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Abstract. The scale of data in a MapReduce system is increasing
quickly. Thus how to efficiently schedule a set of production jobs has
become increasingly important. For a given set of jobs, a well-designed
scheduling algorithm can significantly reduce makespan and increase the
utilization of clusters. However, there exists very few studies that aim
to construct a scheduler that minimizes the makespan of batch jobs in
a heterogeneous environment. This paper proposes a heuristic schedul-
ing algorithm called Hybrid Multistage Heuristic Scheduling (HMHS),
which tries to solve the scheduling problem by breaking down it into two-
subproblems: sequencing and dispatching. For sequencing, we develop a
heuristic based on Pri(the modified Johnson’s algorithm). For dispatch-
ing, we offer two heuristics Min-Min and Dynamic-Min-Min. Our simu-
lation results on two kinds of workloads demonstrate that every heuristic
employed in HMHS contributes to reducing the makespan. As a whole,
HMHS improves the performance ranging from 51% to 77% compared to
FIFO.

Keywords: task scheduling, MapReduce, makespan, heterogeneous
system, heuristic algorithm.

1 Introduction

Large scale of data has been generated daily. To handle such huge amount of
data quickly, large companies (e.g. Google) group large number of commodity
computers together to construct a distributed cloud system for data processing.
Parallel programming model MapReduce which is popularized by Google [5] is
widely used in these systems for handling data.

Empirically, a typical MapReduce system is usually used for running thou-
sands of jobs periodically for data processing(e.g. 10,000 jobs are processed daily
by Facebook’s data center [15]). Obviously, for a given set of independent MapRe-
duce jobs in a heterogeneous environment, the less time the clusters cost to exe-
cute these jobs, the earlier the resources of clusters can be released. However, the
processing time is affected by several factors, such as the precedence constraints
between map and reduce tasks. Therefore, a study on how to schedule a given
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set of independent MapReduce jobs in a heterogeneous environment to minimize
the makespan is of great value.

Many researchers have proposed delicate job scheduling algorithms to improve
the system performance of MapReduce. Chang et al. [2] abstracted the schedul-
ing problem as a novel optimization problem. They focused on constructing an
optimal scheduling algorithm that minimizes the weighted sum of the job com-
pletion times. However, they ignored the precedence relationships between map
and reduce tasks. Verma et al. [17] proposed a heuristic algorithm to organize
the order in which jobs are executed to minimize the completion time of a given
set of MapReduce jobs in a homogeneous environment. Since heterogeneous en-
vironment will greatly affect the performance of the scheduling algorithm, a al-
gorithm works well in a homogeneous environment may have poor performance
in a heterogeneous environment.

In general, none of existing works design a scheduling algorithm to minimize
the makespan of a given set of independent MapReduce jobs in a heterogeneous
environment. To address this problem, we propose a Hybrid Multistage Heuristic
Scheduling (HMHS) algorithm, which tries to solve the scheduling problem by
dividing it into two sub-problems: sequencing and dispatching. For sequencing,
we consider the precedence constraints of map and reduce, and then design a
Pri based heuristic to get the order of jobs. (Here, Pri stands for the priority of
a MapReduce job which is defined in section 3.1.) Meanwhile, for dispatching,
we offer two heuristics: Min-Min and Dynamic-Min-Min to balance the load of
machines in a heterogeneous environment. We compare performance benefits of
HMHS with three scheduling strategies via simulation. The results demonstrate
HMHS outperforms FIFO by reducing up to 51%-77% makespan. We also study
how system heterogeneity will affect the performance of HMHS.

2 Problem Description

In this paper, we study how to schedule a set of independent MapReduce jobs in
a heterogeneous system to minimize the makespan. A real MapReduce system
is usually complex and affected by many factors. In this paper, we make several
assumptions to simplify the scheduling problem. We discuss some of assumptions
here. (1)We assume that all map (reduce) tasks of a given job are uniform. Thus,
the processing times of these map (reduce) tasks are same. Meanwhile, we assume
the processing times of tasks of a given job is known. This is not available in a
real system at present, but some researchers [16] try to approximately estimate
the processing time based on historical logs and job profiles. (2)We assume that
one map (reduce) machine contains one map (reduce) slot. In real MapReduce
system (e.g. Hadoop), each machine will contain a specified number of map slots
and reduce slots, and each map (reduce) slot can be used to execute one map
(reduce) task. Tasks executed at the same machine will preempt resources and
affect the processing time of each other. As mentioned in 1, the processing time
is supposed to be known and from statistical results. Thus, the assumption that
each machine owns one slot will not have a significant impact on our scheduling
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problem. (3) We ignore the shuffle phase between map and reduce, and then
assume that, for a given job, reduce tasks can only be launched when all map
tasks have been finished. This assumption is widely used in literatures [2],[11],[17]
to simplify the scheduling problem.

