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ABSTRACT
Traditional work-stealing schedulers perform poorly in multi-
programmed multi-core architectures, because all the pro-
grams tend to use all the cores and thus incur serious core
contention. To relieve this problem, this paper proposes a
Demand-aware Work-Stealing (DWS) task scheduler, with
which a work-stealing program uses cores according to its
realtime demand on the cores. If multiple programs sched-
uled by DWS run in a multi-core architecture concurrently,
the cores are first evenly allocated to the co-running pro-
grams. At runtime, if a program cannot fully utilize its
cores, it releases some of its allocated cores. Otherwise,
if a program demands more cores, it tries to use the free
cores released by its co-running programs. Experimental re-
sults show that DWS can achieve up to 32.3% performance
gain for co-running programs compared to traditional work-
stealing schedulers with the ABP yielding mechanism.

Categories and Subject Descriptors
D.3.4 [Programming Language]: Processors

General Terms
Run-time Environments, Performance

Keywords
Work-stealing, Multi-programmed, Core allocation

1. INTRODUCTION
In the multi-core era, to fully utilize the cores, paral-

lel programs that consist of many threads are increasingly
popular. However, programmers need to assign tasks to
threads manually in multi-threading, which is often bur-
densome for developing parallel programs. To relieve the
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burden, many parallel programming environments with dy-
namic load-balancing polices have been proposed for pro-
viding user-friendly programming interfaces. In these pro-
gramming environments, such as MIT Cilk [9], Cilk++ [23],
TBB [26], X10 [22] and OpenMP [5], a parallel program
divides its work into fine-grained tasks. By scheduling the
tasks to different worker threads (denoted by “workers” for
short) dynamically, the workloads can be balanced in multi-
core architectures automatically.

Work-stealing [8] is the best-known dynamic load bal-
ancing policy. In a multi-core architecture, existing work-
stealing schedulers launch a worker for each core and pro-
vides an individual task pool for each worker. Most often,
each worker pushes tasks to and pops tasks from its own
task pool. Only when a worker’s task pool is empty, it tries
to steal tasks from other workers until it gets a task. Work-
stealing works well if the multi-core architecture does not
execute multiple programs concurrently.

However, in the multi-programmed environments where
multiple programs co-run in a multi-core architecture, if a
worker cannot steal a task successfully in a few steal at-
tempts, the large number of unsuccessful steals it performs
waste computational resources, which could be used by other
workers to execute tasks. To reduce the resource wasting,
existing work-stealing schedulers (e.g., MIT Cilk and TBB)
implement the ABP yielding mechanism [4]. In ABP, if a
worker fails to steal a task, it yields the core spontaneously
so that other workers can use the core to execute the tasks.

The above ABP yielding mechanism suffers from two crit-
ical drawbacks: unfair resource allocation and serious cache
contention. As for the first drawback, it is very possible that
a worker that yields its core c cannot get c back even when
its tasks are ready, because the other worker that is using c
may not yield c back. Generally speaking, the more often a
worker yields the core, the less computational resource the
worker gets. The computational resources are not allocated
to the programs according to their demands. As for the sec-
ond drawback, if multiple data-intensive programs co-run
in a multi-core architecture, their workers contend for the
cache because workers of different programs can be sched-
uled to the same cores by the OS-level thread scheduler with
the time-sharing scheme. The cache contention degrades the
performance of all the co-running programs.

To overcome the two drawbacks, we propose a Demand-
aware Work-Stealing (DWS) task scheduler. If multiple pro-
grams scheduled by DWS co-run on a multi-core architec-



ture, they take disjoint cores evenly in the beginning based
on space-sharing scheme. In DWS, a work-stealing pro-
gram does not aggressively take all the cores but us-
ing cores according to its realtime demands. If a pro-
gram desires fewer cores, it releases some of its cores. Oth-
erwise, if a program desires more cores, it tries to take the
cores released by other programs. Because the programs do
not use all the cores, the contention on the cores is partly re-
lieved. Furthermore, DWS can relieve the cache contention
because the co-running programs take disjoint cores.

To the best of our knowledge, DWS is the first work-
stealing scheduler that can dynamically balance cores among
the co-running programs adopting the space-sharing scheme
without a centralized OS-level core allocator. The main con-
tributions of this paper are as follows.

• We have modified the algorithm adopted by each worker
in traditional work-stealing scheduler, with which a
worker goes to sleep if it fails to steal a task for too
many times. It enables a program to release the under-
utilized cores, so that other programs can use the re-
leased cores more efficiently.

