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ABSTRACT

Modern mainstream powerful computers adopt Multi-Socket
Multi-Core (MSMC) CPU architecture and NUMA-based
memory architecture. While traditional work-stealing sched-
ulers are designed for single-socket architectures, they in-
cur severe shared cache misses and remote memory accesses
in these computers, which can degrade the performance of
memory-bound applications seriously. To solve the prob-
lem, we propose a Locality-Aware Work-Stealing (LAWYS)
scheduler, which better utilizes both the shared cache and
the NUMA memory system. In LAWS, a load-balanced task
allocator is used to evenly split and store the data set of a
program to all the memory nodes and allocate a task to the
socket where the local memory node stores its data. Then,
an adaptive DAG packer adopts an auto-tuning approach to
optimally pack an execution DAG into many cache-friendly
subtrees. Meanwhile, a triple-level work-stealing scheduler is
applied to schedule the subtrees and the tasks in each sub-
tree. Experimental results show that LAWS can improve
the performance of memory-bound programs up to 54.2%
compared with traditional work-stealing schedulers.

Categories and Subject Descriptors

D.3.4 [Processors]: Run-tume environments

Keywords
Shared cache; NUMA; Auto-tuning; DAG packing

1. INTRODUCTION

Although hardware manufacturers keep increasing cores in
CPU chips, the number of cores cannot be increased unlimit-
edly due to physical limitations. To meet the urgent need for
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powerful computers, multiple CPU chips are integrated into
a Multi-Socket Multi-Core (MSMC) architecture, in which
each CPU chip has multiple cores with a shared last-level
cache and is plugged into a socket.

To efficiently utilize the cores, programming environments
with dynamic load-balancing policies are proposed. Work-
sharing [3] and work-stealing [4] are two best-known dynamic
load balancing policies. For instance, TBB [25], XKaapi [14],
Cilk++ [22] and X10 [21] use work-stealing, OpenMP [3]
uses work-sharing. With dynamic load balancing polices,
the execution of a parallel program is divided into a large
amount of fine-grained tasks and is expressed by a task graph
(aka. Directed Acyclic Graph or DAG [16]). Each node in a
DAG represents a task (i.e., a set of instructions) that must
be executed sequentially without preemption.

While all the workers (threads, cores) share a central task
pool in work-sharing, work-stealing provides an individual
task pool for each worker. In work-stealing, most often each
worker pushes tasks to and pops tasks from its task pool
without locking. When a worker’s task pool is empty, it
tries to steal tasks from other workers, and that is the only
time it needs locking. Since there are multiple task pools
for stealing, the lock contention is low even at task steals.
Therefore, work-stealing performs better than work-sharing
due to its lower lock contention.

However, modern shared-memory MSMC computers and
extreme-scale supercomputing systems often employ NUMA-
based (Non-Uniform Memory Access) memory system, in
which the whole main memory is divided into multiple mem-
ory nodes and each node is attached to the socket of a chip.
The memory node attached to a socket is called its local
memory node and those that are attached to other sock-
ets are called remote memory nodes. The cores of a socket
access its local memory node much faster than the remote
memory nodes. Traditional work-stealing is very inefficient
in this architecture.

In work-stealing, since a free worker randomly selects vic-
tim workers to steal new tasks when its own task pool is
empty, the tasks are distributed to all the workers nearly
randomly. This randomness can cause more accesses to re-
mote memory in NUMA as well as more shared cache misses
inside a CPU chip, which often degrades the performance
of memory-bound applications in MSMC architectures (the
problem will be discussed in detail in Section 2).

To reduce both remote memory accesses and shared cache



misses, this paper proposes a Locality-Aware Work-Stealing
(LAWS) scheduler that automatically schedules tasks to the
sockets where the local memory nodes store their data and
executes the tasks inside each socket in a cache friendly
manner. LAWS targets iterative divide-and-conquer appli-
cations that have tree-shaped execution DAG. While ex-
isting work-stealing schedulers incur bad data locality, to
the best of our knowledge, LAWS is the first locality-aware
work-stealing scheduler that improves the performance of
memory-bound programs leveraging both NUMA optimiza-
tion and shared cache optimization.
The main contributions of this paper are as follows.

e We propose a load-balanced task allocator that au-
tomatically allocates a task to the particular socket
where the local memory node stores its data and that
can balance the workload among sockets.

e We propose an adaptive DAG packer that can further
pack an execution DAG into Cache Friendly Subtrees
(CF subtrees) for optimizing shared cache usage based
on online-collected information and auto-tuning.

e We propose a triple-level work-stealing scheduler to
schedule tasks accordingly so that a task can access its
data from either the shared cache or the local memory
node other than the remote memory nodes.