According to above assumptions and the setting of real MapReduce systems,
the scheduling problem considered in this paper will satisfy the following con-
ditions: Precedence relationships exist between map and reduce stage; Each job
contains a specified number of map and reduce tasks; The processing times of
map tasks of a given job are same, as well as the processing times of reduce
tasks; Multiple map machines and reduce machines exist; All jobs arrive at zero;
Task processing time is deterministic and given in advance; Each machine can
process only one task at a time and processing tasks can not be interrupted; All
MapReduce jobs are independent.

2.1 Definitions

To describe the problem more clearly, we give the following definitions, which
are used throughout the paper.
N : Number of MapReduce jobs.
Mm (M r): Number of alternative machines at map(reduce) stage.
Tm
i (T r

i ): Number of map(reduce) tasks of ith job.
Pm
i (P r

i ): Normal task processing time of ith job at map(reduce) stage.
V m
ij (V r

ij): Speed factor of any map(reduce) task of ith job on j th machine.

P
m

i (P
r

i ) : Average total processing time of map(reduce) tasks of ith job.
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i ∗

⎛
⎝
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⎞
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FMij : Finish time of j th map task of ith job.
Ai: Arriving time of ith job’s reduce tasks.

Ai = max
1≤j≤Tm

i

(FMij) . (2)

FRij : Finish time of j th reduce task of ith job.
C : The completion time of all jobs, which can also be called makespan.

C = max
1≤i≤N

max
1≤j≤T r

i

(FRij) . (3)

2.2 Hardness of Our Scheduling Problem

Two-stage flexible flow shop scheduling problem (2-FFS) is similar to our schedul-
ing problem. The main difference is that each job in 2-FFS only contains one
task at each stage, while each job considered in our work contains multiple tasks.
Gupta [7] proved that the 2-FFS is NP-complete even if the number of machines
at one of the two stages is one. Obviously, the scheduling problem in our paper
is also NP-hard according to [7].
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3 Hybrid Multistage Heuristic Scheduling Algorithm

As discussed above (section 2.2), the scheduling problem of the MapReduce sys-
tem is NP-hard. Thus, we intend to simplify the problem. It is common to break
down the scheduling problem into smaller pieces. This enlightens us to divide the
problem into two sub-problems: (a) sequencing the tasks allocated to each ma-
chine; (b) dispatching tasks of jobs to heterogeneous machines at map and reduce
stages.

We show the details of sequencing and dispatching problems in section 3.1
and section 3.2, respectively.

3.1 Sequencing

During map and reduce stage, each machine will be allocated multiple tasks.
Precedence relationships between map and reduce tasks may block the jobs’
execution. A well-designed sequencing algorithm can help to organize map tasks
to decrease waiting time of reduce tasks.

Johnson [9] proposed an classical optimal algorithm for the two flow shop
problem (only one machine is available at each stage and each job contains only
one task at each stage), which is similar to our scheduling problem. In Johnson’s
algorithm, each job contains three attributes Mi, Ri and Vi. Mi stands for the
task processing time at map stage. Ri stands for the task processing time at
reduce stage. Vi = min (Mi, Ri). For a job List L with N jobs, the steps of
Johnson’s algorithm are:
Step 1. Define two output lists L1= {}, L2 = {}.
Step 2. Order all jobs in List L by Vi in nondecreasing order.
Step 3. Process the ordered list from the beginning. For each job, if Mi ≤ Ri,
place it at end of L1; otherwise, place it at the beginning of L2.
Step 4. Add list L2 to the end of list L1. L1 is the ordered list.

We approximately evaluate the sum of processing times of map (reduce) tasks
of a given job, indicated by P

m

i (P
r

i ), by combining the average processing time
of a map (reduce) task and the number of map (reduce) tasks. Hence, we can
replace the task processing times Mi and Ri in Johnson’s algorithm by P

m

i and
P

r

i , respectively. This enables us to apply Johnson’s algorithm to sequence jobs.
In order to describe the sequencing algorithm, we define the priority Pri which

takes advantage of Johnson’s algorithm to indicate the processing order of a job.
The smaller Pri a job has, the earlier it will be executed during map stage. The
expression is modified from Gupta [7]. For each job i,

Prii = Sgn
(
P

m

i − P
r

i

)
/min

(
P

m

i , P
r

i

)

where Sgn =

{
1, if P

m

i > P
r

i

−1, otherwise.