• We have proposed a coordinator in DWS to manage
the workers. For any program, its coordinator collects
runtime information and schedules its workers based
on the collected information. It enables a program
to grab and use the under-utilized cores released by
other programs, so that the program can achieve better
performance.

• We have implemented and evaluated DWS. The ex-
perimental results show that DWS can significantly
improve the performance of co-running programs up
to 32.3% compared to traditional work-stealing sched-
ulers.

The rest of this paper is organized as follows. Section 2
describes the problem and explains the motivation of DWS.
Section 3 presents design and the implementation of DWS.
Section 4 gives the experimental results. Section 5 discusses
related work. Section 6 draws conclusions and sheds light
on future work.

2. MOTIVATION
In modern multi-core processors, a core provides its com-

putation ability to different threads in units of time slices.
Threads that reside on the same core share the core by tak-
ing its different time slices.

In a multi-core system that executes multiple work-stealing
programs concurrently, every program aggressively tries to
take all the time slices. Serious contention for the time slices
happens among workers of different programs. If the work-
ers are not well-scheduled among the cores, the time slices
are not allocated to the co-running programs according to
their demands. In this case, the co-running programs are
seriously slowed down. We say their performance is not bal-
anced if the difference among their slowed-down times is too
large.

Suppose m work-stealing programs co-run on a multi-core
system with k cores. The k-core system executes m × k
workers concurrently. The target problem of this paper can
be expressed as “how to schedule the m × k workers of the
m co-running work-stealing programs on a k-core system so
that they can get good and balanced performance?”

There are two general schemes, time-sharing and space-
sharing, for scheduling the m×k workers among the k cores.
In time-sharing, threads can be scheduled to any core and
therefore workers of different work-stealing programs can be
scheduled to the same core. Most current operating sys-
tems (e.g., Linux) schedule threads via time-sharing scheme
by default. In space-sharing, cores are divided into m core
groups and each of the m programs runs on one group of
cores. It is worth noting that workers of the same program
share cores in its core group in time-sharing although the
cores are allocated to the co-running work-stealing programs
in space-sharing.

Fig. 1 shows the problem of scheduling m work-stealing
programs (denoted by P1, ..., Pm) on a k-core system. In
the figure, wi1, ..., wik are the k workers of Pi (1 ≤ i ≤ m),
the solid lines represent the scheduling with the time-sharing
scheme and the dashed lines represent the scheduling with
the space-sharing scheme. However, neither time-sharing
nor space-sharing can effectively balance the performance of
the co-running work-stealing programs.

c1 ck

P1 Pi Pm

w11 w1k wi1 wik wm1 wmk

cj

Space-sharingTime-sharing

Figure 1: Schedule m work-stealing programs on a
k-core system.

2.1 Drawbacks of time-sharing scheme
As shown in Fig. 1, it is inevitable that some workers are

scheduled onto the same core since there are m× k workers
overall but there are only k cores. To balance the perfor-
mance of workers on the same core, it is important to avoid
the situation where some workers take too many time slices
while the other workers can only get a few time slices. Tra-
ditional work-stealing tries to avoid the situation by letting
a free worker yield the core to other workers on the same
core if the free worker fails to steal a task 1. However, this
solution leads to seriously unbalanced performance if the
workers on the same core belong to different programs. We
discuss two main drawbacks of using time-sharing to sched-
ule co-running work-stealing programs as follows.

To show the first drawback, we assume Pi consists of small
and short tasks but Pm consists of large and long tasks in
Fig. 1. For wi1 and wmk that are scheduled to the same core
cj in Fig. 1, once wi1 yields the core to wmk, it can hardly
get the core back since wmk would take the core for a long
time to process the large and long tasks. In this case, the
execution of wi1 is seriously delayed until wmk yields the
core. In consequence, Pi gets worse performance compared
with Pm since most computation resources (i.e., time slices)
are occupied by workers of Pm. Generally speaking, the

1This yielding algorithm is named the “ABP algorithm”
since it was proposed by Arora, Blumofe and Plaxton in [4].



more a worker yields the core, the more its execution is
delayed.

To show the second drawback, we assume both Pi and
Pm consist of many data-intensive tasks. In this case, both
wi1 and wmk access caches and DRAM frequently. If wi1 is
running on the core cj , it reads its data into the cache and
the data of wmk will be evacuated from the cache due to the
conflict in the cache. Once wmk takes the time slices of cj ,
wmk reads its data into the cache again and evacuates the
data of wi1 for the same reason. Both wi1 and wmk need
to read their data into the cache many times due to the
contention for the cache. The contention for the caches and
the large number of cache misses degrades the performance
of both wi1 and wmk.

