of the benchmarks up to 60.9%
in A-2-2-2-10 to A-12-0-0-4 and up to 35.6% in I-8-0-0-24 to I-24-0-0-8.

However, for many other benchmarks, such as GA in A-2-0-0-14 and MD5 in I-24-
0-0-8, RTS even degrades the performance of the benchmarks due to the overheads
that come from the frequent task snatching (or context switching). In addition, since
RTS is not aware of the workloads of the tasks, it is possible for faster cores to snatch

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

8:18 Q. Chen and M. Guo

Fig. 9. Normalized energy consumption of GA and Dedup in Cilk, PFWS, RTS, and WATS.

tasks with light workload, in which case the makespan cannot be reduced. Especially
in AMC emulated in an Intel server, there are overall 32 cores. The large number of
cores often lead to more task-snatching operations in RTS. Therefore, RTS performs
poorly in I-8-0-0-24 to I-24-0-0-8, and it performs much worse than WATS.

For symmetric multicore architectures, WATS schedules tasks similarly to PFWS.
Therefore, as shown in Figures 7 and 8, WATS performs the same as PFWS on A-16-
0-0-0 and I-32-0-0-0. The overhead in WATS is negligible compared with traditional
work stealing in symmetric architecture.

Figures 7 and 8 also show that WATS can adapt to different AMC architectures
and improve performance of benchmarks automatically. In addition, when an AMC
architecture has a small number of fast cores (e.g., eight fast cores in I-8-0-0-24, two
fast cores in A-2-0-0-14), the frequent context switching on fast cores that comes from
task snatching reduces the computing time of fast cores on tasks. In this case, RTS
degrades the overall performance of some benchmarks (e.g., GA) compared with Cilk
and PFWS.

4.3. Effectiveness of the Preference-Based Task Scheduler

As shown in Figures 7 and 8, the performance of WATS is always better than the
performance of WATS-NP. Especially for Dedup in I-8-8-8-8, WATS-NP even prolongs
the execution time of Dedup up to 32.3% compared to WATS. For GA in A-4-4-4-4,
WATS-NP even prolongs the execution time of GA up to 45.8% compared to WATS.
The preference-based task scheduler in WATS is very helpful when handling slightly
unbalanced workloads. Since the history-based task allocator may mis-allocate the
tasks to the wrong c-groups due to its static approximation of the workloads of dynamic
tasks, the preference-based task scheduler can remedy this imprecision.

It is worth noting that the history-based task allocator has mostly done effective
allocation of tasks according to Figures 7 and 8. WATS-NP performs better than Cilk
and PFWS, which means that the history-based allocation algorithm is more effective
than random task stealing in terms of load balancing in AMC architecture.

4.4. Energy Efficiency of WATS

Figure 9 evaluates the energy efficiency of WATS. It gives energy consumption of the
batch-based benchmark GA and the pipeline-based benchmark Dedup, although other
benchmarks show similar results.

In Figure 9, the energy consumption of GA and Dedup in AMCs emulated on the
AMD server is normalized against their energy consumption in Cilk in A-16-0-0-0.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

Adaptive Workload-Aware Task Scheduling in Single-ISA Asymmetric Multicore Architectures 8:19

Fig. 10. Performance of GA with different workloads in A-8-0-0-8 and I-8-0-0-24.

The energy consumption of GA and Dedup in AMCs emulated on the Intel server is
normalized against their energy consumption in Cilk in I-32-0-0-0.

In Figure 9, we find that WATS can always reduce the energy consumption of the
benchmarks compared with Cilk, PFWS, and RTS in all of the emulated AMC archi-
tectures. However, the energy consumption of the benchmarks is increased in some
AMC architectures (e.g., A-2-2-2-10) compared with their energy consumption in sym-
metric multicore architectures (e.g., A-16-0-0-0), although the cores that run at lower
frequencies consume less energy. The increased energy consumption results from the
increased execution time of the benchmarks in AMC architectures.