The rest of this paper is organized as follows. Section 2 ex-
plains the motivation of LAWS. Section 3 presents locality-
aware work-stealing, including balanced data allocator, adap-
tive DAG packer and triple level work-stealing scheduler.
Section 4 gives the implementation of LAWS. Section 5 eval-
uates LAWS and shows the experimental results. Section 6
discusses the related work. Section 7 draws conclusions.

2. MOTIVATION

Similar to many popular work-stealing schedulers (e.g.,
Cilk [5] and CATS [10]), this paper targets iterative Divide-
and-Conguer (D&C) programs that have tree-shaped execu-
tion DAG. Most stencil programs [26] and algorithms based
on jacobi iteration (e.g., Heat distribution and Successive
Over Relazation) are examples of iterative D&C programs.

Fig. 1 gives a general execution DAG for iterative D&C
programs. In a D&C program, its data set is recursively
divided into several parts until each of the leaf tasks only
processes a small part of the whole data set.

[0.0)

Figure 1: A general execution DAG for iterative
D& C programs.

Suppose the execution DAG in Fig. 1 runs on an MSMC
architecture with a NUMA memory system as shown in
Fig. 2. In the MSMC architecture, a memory node Nj; is
attached to the socket p;. In Linux memory management

for NUMA, if a chunk of data is first accessed by a task that
is running on a core of the socket p, a physical page from
the local memory node of p is automatically allocated to the
data. This data allocation strategy employed in Linux ker-
nel and Solaris is called first touch strategy. In this work, we
take advantage of this strategy of memory allocation.

N; N; N

Memory
Data access
Sockets . i B Data

Pi Pj P

Figure 2: The data access pattern in traditional
work-stealing.

For a parallel program, its data set is often first accessed
by tasks in the first iteration or in an indepedent initializa-
tion phase. By scheduling these tasks to different sockets,
the whole data set of the program that has the execution
DAG in Fig. 1 is split and stored in different memory nodes
as shown in Fig. 2 due to the first touch strategy.

However, traditional work-stealing suffers from two main
problems when scheduling the execution DAG in Fig. 1 in
MSMC architectures. First, most tasks have to access their
data from remote memory nodes in all the iterations. Sec-
ond, the shared caches are not utilized efficiently.

As for the first problem, suppose the whole data set of the
program in Fig. 1 is [0, D), and the task to is the first task
that accesses the part of the data [2, 2) (a > b > 1). If
task to is scheduled to socket p;, the part of the data [%,
D

%) is automatically allocated to the memory node, N;, of

socket p;, due to the first touch strategy. Suppose task ¢,
D D

in a later iteration processes the data [, 7). Due to the
randomness of work-stealing, it is very likely that ¢, is not
scheduled to socket p;. In this situation, ¢, cannot access
its data from its fast local memory node, instead it has to
access a remote memory node for its data.

As for the second problem, neighbor tasks (e.g., task t1
and task t2 in Fig. 1) are likely to be scheduled to differ-
ent sockets due to the randomness of stealing in traditional
work-stealing schedulers. This causes more shared cache
misses as neighbor tasks in DAG often share some data. For
example, in Fig. 1, both t; and ¢2 need to read all their
data from the main memory if they are scheduled to differ-
ent sockets. However, if we could schedule ¢1 and t2 to the
same socket, their shared data is only read into the shared
cache once by one task, while the other task can read the
data directly from the shared cache.

To solve the two problems, we propose the Locality- Aware
Work-Stealing (LAWS) scheduler that consists of a load-
balanced task allocator, an adaptive DAG packer and a
triple-level work-stealing scheduler. The load-balanced task
allocator can evenly distribute the data set of a program
to all the memory nodes and allocate a task to the socket
where the local memory node stores its data. The adaptive
DAG packer can pack the execution DAG of a program into
Cache-Friendly Subtrees (CF subtrees) so that the shared
cache of each socket can be used effectively. The triple-level
work-stealing scheduler schedules tasks accordingly to bal-
ance the workload and reduce shared cache misses.



LAWS ensures that the workload is balanced and most
tasks can access data from either the shared cache or the
local memory node. The performance of memory-bound
programs can be improved due to balanced workload and
shorter data access latency.