Due to the two main drawbacks, the time-sharing scheme
is not a competitive candidate for balancing the performance
of co-running work-stealing programs.

2.2 Limitations of space-sharing scheme
In the space-sharing scheme, as shown in Fig. 1, the co-

running programs occupy different cores. Therefore workers
on the same core belong to the same work-stealing program.

In a work-stealing program, tasks often have the same
features (e.g., number of instruction, compute-intensive or
data-intensive). Consequently, the workers of a work-stealing
program have similar demands on the computation resources
as well. Therefore, workers on the same core will get a
similar number of time slices if the space-sharing scheme
is adopted. The space-sharing scheme overcomes the first
drawback of the time-sharing scheme that is caused by schedul-
ing workers of different programs to the same core.

Equipartition [24] is one of the most popular policies that
can be adopted in the space-sharing scheme when allocating
cores to programs. Each program is allocated k

m
cores if m

work-stealing programs co-run on a k-core system. However,
with equipartition policy, the performance of co-running pro-
grams is not balanced since they often demand different
amount of computation resources for achieving the same
performance. In other words, the m co-running programs
would be slowed down by different times if each of them
runs on k

m
cores. Therefore, the space-sharing scheme with

the simple but popular equipartition policy cannot balance
the performance of co-running work-stealing programs.

In addition, the space-sharing scheme cannot overcome
the second drawback of the time-sharing scheme since the
workers of the same program contend for the caches and
DRAM as well.

To balance the performance of co-running programs, we
should allocate different numbers of cores to different pro-
grams according to their demands on the cores. If the per-
formance of a work-stealing program is not scalable enough
to utilize k

m
cores, we can allocate the program fewer cores.

Otherwise, if the performance of a program is scalable enough
to utilize more than k

m
cores, it is better to allocate the

program more cores for better performance according to its
demand.

However, it is hard to decide how many cores should be al-
located to each program. Especially, the demand of a work-
stealing program on the cores changes dynamically since the
number of the queued tasks in task pools changes. As far
as we know, for any program, the relationship between its
performance and the number of allocated cores cannot be
obtained without profiling it many times and the relation-

ship changes with the changing of the program’s working
set.

Even worse, since operating systems have no knowledge of
programs’ demands on the cores, it is not realistic for current
operating systems to find an appropriate core allocation for
co-running programs at runtime.

To improve and balance the performance of co-running
programs, we propose Demand-aware Work-Stealing (DWS)
that is not a centralized OS-level job scheduler for multiple
programs but a work-stealing scheduler for a single program.

With DWS, a work-stealing program can find out its own
realtime demands on the cores according to the number of
queued tasks. If all the co-running programs adopt DWS,
they find out their realtime demands on the cores and coop-
erate with each other to dynamically adjust the cores among
them at runtime.

3. DEMAND-AWARE WORK-STEALING
In this section, we first present the design of DWS. Then,

we introduce the worker algorithm and the coordinator al-
gorithm in DWS. Lastly, we describe the implementation of
DWS.

3.1 Design of DWS
Without loss of generality, in Fig. 2, we have built a run-

time architecture for a k-core system that executes m work-
stealing programs (p1, ..., pm) concurrently. All the pro-
grams use DWS as the task scheduler to schedule their tasks.

c1 c ckc

w11 w w1k

... ...

...

wi1 w wikwij ......

wm1 wmk...

cj
... c... ...

...

w

w ...

...

Coordinator

Coordinator

Coordinator p1

pi

pm

Core 
allocation 

tablek/m cores k/m coresk/m cores

w

w ...

...

ww1j

wwmjw ...

...

...

... ...

...

Figure 2: Runtime architecture of a k-core system
that executes m work-stealing programs scheduled
by DWS concurrently.

In a k-core system, DWS launches k workers and a coor-
dinator for a work-stealing program. DWS affiliates each of
its workers with an individual hardware core. For ease of
description, we use wi1, ..., wik to represent the k workers
of program pi. For pi, its worker wij is affiliated with core
cj . Because every program has a worker on each core, there
are m workers on each hardware core. For example, the m
workers w1j , ..., wmj of the m work-stealing programs are
affiliated with cj .