If the frequencies of all cores are fixed (one assumption of AMC architectures) and
the frequencies of the cores are not proper for an application, the energy consumption
of executing the application can be increased in AMC architectures. Although we have
implemented a system for saving power based on DVFS and WATS through adjusting
the frequencies of cores dynamically for different applications at runtime, we do not
present the approach here due to the page limitation. The techniques proposed in
Ghiasi et al. [2005] and Shelepov et al. [2009] can also be used to reduce energy of
executing memory-intensive programs in AMC architectures.

4.5. Scalability of WATS

Figure 10 evaluates the scalability of WATS. It gives the performance of GA under
different distributions of workloads in A-8-0-0-8 and I-24-0-0-8, although other bench-
marks show similar results in various AMC architectures. In the AMC emulated on an
AMD server that has 16 cores, GA launches 128 tasks with four different workloads in
each batch. In the AMC emulated on an Intel server that has 32 cores, GA launches
256 tasks with four different workloads in each batch. The number of tasks with each
type of workload is adjusted to evaluate the scalability of WATS when the number of
tasks with heavy workload increases. In Figure 10(a), the distribution of workloads
from high to low follows the pattern α, α, α, 128 − 3α. In Figure 10(b), the distribution
of workloads from high to low follows the pattern α, α, α, 256 − 3α. In both parts of the
figure, α is adjusted as shown by the x axis in the figure. In Figure 10, the fastest core
needs less than 200 microseconds to process the tasks with the lowest workload and
needs less than 10 milliseconds to process the tasks with the highest workload.

From the figure, we can see that WATS works fine under different distributions of
workloads. In A-8-0-0-8, when α is small and the workloads are mostly light, WATS
reduces the GA execution time by 55.4% compared to Cilk. When α is large and the
workloads are mostly heavy, WATS can still reduce the execution time by 17.2% com-
pared to Cilk. In I-24-0-0-8, when α is small, WATS reduces the GA execution time by

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

8:20 Q. Chen and M. Guo

Fig. 11. Performance of the benchmarks in WATS, WATS-OLD, and WATS-TS.

22.8% compared to Cilk. When α is large and the workloads are mostly heavy, WATS
can still reduce the execution time by 8.1% compared to Cilk. Therefore, WATS is
scalable with and can adapt to different workloads.

However, in A-8-0-0-8, shown in Figure 10(a), RTS does not work well when the
workloads are mostly heavy (e.g., α is 20), as it even degrades the performance of
GA by 54.1% compared to Cilk and PFWS. This is because fast cores are not able to
snatch all of the heavy tasks that are allocated to the slow cores when there are too
many heavy tasks. Moreover, the computing ability of fast cores is wasted at frequent
context switching when the workloads are mostly heavy. This result again supports our
philosophy of WATS that an optimal task allocation is more important than rescuing
policies such as task snatching.

In I-24-0-0-8, shown in Figure 10(b), RTS works even worse than Cilk and PFWS
for all workloads, as it degrades the performance up to 10.7% compared to Cilk. In
I-24-0-0-8, the reduced execution time of GA that originates from task snatching in
RTS is small because the difference between the speed of fast cores and the speed
of slow cores is small. It is quite possible that the reduced execution time is smaller
than the increased execution time that originates from the context switching in RTS.
Therefore, if the gap between the speed of fast cores and the speed of slow cores is
small, the performance of RTS is poor.

4.6. Effectiveness of WATS for Irregular Batch-Based Programs

As presented in Section 3.2, for any batch in a batch-based program, WATS let the
program generate all of the tasks in the batch first and then allocates the real task
classes created in the batch to different c-groups. To evaluate this newly proposed
strategy in WATS for irregular batch-based programs, we compare the performance of
WATS with WATS-OLD, a scheduler that allocates tasks in a batch to c-groups totally
based on the allocation of tasks completed in history as in Section 3.2.1 for nonbatch
programs and in our previous conference paper [Chen et al. 2012a].