(4)

We can easily obtain the ordered list of jobs by sorting the Pri in nondecreas-
ing order.
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3.2 Dispatching

The basic intention of dispatching tasks is to balance the work load of all ma-
chines. Since the dispatching exists at both map and reduce stage, we discuss it
in two cases:Assigning map tasks to map machines and assigning reduce tasks
to reduce machines.

Algorithm 1. Dynamic-Min-Min heuristic

The set of N MapReduce jobs, U ; Selected jobs to be dispatched, Jw; Available
time of the earliest free machine, EAT ; The execution time of reduce tasks of ith
job on machine mj , Eij ; The minimum completion time of reduce task of ith job
if it is mapped to mj , Cij ; The time that ith reduce machine finishes all tasks
assigned to it, Avai;

1: while U �= ∅ or Jw �= ∅ do
2: EAT ←− min(Avai);
3: for each ji ∈ U do
4: if Ai ≤ EAT then
5: add ji to Jw, remove ji from U ;
6: end if
7: end for
8: if Jw == ∅ then
9: add the job with minimum Ai to Jw, remove it from U ;
10: end if
11: for each ji ∈ Jw do
12: for each machine mj do
13: Cij ←− Eij +max(Avaj, Ai);
14: end for
15: end for
16: Cpq ←− min(Cij);
17: assign one reduce task of jp to mq;
18: Avaq ←− Cpq ;
19: if all reduce tasks of jp are assigned then
20: remove jp from Jw;
21: end if
22: end while

Dispatching Heuristic of Map Stage. During map stage, we try to select a
heuristic to make the whole map stage finished as soon as possible. We employ
Min-Min as the dispatching rule, which outperforms most heuristics on dispatch-
ing a set of independent tasks onto heterogeneous systems [1]. The key steps of
Min-Min are: In each cycle, for each unassigned map task, Min-Min calculates
its minimum completion time by comparing the completion times of it on differ-
ent map machines. Then, the map task with the minimum completion time is
assigned to corresponding map machine. Therefore, the possibility of the tasks
assigned to their best matched machines is relatively high. The more tasks that
are assigned to their best matched machines, the smaller makespan our scheduler
can obtain.
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Dispatching Heuristic of Reduce Stage. As mentioned above, our algorithm
is designed to obtain an optimized batch scheduling policy for a large number of
jobs. Multiple jobs with similar P

m

i will be launched at approximately the same
time according to our sequencing algorithm. Thus, reduce tasks of these jobs will
have similar arriving time. Under such assumption, we propose a new heuristic
Dynamic-Min-Min, which takes advantage of the idea of Min-Min to dispatch
arrived reduce tasks to balance the work load of reduce machines. Dynamic-Min-
Min works as follows: At each round of task assignment, it firstly updates the
job set Jw which contains all jobs to be dispatched, and then dispatchs a reduce
task. Algorithm 1 shows the pseudocode of Dynamic-Min-Min. (Some definitions
are explained in section 2.1.)

3.3 Hybrid Multistage Heuristic Scheduling Algorithm

By combining the solutions for sequencing and dispatching together, we can
draw the outline of Hybrid Multistage Heuristic Scheduling Algorithm.
1) Dispatch map tasks of all jobs into map machines by heuristic Min-Min.
2) Define Ti as the set of tasks assigned to map machine i. For each Ti, sequence
tasks by Pri in nondecreasing order.
3) Dispatch reduce tasks of all jobs into reduce machines by heuristic Dynamic-
Min-Min.

4 Evaluation

In this section, we evaluate the benefits of our algorithm via simulations. We
compare HMHS with the following three scheduling strategies.
Default FIFO Scheduler: FIFO is the default scheduler used by Hadoop (a
widely used MapReduce system). Once a job arrives, FIFO scheduler partitions
it into individual tasks and then assigns tasks to free machines.
FIFO-Pri Scheduler: To investigate the effect of our Min-Min and Dynamic-
Min-Min dispatching strategies, we combine FIFO Scheduler and modified John-
son’s algorithm together. The FIFO-Pri sorts all jobs by priority Pri first, and
then uses FIFO Scheduler to assign tasks to free machines in order.
Reverse-Hybrid Multistage Heuristic Scheduler (R-HMHS): R-HMHS
is designed to analyze how deeply the priority Pri affects HMHS. The R-HMHS
reverses the sequencing result of HMHS. In other words, tasks are sorted by Pri
in descending order.