As shown in the figure, to ensure the basic fairness in allo-
cating cores to programs, each program is allocated k

m
adja-

cent cores evenly in the beginning based on space-sharing
scheme. To implement the space-sharing allocation, the
workers are put into sleep accordingly. Take core cj that
is allocated to pi for example. On cj , only the worker wij

of program pi is active while all the other m − 1 workers
on cj are in sleep model. Because a hardware core does
not execute multiple active workers concurrently and only
the active workers execute tasks, the core does not execute
tasks of different programs concurrently and thus relieve the



interference among different programs.
Although the initial even allocation ensures the fairness,

it is not adaptive and cannot utilize the cores efficiently be-
cause the co-running programs often desire different num-
bers of cores during their execution. It is very possible that
the cores allocated to some programs are idle while the cores
allocated to other programs are overloaded. Therefore, with
DWS, each work-stealing program launches a coordinator,
with which the co-running programs can cooperate with each
other to balance the cores according to their realtime de-
mands.

To make the cooperation effective, all the work-stealing
programs periodically check their realtime demands on the
cores based on the following observation.

For any work-stealing program scheduled by DWS, if an
active worker on core c cannot successfully steal new tasks
in a few steal attempts when it completed its current task,
the worker cannot efficiently utilize the core because the
computational resources are wasted on useless steals. In this
situation, the program releases core c by putting the active
worker to sleep and its performance would not be damaged
seriously because the active worker on c does not contribute
to the progress of the program.

On the other hand, if there are a great amount of queued
tasks, the program tries to acquire some free cores by wak-
ing up its sleeping workers on the free cores released by
other programs. This situation happens frequently in work-
stealing programs because tasks are dynamically generated
at runtime. It is very possible that a large number of tasks
are spawned and increases the number of queued tasks sud-
denly.

To support the above dynamic core releasing and core
obtaining, we use a core allocation table, to record the al-
location of cores to programs, and map the table into the
global shared memory. Table 1 shows the core allocation
table for the k-core system in Fig. 2.

Table 1: The structure of the core allocation table
for a k-core system.

Cores c1 c2 ... cj ... ck
Programs p1 p1 ... pi ... pm

In summary, by adjusting hardware cores among the co-
running work-stealing programs dynamically according to
their demands, the performance of the co-running programs
is improved and balanced. To support the above design, we
propose the worker algorithm and the coordinator algorithm
in DWS as follows.

3.2 Worker algorithm in DWS
As mentioned before, in DWS, to utilize all the cores ef-

ficiently, a worker goes to sleep and releases its core if the
worker failed to steal a task for too many times. To sup-
port this strategy, we have modified the worker algorithm
in traditional work-stealing schedulers so that each worker
records how many times in succession it fails to steal tasks
from other workers in a variable “failed steals”. If a worker
fails to steal a task from a victim worker, it increases its
failed steals by one. Otherwise, if a worker successfully ob-
tains a task from its own task pool or steals a task from
another worker, it resets its failed steals to 0.

A worker decides whether to go to sleep according to its

failed steals. if its failed steals is larger than a given thresh-
old (denoted by T SLEEP), it goes to sleep because it cannot
utilize its core efficiently.

If a worker decides to release its core, the correspondence
item in the core allocation table is set as 0, which represents
that the core is free and can be taken by other programs.

Algorithm 1 shows the detailed work-stealing algorithm
adopted by workers in DWS. A worker first tries to obtain a
task from its own task pool if it is free. When the worker’s
task pool is empty, the worker becomes a thief and tries to
steal a task from a randomly chosen victim worker. Once
the worker obtains or steals a task t successfully, it executes
the task t (lines 20-22).

Algorithm 1: Work-stealing algorithm in DWS

Input: w: current worker

1 int failed steals = 0; // num of failed steals

2 while work is not done do
3 if w is free then
4 if its task pool is not empty then
5 w obtains a task t from its own task pool ;
6 failed steals = 0 ;

7 else
8 w randomly selects v as victim worker ;
9 if v has a non-empty task pool then

10 w steals t from v ;
11 failed steals = 0 ;

12 else
13 failed steals ++ ;
14 if failed steals > T SLEEP then
15 w goes to sleep ;
16 w waits to be woken up ;

17 end if

18 end if

19 end if

20 if t then
21 w executes t ;
22 end if

23 end if

24 end while

3.3 Coordinator in DWS
The coordinator of a work-stealing program manages its

workers and its cores in two steps. In the first step, it checks
the number of queued tasks and decides whether to wake up
sleeping workers. In the second step, it calculates how many
sleeping workers should be woken up and obtains free cores
released by other programs for the woken-up workers. Take
pi in Fig. 2 for example, we present the two steps as follows.

For program pi, its coordinator periodically checks the
number of its active workers and the number of its queued
tasks in all its task pools. If each worker only needs to
process a few tasks on average, the coordinator will not wake
up sleeping workers due to the small number of tasks. If each
worker needs to process a great many tasks on average, on
the other hand, the coordinator tends to wake up several
sleeping workers.