In this experiment, for the batch-based benchmarks except benchmark GA, we ran-
domly choose datasets for all of the tasks, and therefore the percentage of tasks exe-
cuting the same function among all tasks is not the same in different batches. For GA,
the presented constraint is still obeyed due to the algorithm limitation.

Figure 11 shows the performance of the batch-based benchmarks in WATS and
WATS-OLD. We can find that the batch-based programs always perform better
in WATS than in WATS-OLD. In WATS, because all tasks in a batch are spawned first,
WATS can get the real workload of every task class and thus can allocate the tasks to
c-groups near optimally. However, in WATS-OLD, because the near-optimal allocation
of tasks completed in history is not near optimal for future tasks anymore, the nonopti-
mal allocation degrades the performance of batch-based programs in WATS-OLD. For

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

Adaptive Workload-Aware Task Scheduling in Single-ISA Asymmetric Multicore Architectures 8:21

GA, because the percentage of tasks executing the same function among all tasks is the
same in different batches, the tasks are allocated to c-groups in the same way in WATS
and WATS-OLD. Therefore, GA performs similarly in WATS and WATS-OLD. The
slightly worse performance of GA in WATS comes from its slightly heavier overhead
in collecting execution time of every task class in every c-group. Note that WATS-OLD
still performs much better than Cilk, PFWS, and RTS because the preference-based
task scheduler can handle slightly unbalanced workloads dynamically.

4.7. Integrating Task Snatching in WATS

It is also of interest to discover whether or not task snatching is also effective in WATS
and thus should be integrated into WATS. To investigate this issue, we implemented
the scheduler WATS-TS, where fast cores snatch tasks from slow cores when the fast
cores cannot obtain any tasks using the preference-based task scheduling policy.

In WATS-TS, when a core intends to snatch a task, it selects a slower core with
the largest task. In this way, large tasks that affect the makespan seriously can be
snatched to fast cores and completed earlier. Therefore, our workload-aware snatching
policy is better than the random snatching in RTS, as explained in Section 2. Moreover,
workload-aware snatching causes fewer snatching operations than the random snatch-
ing, since randomly snatched small tasks take less time for the fast cores to complete,
which causes the fast cores to snatch more often.

Figure 11 also shows the performance of the benchmarks in WATS and WATS-TS in
A-4-0-0-12 and I-8-8-8-8. From the figure, we surprisingly see that the performance of
WATS-TS is slightly worse than WATS. Especially for BWT and Ferret in A-4-0-0-12
and DMC and Ferret in I-8-8-8-8, WATS-TS increases the execution time up to 14.2%
compared to WATS.

Figure 11 tells us that WATS has satisfactorily balanced the workloads in AMC archi-
tectures. When the workloads are balanced among cores in AMC, it is not worthwhile to
snatch tasks from slower cores since the slower cores are also close to completion. The
extra overhead incurred by the snatching operations simply makes WATS-TS perform
worse. Therefore, there is no need for WATS to adopt task snatching.

4.8. Discussion

Not surprisingly, WATS has one main limitation. If most tasks in an application execute
the same function, the history-based task allocation algorithm will only find out a few
task classes that cannot be evenly allocated to the c-groups. For example, recursive
divide-and-conquer programs such as nqueens and fib are not suitable for WATS. To
cope with this problem, we have modified the compiler cilk2c to check for the divide-
and-conquer programs at compile time by analyzing the task-generating pattern in
the source code. If any function in the source code generates new tasks that run the
same function as itself, the program is assumed to be a divide-and-conquer program.
For divide-and-conquer programs, random work stealing is used instead to schedule
the program. Furthermore, if the program is also memory intensive, our previous
schedulers [Chen et al. 2011, 2012b, 2013a] can be adopted to improve its performance
by reducing the cache misses. Therefore, the limitation presented will not affect the
applicability of WATS since the compiler can identify the class of programs that are
suitable for WATS.