4.1 Simulation Setup

Since building a large distributed system with thousands of machines is beyond
the scope of our ability, to evaluate the performance of HMHS, we design a
simulator and generate some synthetic workloads according to statistical results
in [10],[19].
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(a) Single workload (b) Hybrid workload

Fig. 1. Effect of heuristics

In our simulations, a single job is constructed from two aspects: task duration
and job size. We generate two types of workloads.(1) Single workload: for each
job, Pm

i and P r
i are drawn from uniform distributions U[5, 45] and U[15, 135]

respectively. Tm
i and T r

i are drawn from U[1, 300] and U[1, 40]. (2) Hybrid work-
load: in real industry system, a small number of large and long jobs exist [13].
Thus, we generate the hybrid workload in the following way. Normal jobs(80%)
are constructed in the same way of jobs of single workload. For long(15%) jobs,
Pm
i and P r

i are drawn from U[100, 2000] and U[300, 6000]. Tm
i and T r

i are drawn
from U[1, 300] and U[1, 40]. For large(5%) jobs, Pm

i and P r
i are drawn from U[5,

45] and U[15, 135]. Tm
i and T r

i are drawn from U[2000, 5000] and U[100, 400].
Besides the parameters used to represent workload, the speed factors(Vm

ij and
V r
ij) are generated to indicate the heterogeneous system. V m

ij and V r
ij are drawn

from uniform distribution U[0.1, 1.0].

4.2 Simulation Results

A. Comparison with Other Heuristics. In our first simulation, to evaluate
the benefits of our algorithm, we compare the makespan of our scheduler with
FIFO, FIFO-Pri and R-HMHS. We generate multiply workloads with different
job sizes under Single and Hybrid distributions respectively. We also create a
heterogeneous system of 100 map and 100 reduce machines. From Fig. 1, we can
see that HMHS works the best among all other strategies. Compared to FIFO,
HMHS decreases up to 77% of makespan. We also observe that there is a slightly
upward trend of makespan improvements with the increase of number of jobs.
Effect of dispatching heuristics: To investigate the effect of dispatching
heuristics Min-Min and Dynamic-Min-Min, we analyze the results of FIFO-Pri
and HMHS. By observing the result of FIFO-Pri in Fig. 1, we can find that
HMHS decreases up to 72% makespan of FIFO-Pri for single workload and 55%
for hybrid workload. This results clearly illustrate that our dispatching heuristics
achieve significant makespan improvements.
Effect of sequencing heuristic: As mentioned above, R-HMHS is designed to
test the effect of our sequencing algorithm. Fig. 1 illustrates that, compared to
R-HMHS, HMHS exhibits 10%-30% makespan improvements. We can see that
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Table 1. Configuration of heterogeneous systems

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

slow slot(0.9-1) 0% 20% 40% 60% 80% 100%

random slot(0.1-1) 100% 80% 60% 40% 20% 0%

(a) Single workload (b) Hybrid workload

Fig. 2. Impact of heterogeneity

there is no strong association between the effect of our sequencing algorithm and
the job sizes. From the view point of workload sets, single workload gets about
7% more performance benefits than hybrid workload.

The above results fully demonstrate that each of our heuristics is effective
in reducing the makespan of a given set of independent MapReduce jobs in a
heterogeneous environment.

B. Impact of Heterogeneity
In practice, a cloud system is usually combined by heterogenous machines. By
changing the percentage of slow machines in the system, we create six kinds
of heterogeneous systems as shown in Table 1. Meanwhile, We suppose slow
machines’ speed factors are drawn from U[0.9, 1.0] and the rest machines’ speed
factors are drawn from U[0.1, 1.0] randomly. We generate two kinds of workloads
with 100 jobs as the test workloads. Each heterogeneous system contains 100 map
machines and 100 reduce machines. Fig. 2 shows that the performance of HMHS
is close to FIFO when the system is dominated by slow machines. One major
conclusion from Fig. 2 is that the less slow machines the cluster has, the more
improvements our algorithm gains.

5 Related Work

5.1 Foundational Work on Job Scheduling Problem

Job Scheduling is not a new problem. Indeed, a lot of foundational works exist in
the literature [12]. However, the problem discussed in this paper can not be corre-
sponded to any classical problem. To the best of our knowledge, the classical two-
stage flexible flow shop (2-FFS) scheduling problem has the closest model to ours.