However, waking up the proper number of sleeping cores
is challenging. If too many sleeping workers are woken up,
these workers are put into sleep again in a short time once



they finish the queued tasks. The extra overheads of waking
the workers up and putting them to sleep again degrade pi’s
performance. On the other hand, if there are a great amount
of queued tasks but only a few sleeping workers are woken
up(e.g., one worker), the active workers cannot maximally
speed up the execution.

Therefore, we require that the coordinator satisfies three
constraints. The first constraint is that the more queued
tasks in the task pools, the more sleeping workers should
be woken up. The second constraint is that a program can
take its allocated cores back if the coordinator tends to wake
up more sleeping workers than the free cores. The third
constraint is that a program cannot take the cores that are
not released by other programs. This constraint ensures
that the performance of any program would not be seriously
degraded.

After careful study, we model the three constraints using
the following four parameters: the number of queued tasks,
the number of active workers, the number of overall free
cores and the number of its cores that are using by other
programs.

In the model, we suppose that the work-stealing program
pi has Nb queued tasks and Na active workers. We further
assume that the k-core system has Nf free cores and there
are Nr cores out of pi’s k/m cores are using by other pro-
grams.

Therefore, to achieve the best performance, the more queued
tasks exist in the task pools, the more sleeping workers
should be woken up. After careful study, obeying the above
guideline, the coordinator tends to wake up Nw sleeping
workers, and Nw can be calculated in Eq. 1.

Nw =
Nb

Na
(1)

After Nw is calculated, the coordinator of pi decides to
wake up which sleeping workers. More precisely, based on
Nw, Nf and Nr, the coordinator of pi decides to wake up
how many workers and decides to wake up which sleeping
workers as follows.

However, in reality, it is very possible that the k-core sys-
tem does not have enough free cores for Nw workers. There-
fore, before the coordinator of pi starts to wake up workers,
the coordinator checks whether there are Nw free cores or
not in the whole system by checking the core allocation ta-
ble. We use Nf to represent the number of free cores in the
system. In addition, we use Nr to represent the number of
its cores that are used by other programs.

• If Nw ≤ Nf , pi randomly selects Nw free cores and
wakes up pi’s sleeping workers on the Nw selected free
cores.

• If Nf ≤ Nw ≤ Nf + Nr, the coordinator of pi tends
to wakes up more sleeping workers than the free cores.
Fortunately, if pi can gets its cores that are used by
other programs back, the overall cores are enough for
the Nw workers. Therefore, in this case, pi first uses
all the Nf free cores and then gets Nw −Nf its cores
that are used by other programs back by waking up
the Nw workers on the correspondence cores.

• If Nw > Nf + Nr, even pi can take all its cores that
are used by other programs back, the overall cores are

still not enough for Nw workers. In this case, the co-
ordinator of pi would not wake up the Nw sleeping
workers. pi only takes all the Nf free cores and takes
its Nr cores that are used by other programs back.
Therefore, the coordinator wakes up Nf +Nr sleeping
workers on the correspondence cores.

Supported by the above model, a work-stealing program
scheduled by DWS can use cores according to its realtime
demands.

3.4 Implementation of DWS
We have implemented DWS by modifying MIT Cilk, which

is one of the earliest parallel programming environments
that implement work-stealing [17]. All the programs devel-
oped for Cilk can run in DWS without any modifications.
Users can improve the performance of work-stealing in multi-
programmed environment by simply updating Cilk to DWS
without modifying the programs at all.

To support the core allocation table, the first-launched
work-stealing program creates a new file and maps the file
into the shared memory using “mmap()” which is part of the
Posix standard [20] and is available in most operating sys-
tems (e.g., Linux). Once the shared memory is occupied, all
the following programs can easily access the core allocation
table using “mmap()”.

We have also modified the worker algorithm in MIT Cilk
for DWS according to the algorithm in Section 3.2. In our
current implementation, we set the threshold T SLEEP=k
on a k-core system according to our experiment (to be dis-
cussed later in Section 4.3). Furthermore, every program
spawns a helper thread that implements the algorithm in
Section 3.3 as its coordinator besides its workers, when it is
launched in DWS.

For a program scheduled by DWS, its coordinator goes to
sleep every T milliseconds. If T is too small, the overhead
of the coordinator is heavy and degrades the overall perfor-
mance. On the other hand, if T is too large, the coordinator
cannot schedule the workers in a timely manner. The over-
all performance of the program is therefore degraded as well.
Observing from empirical results, we suggest setting T = 10
so that the overhead of the coordinator is negligible.