5. RELATED WORK

Researchers have shown that the AMC architectures can achieve high performance
and low power consumption [Kumar et al. 2004, 2005; Balakrishnan et al. 2005; Hill
and Marty 2008]. An effective task scheduler is essential for parallel applications to
make good use of the AMC architectures. However, the task-scheduling policies, such as

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

8:22 Q. Chen and M. Guo

task sharing and work stealing adopted in current parallel programming environments,
suffer from the problem of unbalanced workloads in AMC due to the assumption that all
cores have equal performance. To our best knowledge, no previous study had addressed
the scheduling problem in parallel programming environments where applications that
are comprised of parallel tasks with different workloads can perform efficiently in AMC
architectures.

Many studies have been done to explore optimal task scheduling in different parallel
platforms [Chen et al. 2013b; Shelepov et al. 2009]. Especially in AMC, many studies on
scheduling focus on resource allocation at the OS level [De Vuyst et al. 2006; Rosenberg
and Chiang 2010; Bhadauria and McKee 2010; Li et al. 2007]. They aim to achieve high
system throughput by balancing the hardware resources (e.g., cores and caches) among
different programs. The CAMP [Saez et al. 2010b] OS-level scheduler is proposed to
optimize system throughput by devoting fast cores to run high-speedup applications
in AMC. Because tasks in the same task-based programs can often achieve similar
speedup ratios on fast cores, CAMP is not applicable in the targeted scenario of WATS.
In El-Moursy et al. [2006], several phase co-scheduling policies are proposed for the
OS to improve the overall throughput by reducing the conflicts among the phases of
different threads. In Lakshminarayana et al. [2009], age-based scheduling is proposed
to schedule the threads with larger remaining time to fast cores. In Koufaty et al.
[2010], the authors propose a bias scheduling that matches threads to the right type of
cores through dynamically monitoring the bias of the threads in order to maximize the
system throughput. The studies presented have not considered the scheduling problem
in parallel applications that WATS has addressed in AMC.

Some recent studies addressed specific aspects of task scheduling of parallel appli-
cations in AMC. For example, in Suleman et al. [2009], Accelerated Critical Sections
(ACS) is proposed to accelerate the execution of critical sections by migrating the
threads with critical sections to fast cores. Similar to ACS, in Joao et al. [2012], a
cooperative software-hardware mechanism, Bottleneck Identification and Scheduling
(BIS) is proposed to identify and accelerate the most critical bottlenecks. BIS iden-
tifies the most critical bottlenecks by measuring the number of cycles that threads
have to wait for each bottleneck and accelerates the bottlenecks using fast cores on an
AMC architecture. In addition, although BIS needed to add some structures in hard-
ware, WATS is proposed based on a pure software approach. In Hofmeyr et al. [2010], a
speed-balancing algorithm is proposed to manage the migration of threads so that each
thread has a fair chance to run on the fastest core available. Instead of balancing the
workloads, the algorithm balances the time of a thread executing on faster and slower
cores. The downside of this work is that it assumes all threads have the same workload.
Therefore, it cannot work for parallel tasks with different workloads as WATS does.

The only work that addresses the general scheduling problem in parallel applications
is the random task snatching [Bender and Rabin 2000] (i.e., RTS in Section 4.2),
although it addresses the problem in the context of an Asymmetric Multiprocessor
(AMP), which is similar to the context of AMC. RTS presents a model where each
processor maintains an estimation of its speed. The model allows a fast core to snatch
tasks randomly from a slow core when the fast core is idle and the task pool of the slow
core is empty. As shown previously, RTS cannot balance tasks as well as WATS due to
its lack of workload information about the tasks.