3. LOCALITY-AWARE WORK-STEALING

In this section, we first give a general overview of the de-
sign of LAWS. Then, we present the load-balanced task al-
locator, the adaptive DAG packer and the triple-level work-
stealing scheduler in LAWS;, respectively. Lastly, we verify
the effectiveness of LAWS through theoretical analysis.

3.1 Design of LAWS

Fig. 3 illustrates the processing flow of an iterative pro-
gram in LAWS.

Decide initial
Allocate packing
tasks

Start

Cqmpute um'ier End
optimal packing

Search optimal
Load-balanced packing
task allocator | Adaptive DAG packer

Figure 3: The processing flow of an iterative D&C
program in LAWS.

In every iteration, the task allocator carefully allocates
tasks to different sockets to evenly distribute the data set of
the program to all the memory nodes and allocate each task
to the socket where the local memory node stores its data. In
this situation, the workload of different sockets is balanced
in general since the time for processing the same amount of
data is similar among tasks in D&C programs. There may
be some slight load-unbalance which will be resolved by the
triple-level work-stealing scheduler.

For each socket, LAWS further packs the tasks allocated
to it into a number of CF subtrees based on runtime infor-
mation collected in the first iteration, so that shared cache
can be better utilized. For example, in Fig. 1, the subtree
in each ellipse is a CF subtree. In the first several itera-
tions, the packer automatically adjusts the packing of tasks
to search for the optimal one that results in the minimum
makespan. Because the execution DAGs of different itera-
tions are the same and the tasks in the same position of the
execution DAGs work on the same part of the data set in
D&C programs, the optimal packing for the completed iter-
ations is also optimal for future iterations. Once the optimal
packing is found, LAWS packs the tasks in all the following
iterations in a way suggested by the optimal packing.

LAWS adopts a triple-level work-stealing scheduler to sched-

ule tasks in each iteration. The tasks in the same CF sub-
trees are scheduled within the same socket. If a socket com-
pletes all its CF subtrees, it steals a CF subtree from a
randomly-chosen victim socket in order to resolve the pos-
sible slight load-unbalance from the task allocator.

Because tasks in the same CF subtree often share some
data, the shared data is only read into the shared cache
once but can be accessed by all the tasks of the same CF
subtree. In this way, the shared cache can be better utilized
and cache misses can be reduced.

It is worth noting that LAWS does not need users to pro-
vide any information. All the information needed is obtained
automatically at runtime by LAWS.

3.2 Load-balanced task allocator

The load-balanced task allocator is proposed based on an
assumption that a task divides its data set into several parts
evenly according to its branching degree. This assumption
is true in most of the current D&C programs.

The load-balanced task allocator should satisfy two main
constraints when allocating tasks to sockets. First, to bal-
ance workload, the size of data processed by tasks allocated
to each socket should be same in every iteration. Second,
to reduce shared cache misses, the adjacent data should be
stored in the same memory node since adjacent data is pro-
cessed by neighbor tasks that should be schedule to the same
socket. Traditional work-stealing schedulers do not satisfy
the two constraints due to the randomness of stealing.

Suppose a program runs on an M-socket architecture. If
its data set is D, to balance workload, the tasks allocated
to each socket need to process ﬁ of the whole data set.
Without loss of generality, LAWS makes sure that the tasks
allocated to the i-th (1 < i < M) socket should process the
part of the whole data set ranging from (i —1) x 2 to i x &
(denoted by [(i — 1) x £, i x £)).

To achieve the above objective, we need to find out each
task processes which part of the whole data set. For a task
a2 in Fig. 4, to find out it will process which part of the
data set, LAWS analyzes the structure of the dynamically
generated execution DAG when as is spawned. Suppose
task ao is task ai’s i-th sub-task and the branching degree
of ay is b. If a1 processes the part of data [Ds, D.), Eq. 1
gives the part of data that as will process.

[(i —1) x @—FDSJX M+Ds) (1)

Fig. 4 gives an example of allocating the tasks to the two
sockets of a dual-socket architecture. The range of data
beside each task is calculated according to Eq. 1.

O
4]

OO
[ 52)

Figure 4: Allocate the tasks to the two sockets of a
dual-socket architecture.

In the dual-socket architecture, the tasks that process the
data set [0, 2) and [£, D) should be allocated to the first
socket and the second socket respectively. For instance, in
Fig. 4, because as is responsible for processing data range
[£,2) that is within [0, £), it should be allocated to the
first socket. Due to the same reason, the slash-shaded tasks
should be allocated to the first socket and the mesh-shaded
tasks should be allocated to the second socket.

Note that, if a task is allocated to a socket, all its child
tasks are allocated to the same socket. For example, all the
tasks rooted with as will be allocated to the first socket.