4. EVALUATION
We use a server that has two Intel Quad-core Xeon(R)

E5620 processors as the multi-core system to evaluate the
performance of DWS. In the processor, Intel Hyper-Threading
Technology (HTT) that delivers two processing threads per
physical core is adopted. Therefore, the hardware exper-
imental platform can be viewed as a multi-core computer
with 16 cores. In addition, the computer has 32GB DRAM
and runs Linux 2.6.32-38. Accordingly, each work-stealing
program launches 16 workers on the experimental platform
by default.

Same to [16], we evaluate the effectiveness of DWS by exe-
cuting two benchmarks in Table 2 concurrently. While most
of the benchmarks are from the examples of MIT Cilk, we de-
veloped some extra benchmarks by adapting a few OpenMP
programs. We call the co-running benchmarks in a test as a
benchmark mix and use a two-tuple (i, j) to represent the
test in which p-i and p-j co-run on the experiment multi-
core platform. We make sure the execution of the programs



Table 2: Benchmarks used in the experiments

ID Name Description

p-1 FFT Fast Fourier Transform
p-2 PNN Polynomial Neural Network
p-3 Cholesky Cholesky decomposition
p-4 LU LU decomposition
p-5 GE Gaussian Elimination algorithm
p-6 Heat Five-point heat distribution
p-7 SOR 2D Successive Over-Relaxation
p-8 Mergesort Merge sort on 4E6 numbers

in each test is totally overlapped by executing them for mul-
tiple times.

Fig. 3 illustrates the way of calculating the execution time
of the co-running programs p-i and p-j. In Fig. 3, p-i is run
a times and p-j is run b times.

i1 i2 ia

j1 j2 j3

i

j jb

Figure 3: Measure the execution time of co-running
programs.

The execution time of pi and pj (denoted by Ti and Tj)
are calculated in Eq. 2.

Ti =

∑a
r=1 tir

a
, Tj =

∑b
r=1 tjr

b
(2)

In the following experiment, we compared the performance
of DWS with the performance of two other popular strate-
gies for scheduling co-running programs: Time-sharing +
ABP yielding mechanism (denoted by ABP for short) and
Space-sharing + Equi-partitioning policy (denoted by EP
for short). In ABP, the operating system schedules the co-
running programs using the default thread scheduler in OS
with time-sharing and MIT Cilk that implements the ABP
yielding policy is used to schedule each program. In EP, the
16 cores are evenly and statically allocated to the co-running
programs.

4.1 Performance of DWS
Fig. 4 only shows the performance of eight benchmark

mixes as other benchmark mixes perform similarly. In the
figure, DWS-1 and DWS-2 represent the execution time of
the first benchmark and the second benchmark in the cor-
respondence benchmark mix with DWS respectively. The
other bars represent the execution time of the benchmarks
with the correspondence task schedulers.

For each benchmark, we first run it alone on the ex-
perimental platform for ten times to get its average non-
interference execution time as its baseline execution time.
When we run a benchmark alone, it uses all the 16 cores.

From Fig. 4 we can find that DWS significantly improves
the performance of co-running programs, with the execution
time reduction up to 32.3% compared to ABP and with the
execution time reduction up to 37.1% compared to EP.

The good performance of DWS comes from the demand-
aware core allocation. Although the co-running benchmarks
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Figure 4: Performance of benchmark mixes in ABP,
EP and DWS.

take cores evenly in the beginning, they release some of their
allocated cores or try to get more cores according to their
realtime demands on the cores at runtime. Therefore, the
cores are adjusted among the co-running programs dynam-
ically. In addition, by putting workers that repeatedly fail
to obtain tasks to sleep, computational resources will not be
wasted by these useless workers and can be used by other
programs to execute the tasks. The sleeping workers are wo-
ken up later if the number of queued tasks increases dramat-
ically. The improved valid resource utilization also partly
improves the performance of DWS.

Compared with EP, the better performance of DWS ori-
gins from the dynamic adjustment of cores among the co-
running programs. For any benchmark mix, in EP, because
a program can only use its allocated cores, it is very possi-
ble that the cores allocated to some programs are idle while
the cores allocated to other programs are overloaded in EP.
The cores are not utilized efficiently in EP. In DWS, on the
other hand, the idle cores will be released by their owners
and other programs that desire more cores can utilize these
released cores to accelerate their execution. Therefore, DWS
works better than EP.