Work stealing has been extensively studied and adopted by parallel programming
environments [Blumofe et al. 1996; Reinders 2007; Guo et al. 2009, 2010], although
it does not perform well in AMC. An extension to task stealing for improving cache
performance in multicore architectures has recently been proposed [Chen et al. 2012b].
The preference-based work-stealing policy in WATS is a novel extension to task stealing
to balance workloads among different groups of cores in AMC.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

Adaptive Workload-Aware Task Scheduling in Single-ISA Asymmetric Multicore Architectures 8:23

If the number of tasks and the workloads of tasks in the same task classes are
totally repeatable and can be estimated accurately, similar to our history-based task
allocation, some other task-allocating algorithms [Miguet and Pierson 1997; Hochbaum
and Shmoys 1988] can provide a near-optimal scheduling. However, for many real
applications, the workloads of tasks are not totally repeatable. As far as we know, the
linear programming–based technique cannot tolerate the nonrepeatability due to its
static scheduling. On the contrary, WATS can tolerate some nonrepeatability of the
estimation of the tasks due to the preference-based task scheduler. WATS uses the
preference-based task scheduler to further balance the workloads when the tasks were
poorly assigned due to the nonrepeatability of tasks.

In our previous conference paper [Chen et al. 2012a], the scheduler only works when
the percentage of tasks executing the same function among all tasks is almost the
same during the execution of a parallel application. This assumption is strong and is
not always true in real parallel applications. Enhanced from Chen et al. [2012a], WATS
in this article does not rely on the strong assumption anymore since the number of tasks
in each task classes is known in the history-based task allocator. In addition, we have
evaluated the improved WATS on one more multicore server and have produced more
interesting results based on the additional experiment.

6. CONTRIBUTIONS AND CONCLUSIONS

The contributions of this article are as follows:

—We have identified, defined, and formalized the problem of unbalanced workloads in
AMC architectures and have given theoretical guidance to optimal task allocation in
AMC architectures.

—We have proposed a history-based task allocator that can allocate tasks in single-ISA
AMC architectures near optimally.

—We have proposed a novel preference-based task scheduler that can effectively bal-
ance workloads among different groups of cores.

—Based on the techniques presented, we have implemented WATS, which achieves a
performance gain of up to 66.1% compared to the random work-stealing approach
commonly employed.

Single-ISA AMCs are promising due to their high performance and power efficiency.
It is essential for parallel applications to run on AMC architectures efficiently. Although
task-scheduling policies such as work stealing work efficiently for parallel applications
in symmetric multicore architectures, they cannot balance the workloads well in AMC
since they have no knowledge of task workloads and schedule tasks randomly to the
performance-asymmetric cores.

From our theoretical analysis, we know that the initial optimal task allocation is
more crucial to the makespan than any rescuing means for a nonoptimal allocation
and that static task allocation can produce near-optimal allocation if the workloads of
the tasks are known. Therefore, we propose a history-based task allocator that takes
advantage of the static allocation by using the historical statistics of the tasks to predict
the execution time of future tasks on cores in different c-groups. From our experiments,
we showed that the history-based task allocator can produce appropriate allocation and
that its extra overhead is small.

For any occasional inaccurate or incorrect allocation of tasks, the preference-based
task scheduler comes to play. It can remedy any slightly unbalanced allocation and
effectively schedule tasks among c-groups. The experimental results show that WATS
is effective and that our approach to the scheduling problem in single-ISA AMC is
valid.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

8:24 Q. Chen and M. Guo

REFERENCES

E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel, P. Unnikrishnan, and
G. Zhang. 2009. The design of openmp tasks. IEEE Transactions on Parallel and Distributed Systems
20, 3, 404–418.

S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. 2005. The impact of performance asymmetry in emerging
multicore architectures. In Proceedings of the 32nd Annual International Symposium on Computer
Architecture. IEEE, 506–517.

M. A. Bender and M. O. Rabin. 2000. Scheduling Cilk multithreaded parallel programs on processors of
different speeds. In Proceedings of the 12th Annual ACM Symposium on Parallel Algorithms and Archi-
tectures. ACM, 13–21.

M. Bhadauria and S. A. McKee. 2010. An approach to resource-aware co-scheduling for cmps. In Proceedings
of the 24th ACM International Conference on Supercomputing. ACM, 189–199.