The 2-FFS has been studied extensively [12], [14]. Gupta [7] proved the 2-FFS
with parallel processors to minimize makespan is NP-Complete and developed an
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efficient heuristic algorithm for constructing an approximate solution. Haouari et
al. [8] studied the 2-FFS with identical parallel machines at each stage. A tabu
search heuristic and a simulated annealing algorithm are presented in their work.

5.2 Scheduling on MapReduce

Job scheduling in MapReduce environment is a new problem. With the rapid
development of cloud computing, it has received much attention.

Many efforts(such as Fair Scheduler [18], Delay Scheduling [19], SAMR Sched-
uler [4] etc.) try to improve the FIFO scheduler, which is the origin strategy
of Hadoop. While other works [2] [3] [6] [11] try to formalize the MapReduce
scheduling problem and offer an offline scheduling algorithm for a given set of
MapReduce jobs.

Chang et al. [2] gave an LP based lower bound of the MapReduce scheduling
problem. Meanwhile, they designed a 3-approximation algorithm to minimize
the sum of job completion times for offline case. However, they ignored the
precedence relationships between map and reduce tasks. To improve Chang’s
work, Chen et al. [3] not only considered the precedence constraints, but also
added the shuffle phase of MapReduce into their model. Similarly, they provided
LP based lower bound and constant factor approximation algorithms to minimize
the sum of job completion times, which is different from our goal.

The closest work to ours is by Verma et al. [17]. They offered an abstraction
of the scheduling problem which is similar to ours in homogeneous system and
aimed to minimize the completion time of a set of MapReduce jobs. They de-
signed a heuristic, which extends the classical Johnson’s algorithm [9]. In our
work, we consider the scheduling problem in a heterogeneous environment. This
encourages us to explore new algorithms to minimize the makespan.

6 Conclusion and Future Work

In this paper, we propose a novel algorithm, Hybrid Multistage Heuristic Schedul-
ing(HMHS), which aims at minimizing the makespan of a given set of indepen-
dent MapReduce jobs in a heterogeneous system. The simulation results show
that the heuristics used in our algorithm exhibit significant makespan improve-
ments. In the future, we plan to examine the performance of our algorithm by
running the experiment in a real MapReduce cluster with larger input data. On
the other hand, we plan to compare our algorithm with some advanced Hadoop
schedulers, such as Fair Scheduler [18] and Delay Scheduling [19].
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14. Ruiz, R., Vázquez-Rodŕıguez, J.A.: The hybrid flow shop scheduling problem. Eu-
ropean Journal of Operational Research 205(1), 1–18 (2010)

15. Thusoo, A., Shao, Z., Anthony, S., Borthakur, D., Jain, N., Sen Sarma, J., Murthy,
R., Liu, H.: Data warehousing and analytics infrastructure at facebook. In: The
2010 SIGMOD. ACM (2010)

16. Verma, A., Cherkasova, L., Campbell, R.H.: Aria: automatic resource inference and
allocation for mapreduce environments. In: Proceedings of the 8th ACM Interna-
tional Conference on Autonomic Computing. ACM (2011)

17. Verma, A., Cherkasova, L., Campbell, R.H.: Two sides of a coin: Optimizing the
schedule of mapreduce jobs to minimize their makespan and improve cluster per-
formance. In: 2012 20th MASCOTS. IEEE (2012)

18. Zaharia, M., Borthakur, D., Sarma, J.S., Elmeleegy, K., Shenker, S., Stoica, I.:
Job scheduling for multi-user mapreduce clusters. EECS Department, University
of California, Berkeley, Tech. Rep. USB/EECS-2009-55 (2009)

19. Zaharia, M., Borthakur, D.: et al.: Delay scheduling: a simple technique for achiev-
ing locality and fairness in cluster scheduling. In: Proceedings of the 5th European
Conference on Computer Systems. ACM (2010)


	HMHS: Hybrid Multistage Heuristic Scheduling Algorithm for Heterogeneous MapReduce System
	1Introduction
	2Problem Description
	2.1Definitions
	2.2Hardness of Our Scheduling Problem

	3Hybrid Multistage Heuristic Scheduling Algorithm 
	3.1Sequencing
	3.2Dispatching
	3.3Hybrid Multistage Heuristic Scheduling Algorithm

	4Evaluation
	4.1Simulation Setup
	4.2Simulation Results

	5Related Work
	5.1Foundational Work on Job Scheduling Problem
	5.2Scheduling on MapReduce

	6Conclusion and Future Work