Careful readers may find that the performance of p-7 in
(2, 7) is even slightly better than its baseline performance.
The good performance of p-7 comes from the improved data
locality and reduced contention for caches that are side ef-
fects of DWS. Because the workers of p-7 are scheduled to
the same CPU in DWS, the data locality is improved. In
addition, Because DWS puts some workers to sleep and the
active workers are enough for the tasks, the contention for
caches and memory bandwidth is partly relieved. This result
verifies the assertion that the space-sharing scheme in DWS
can relieve cache contention compared to the time-sharing
scheme.

4.2 Effectiveness of the coordinator
As presented before, with the coordinators of the co-running

programs, the high-demand programs can use the cores re-
leased by low-demand programs. To evaluate the effective-
ness of the coordinator, we compared the performance of
DWS with DWS-NC, in which the cores are not balanced
among the co-running programs. Different from ABP and
EP, in DWS-NC, the workers are still put to sleep and wo-
ken up in the same way as in DWS. However, DWS-NC does
not ensure that a core only executes a single active worker.

Fig. 5 shows the performance of benchmark mixes in DWS-
NC and DWS. From the figure, we can find that DWS-NC
performs worse than DWS. The coordinator in DWS is very
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Figure 5: Performance of eight benchmark mixes in
DWS-NC and DWS.

helpful for improving the performance of the programs that
often desire a large number of cores, because their coordi-
nators can help them to get more cores.

4.3 Impact of T_SLEEP
This experiment discusses the impact of the threshold

T SLEEP that is introduced in Section 3.2 on the perfor-
mance of DWS. For benchmark mix (1, 8), Fig. 6 shows
the performance of p-1 (FFT) and p-8 (Mergesort) in DWS
with different T SLEEP values. Other benchmark mixes
show similar results.
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Figure 6: Performance of p-1 and p-8 in (1, 8) in
DWS with T SLEEP of different values.

From the figure we can find that p-1 and p-8 achieve the
best performance when T SLEEP is 16 or 32 on the 16-core
experimental platform. If T SLEEP is too small (e.g., =1),
the workers go to sleep easily once they fail to steal tasks.
In this case, the coordinator needs to wake them up shortly
for queued tasks because most workers are sleeping due to
the small T SLEEP. The extra overheads caused by the fre-
quent wake-up operation degrade the overall performance.
If T SLEEP is too large (e.g., =128), on the other hand,
a worker will not go to sleep even if there are only several
queued tasks. In this case, the computational resources are
wasted by these workers on useless steals. According to this
experiment, we suggest choosing T SLEEP = k or 2k on a
k-core system.

4.4 Discussion
It is worth noting that DWS does not degrade the per-

formance of a single work-stealing program on multi-core
system, although it is proposed to improve and balance the

performance of multiple co-running work-stealing programs.
Compared with traditional work-stealing, the workers in
DWS also utilize all the cores while the only overhead in
DWS is incurred by the coordinator. Our experiment shows
that the overhead is negligible.

The general ideas in DWS can be applied to other paral-
lel programming environments. For example, DWS can be
easily adapted to work-sharing since the difference between
work-stealing and work-sharing is the strategy of balancing
tasks among workers and that does not affect the applica-
bility of DWS. More generally, for multiple co-running par-
allel programs that are developed with any dynamic load-
balancing model, if each of the co-running programs can put
some its workers (or threads) to sleep and schedule workers
accordingly as proposed in DWS, then their performance
can be improved and balanced in multi-core systems.

We can also easily adapt DWS into other parallel archi-
tectures (e.g., asymmetric multi-core architectures that have
cores with different frequencies). During the execution of
co-running programs, we can identify if a program is data-
intensive or compute-intensive based on the number of in-
structions and the number of memory accesses which can
be obtained easily through hardware performance counter
or PAPI [21]. When the co-running programs start, data-
intensive programs take slow cores since they do not need
too much computation resources and the compute-intensive
programs take the fast cores. After that, the techniques pro-
posed in DWS can be applied to further improve and balance
the performance of the co-running programs.

Not surprisingly, DWS has one limitation. If a multi-core
system only executes a single work-stealing program at a
time, DWS cannot improve the performance of the work-
stealing program. It is easy to identify the situation by
checking the number of co-running programs. If a work-
stealing program is the only program on a multi-core system,
traditional random work-stealing is used instead to sched-
ule the program. Furthermore, if the program is memory-
bound, our previous CAB scheduler [14] and CATS sched-
uler [12, 13] can be adopted to improve its performance by
reducing the cache misses. If the program is CPU-bound,
our previous WATS scheduler [10, 11] can be adopted to
improve its performance on asymmetric multi-core architec-
tures by balancing tasks to asymmetric cores according to
the tasks’ workloads dynamically. Therefore, the above lim-
itation will not affect the applicability of DWS.