C. Bienia, S. Kumar, J. P. Singh, and K. Li. 2008. The PARSEC benchmark suite: Characterization and
architectural implications. In Proceedings of the 17th International Conference on Parallel Architectures
and Compilation Techniques. ACM, 72–81.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou. 1996. Cilk: An
efficient multithreaded runtime system. Journal of Parallel and Distributed Computing 37, 1f, 55–69.

Q. Chen, Y. Chen, Z. Huang, and M. Guo. 2012a. WATS: Workload-Aware Task Scheduling in asymmetric
multi-core architectures. In Proceedings of the 26th International Parallel and Distributed Processing
Symposium. IEEE, 249–260.

Q. Chen, M. Guo, Q. Deng, L. Zheng, S. Guo, and Y. Shen. 2013b. HAT: History-based auto-tuning MapReduce
in heterogeneous environments. Journal of Supercomputing, 1–17.

Q. Chen, M. Guo, and Z. Huang. 2012b. CATS: Cache Aware Task-Stealing based on online profiling in multi-
socket multi-core architectures. In Proceedings of the 26th International Conference on Supercomputing.
IEEE, 163–172.

Q. Chen, M. Guo, and Z. Huang. 2013a. Adaptive cache aware bi-tier work-stealing in multi-socket multi-core
architectures. IEEE Transactions on Parallel and Distributed Systems 24, 12, 2334–2343.

Q. Chen, Z. Huang, M. Guo, and J. Zhou. 2011. CAB: Cache-Aware Bi-tier task-stealing in multi-socket
multi-core architecture. In Proceedings of the International Conference on Parallel Processing. IEEE.

M. De Vuyst, R. Kumar, and D. M. Tullsen. 2006. Exploiting unbalanced thread scheduling for energy and
performance on a CMP of SMT processors. In Proceedings of the International Parallel and Distributed
Processing Symposium. IEEE.

A. El-Moursy, R. Garg, D. H. Albonesi, and S. Dwarkadas. 2006. Compatible phase co-scheduling on a CMP
of multi-threaded processors. In Proceedings of the International Parallel and Distributed Processing
Symposium. IEEE.

M. Frigo, C. E. Leiserson, and K. H. Randall. 1998. The implementation of the Cilk-5 multithreaded language.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion. ACM, 212–223.

S. Ghiasi, T. Keller, and F. Rawson. 2005. Scheduling for heterogeneous processors in server systems. In
Proceedings of the 2nd Conference on Computing Frontiers. ACM, 199–210.

Y. Guo, R. Barik, R. Raman, and V. Sarkar. 2009. Work-first and help-first scheduling policies for async-finish
task parallelism. In Proceedings of the International Parallel and Distributed Processing Symposium.
IEEE.

Y. Guo, J. Zhao, V. Cave, and V. Sarkar. 2010. SLAW: A scalable locality-aware adaptive work-stealing
scheduler. In Proceedings of the International Parallel and Distributed Processing Symposium. IEEE.

M. D. Hill and M. R. Marty. 2008. Amdahl’s law in the multicore era. Computer 41, 7, 33–38.
D. S. Hochbaum and D. B. Shmoys. 1988. A polynomial approximation scheme for scheduling on uniform

processors: Using the dual approximation approach. SIAM Journal on Computing 17, 539.
S. Hofmeyr, C. Iancu, and F. Blagojević. 2010. Load balancing on speed. In Proceedings of the 15th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM, 147–158.
J. A. Joao, M. Aater Suleman, O. Mutlu, and Y. N. Patt. 2012. Bottleneck identification and scheduling in

multithreaded applications. In Proceedings of the 17th International Conference on Architectural Support
for Programming Languages and Operating Systems. 223–234.

D. Koufaty, D. Reddy, and S. Hahn. 2010. Bias scheduling in heterogeneous multi-core architectures. In
Proceedings of the 5th European Conference on Computer Systems. ACM, 125–138.