Because the load-balanced task allocator allocates a task
according to the range of its data set, in the following it-
erations, the tasks processing the same part of the whole
data set will be allocated to the same socket. In this way,



the tasks in all the iterations can find their data in the lo-
cal memory node. Therefore, the first problem discussed in
Section 2 in traditional work-stealing will be solved.

3.3 Adaptive DAG packer

After the tasks are allocated to appropriate sockets, each
socket will still have to execute a large number of tasks.
The data involved in these tasks are often too large to fit
into the shared cache of a socket. To utilize the shared cache
efficiently, LAWS further packs the tasks allocated to each
socket into CF subtrees that will be executed sequentially.

3.3.1 Decide initial packing

LAWS makes sure that the data accessed by all the socket-
local tasks in each CF subtree can be fully stored into the
shared cache of a socket. Note the tasks in the same CF
subtree (called Socket-local tasks) are scheduled in the same
socket and the root task of a CF subtree is called a CF root
task. In this way, the data shared by tasks in the same CF
subtree is read into the shared cache once but can be shared
and accessed by all the tasks.

To achieve the above objective, we need to know the size
of shared cache used by each task, which cannot be collected
directly. To circumvent this problem, in the first iteration,
for any task a, LAWS collects the number of last level pri-
vate cache (e.g. L2) misses caused by it. The size of shared
cache used by «a can be estimated as the number of the above
cache misses times the cache line size (e.g., 64 bytes).

The approximation is reasonable due to two reasons. First,
the core c that executes o does not execute other tasks con-
currently. All the last level private cache misses of ¢ during
the execution are caused by a. Second, once a last level
private cache miss happens, ¢ accesses the shared cache or
memory and will use a cache line in the shared cache.

For task «, we further calculate its SOSC, which repre-
sents the Size Of Shared Cache used by all the tasks in the
subtree rooted with a. SOSC of « is calculated in the bottom-
up manner. Suppose « has m direct child tasks a1, ..., am
and their SOSCs are S, ..., Sm respectively. SOSC of « (de-
noted by S.) can be calculated in Eq. 2, where M, equals
to the number of last level cache misses caused by « itself
times the cache line size.

So=Mao+»_ S (2)

Once all the tasks in the first iteration are completed,
SOSCs of all the tasks are calculated. Based on SOSCs of
all the tasks, the DAG packer can group the tasks into CF
subtrees by identifying all the CF root tasks as follows.

Let S. represent the shared cache size of a socket. Sup-
pose a’s parent task is 3, and their SOSCs are S, and Sg
respectively. Then, if S, < S. and Sg > S, a is a CF root
task, which means all the data involved in the descendent
tasks of « just fit into the shared cache. If Sg < S, a is a
socket-local task.

Once all the CF root tasks are identified, the initial pack-
ing of tasks into CF subtrees is determined.

3.3.2  Search optimal packing

If S, in Eq. 2 precisely equals to the real size of shared
cache used by the subtree rooted with «, the data involved in
any CF subtree would not exceed the capacity of a socket’s
shared cache.

However, S, is only a close approximation due to the fol-
lowing reasons. Suppose tasks a1 and a2 in the subtree
rooted with a share some data. Although they are allocated
to the same socket by the load-balanced task allocator, they
can be executed by different cores. In this case, both ai
and az need to read the shared data to the last level private
cache and thus the size of the shared data is accumulated
twice in Eq. 2. On the other hand, if some data stored in the
shared cache has already been pre-fetched into the private
cache before, it does not incur last level private cache misses
and the size of the pre-fetched data is missed in Eq. 2. The
multiple accumulation of shared data and the pre-fetching
make S, of Eq. 2 slightly larger or smaller than the actual
size of shared cache used by the subtree rooted with a.

Therefore, the initial packing of tasks into CF subtrees is
only a near optimal packing. LAWS further uses an auto-
tuning approach to search the optimal packing. In the ap-
proach, LAWS packs tasks into CF subtrees differently in
different iterations, records the execution time of each it-
eration, and chooses the packing that results the shortest
makespan as the optimal packing.

1: CF subtrees are too large

2: Optimal packing

Execution time

3: CF subtrees are too small

Large CF subtree Small

Figure 5: Execution time of an iteration when the
execution DAG is packed differently.