5. RELATED WORK
Work-stealing is increasingly popular for automatic load

balancing inside parallel applications. There has been a lot
of research work on its adaptation and improvement [32, 25,
18]. However, if multiple work-stealing programs co-run on
the same multi-core system, they suffer from poor and unbal-
anced performance. Improving and balancing performance
of co-running work-stealing programs has become a popular
research issue [7, 27]. Time-sharing and space-sharing are
the two most popular schemes for balancing computation
resources among co-running programs.

Traditional work-stealing adopts the ABP algorithm [4] to
balance time slices among workers on the same core. How-
ever, it does not work well if operating systems adopt the
time-sharing scheme to schedule threads as discussed in Sec-
tion 2.1. To solve the problem, BWS [16] has been proposed.
In BWS, if a worker of program p fails to steal a task, it



yields the core to another worker of p that is executing a
task. With this strategy, the time slices of cores are bal-
anced among different programs. As discussed in Section 2,
if configured appropriately, the space-sharing scheme works
better than the time-sharing scheme since the interference
among the co-running programs is avoided [24]. DWS bal-
ances and improves the performance of the co-running work-
stealing programs adopting the space-sharing scheme while
BWS is based on the time-sharing scheme.

Based on the space-sharing scheme, many studies have
been done to find the appropriate core allocation method
(either static or dynamic ) [31, 28, 6]. In these studies,
a centralized job scheduler allocates cores to the co-running
programs and each program uses a task scheduler to balance
the workloads among its allocated cores [4].

In [15], SelfAnalyzer is proposed to analyze the perfor-
mance of co-running applications. According to the feed-
back of SelfAnalyzer, PDPA (Performance-Driven Processor
Allocation) is proposed to distribute processors to different
applications. In [24], the job scheduler allocates processors
from one program to another based on their realtime par-
allelism. In [1], A-GREEDY in which the task scheduler of
each program provides continual parallelism feedback to the
job scheduler in the form of requests for cores is proposed.
With the feedback from all the co-running programs, the
job scheduler adjusts the allocation of cores to programs
periodically. In [3], A-STEAL is proposed on the basis of A-
GREEDY. For each of the co-running program, A-STEAL
uses work-stealing to schedule the tasks on its allocated cores
while A-GREEDY uses a centralized algorithm to sched-
ule tasks. In [1] and [3], the authors did not evaluate A-
GREEDY or A-STEAL through experiment. In [30], ABG
is proposed to relieve the unstable feedback that exists in
A-GREEDY and A-STEAL. Compared with A-GREEDY,
ABG ensures both good and stable performance of the co-
running programs. Besides ABG, more studies [2, 19, 29]
have been done to improve the performance of A-GREEDY
and A-STEAL.

However, the centralized job scheduler becomes a bottle-
neck with more co-running programs since all the programs
need to interact with the job scheduler. Different from these
studies, with DWS, the co-running programs cooperate with
each other to adjust cores among them dynamically in a dis-
tributed manner without interference of any centralized job
scheduler. To the best of our knowledge, DWS is the first
work-stealing scheduler that balances cores among the co-
running programs adopting the space-sharing scheme with-
out a centralized job scheduler. In addition, in existing stud-
ies based on the space-sharing scheme, workers are not put
to sleep and woken up as needed to improve performance as
we do in DWS.

6. CONCLUSIONS
Although traditional work-stealing policy works efficiently

if multi-core architectures only process a single program at
a time, it suffers from poor performance if multiple work-
stealing programs co-run on the same multi-core architec-
tures. To solve this problem, we have designed, implemented
and evaluated the Demand-aware Work-Stealing (DWS) task
scheduler. In DWS, a work-stealing program does not ag-
gressively take all the cores but only take cores according
to its realtime demands on the cores. If a worker fails too
many times in succession to steal a task, the worker goes

to sleep for saving computational resources. The experi-
mental results show that the techniques adopted in DWS
are effective and DWS can achieve up to 32.3% performance
gain for co-running work-stealing programs, compared to the
traditional work-stealing task schedulers with ABP yielding
mechanism.

One promising future research direction is to extend the
techniques proposed in DWS to more hardware architec-
tures (e.g., asymmetric multi-core architectures) and more
dynamic load-balancing models (e.g., work-sharing). An-
other future research avenue is to optimize work-stealing for
multi-core systems with heterogenous accelerators (such as
GPGPU).
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