R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan. 2005. Heterogeneous chip multiprocessors.
Computer 38, 11, 32–38.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

Adaptive Workload-Aware Task Scheduling in Single-ISA Asymmetric Multicore Architectures 8:25

R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas. 2004. Single-ISA heterogeneous
multi-core architectures for multithreaded workload performance. In Proceedings of the 31st Annual
International Symposium on Computer Architecture. IEEE.

N. B. Lakshminarayana, J. Lee, and H. Kim. 2009. Age based scheduling for asymmetric multiprocessors.
In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.
ACM, 25.

J. K. Lee and J. Palsberg. 2010. Featherweight X10: A core calculus for async-finish parallelism. In Proceed-
ings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM,
25–36.

T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn. 2007. Efficient operating system scheduling for
performance-asymmetric multi-core architectures. In Proceedings of the ACM/IEEE Conference on Su-
percomputing. ACM.

J. W. S. Liu and C. L. Liu. 1974. Bounds on Scheduling Algorithms for Heterogeneous Computing Systems.
Department of Computer Science, University of Illinois at Urbana–Champaign.

M. Mahoney. 2013. Data Compression Programs. http://mattmahoney.net/dc/.
C. Maia, L. Nogueira, and L. M. Pinho. 2013. Scheduling parallel real-time tasks using a fixed-priority work-

stealing algorithm on multiprocessors. In Proceedings of the 8th International Symposium on Industrial
Embedded Systems. IEEE.

S. Mattheis, T. Schuele, A. Raabe, T. Henties, and U. Gleim. 2012. Work stealing strategies for parallel stream
processing in soft real-time systems. In Architecture of Computing Systems. Springer, 172–183.

S. Miguet and J.-M. Pierson. 1997. Heuristics for 1D rectilinear partitioning as a low cost and high quality
answer to dynamic load balancing. In Proceedings of HPCN Europe. 550–564.

A. Navarro, R. Asenjo, S. Tabik, and C. Caşcaval. 2009. Load balancing using work-stealing for pipeline paral-
lelism in emerging applications. In Proceedings of the 23rd International Conference on Supercomputing.
ACM, 517–518.

A. Patel, F. Afram, S. Chen, and K. Ghose. 2011. MARSS: A full system simulator for multicore x86 CPUs.
In Proceedings of the 48th Design Automation Conference. ACM, 1050–1055.

J. Reinders. 2007. Intel Threading Building Blocks. O’Reilly.
A. L. Rosenberg and R. C. Chiang. 2010. Toward understanding heterogeneity in computing. In Proceedings

of the International Parallel and Distributed Processing Symposium. IEEE, 1–10.
J. C. Saez, A. Fedorova, M. Prieto, and H. Vegas. 2010a. Operating system support for mitigating software

scalability bottlenecks on asymmetric multicore processors. In Proceedings of the 7th ACM International
Conference on Computing Frontiers. ACM, 31–40.

J. C. Saez, M. Prieto, A. Fedorova, and S. Blagodurov. 2010b. A comprehensive scheduler for asymmetric
multicore systems. In Proceedings of the 5th European Conference on Computer Systems. ACM, 139–152.

D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez, Z. F. Huang, S. Blagodurov, and V. Kumar.
2009. HASS: A scheduler for heterogeneous multicore systems. ACM SIGOPS Operating Systems Review
43, 2, 66–75.

M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. 2009. Accelerating critical section execution with
asymmetric multi-core architectures. In Proceedings of the 14th International Conference on Architec-
tural Support for Programming Languages and Operating Systems. ACM, 253–264.

K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer. 2012. Scheduling heterogeneous multi-
cores through performance impact estimation (PIE). In Proceedings of the 39th International Symposium
on Computer Architecture. IEEE, 213–224.

L. Zheng, Y. Lu, M. Ding, Y. Shen, M. Guo, and S. Guo. 2011. Architecture-based performance evaluation of
genetic algorithms on multi/many-core systems. In Proceedings of the 14th International Conference on
Computational Science and Engineering. IEEE, 321–334.

Received June 2013; revised November 2013; accepted November 2013

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 8, Publication date: February 2014.

http://mattmahoney.net/dc/