Fig. 5 shows the execution time of an iteration when tasks
are packed differently. If CF subtrees are too large (contain
too many socket-local tasks, point 1 in Fig. 5), the data
accessed by tasks in each CF subtree cannot be fully stored
in the shared cache of a socket. On the other hand, if CF
subtrees are too small (contain too few socket-local tasks,
point 3 in Fig. 5), the data accessed by tasks in each CF
subtree is too small to fully utilize the shared cache.

Starting from the packing of the execution DAG into CF
subtrees in Section 3.3.1, LAWS first evaluates smaller CF
subtrees. If smaller CF subtrees result in shorter execution
time, CF subtrees in the initial packing are too large. In
this case, LAWS evaluates smaller and smaller CF subtrees
until the packing that results in the shortest execution time
(point 2 in Fig. 5) is found. If smaller CF subtrees result in
longer execution time, CF subtrees in the initial packing are
too small. In this case, LAWS evaluates larger and larger
CF subtrees instead until the optimal packing is found.

Algorithm 1 gives the auto-tuning algorithm for searching
the optimal way to pack the tasks allocated to a socket into
CF subtrees. To generate larger or smaller CF subtrees, we
select the parent tasks or child tasks of the current CF root
tasks as the new CF root tasks.

Since the initial packing is already near-optimal, LAWS
can find the optimal packing in a few iterations. Theoreti-
cally, it has a small possibility that some CF subtrees are too
large while some other CF subtrees are too small. However,
since there are a great many CF subtrees in an execution
DAG, it is too complex to tune the size of every CF sub-
trees independently in a small number of iterations at run-



Algorithm 1: Algorithm for searching the optimal way
to pack the execution DAG into CF subtrees
Input: o, ..., am (CF root tasks in the initial packing)
Input: 7' (Execution time under the initial packing)
Output: Optimal CF root tasks
1int T, =0,7T. =T,
2 int EvalLarger = 1 ;

3 while CF root tasks have child tasks do

// New & current makespan
// Eval. larger subtrees?

4 Set child tasks of the current CF root tasks as the
new CF root tasks ;
5 Execute an iteration under the new packing ;
6 Record the execution time T, ;
7 if T, < T. then // Point 1 in Fig. 5
8 T. =T, ;
9 Save new CF root tasks ;
10 EvalLarger = 0 ;
11 else break ;
12 if EvalLarger == 1 then // Point 3 in Fig. 5
13 Restore CF root tasks to {a1, ..., am} ;
14 T.=1T;
15 while CF root tasks have parent tasks do
16 Set parent tasks of the current CF root tasks as
the new CF root tasks ;
17 Execute an iteration under the new packing ;
18 Record the execution time T, ;
19 if T, > T. then break ;
20 else T. =T, ; Save new CF root tasks ;

time. To simplify the problem, we increase or decrease the
size of all the CF subtrees at the same time in Algorithm 1
of this paper. Actually, according to the experiment in Sec-
tion 5.2, our current auto-tuning strategy in Algorithm 1
works efficiently.

The approach of packing DAG into CF subtrees in LAWS
partially origins from CATS [9], which also packs the exe-
cution DAGs of parallel programs into subtrees for optimiz-
ing shared cache usage. However, once an execution DAG
is packed in CATS, the packing cannot be adjusted even
if the packing is not optimal. Experiment in Section 5.2
shows that the performance of applications can be further
improved with the auto-tuning algorithm described in Al-
gorithm 1 for searching the optimal packing. Worse, CATS
did not consider the NUMA memory system at all and suf-
fered from a large amount of remote memory accesses. We
will further compare the performance of CATS and LAWS
in detail in Section 5.

3.4 Triple-level work-stealing scheduler

Fig. 6 gives the architecture of LAWS on an M-socket
multi-core architecture, and illustrates the triple-level work-
stealing policies in LAWS. In Fig. 6, the main memory is
divided into M memory nodes and node N; is the local mem-
ory node of socket p;. In each socket, core “0” is selected as
the head core of the socket.

For each socket, LAWS creates a CF' task pool to store CF
root tasks allocated to the socket and the tasks above the
CF root tasks in the execution DAG. For each core, LAWS
creates a socket-local task pool to store socket-local tasks.

Suppose a core c in socket p is free, in different phases, it
obtains new tasks in different ways as follows.

In the first iteration of an iterative program (and the inde-

Ni | Mainmemory | Ny

Shared cache

Shared cache — £ First iteration
— Other iterations
B CF root task

ZZ  Socket-local task

Figure 6: Architecture of LAWS on an M-socket
multi-core architecture.

pendent initialization phase if the program has the phase),
there is no socket-local task and all the tasks are pushed into
CF task pools since the tasks have not been packed into CF
subtrees. In the period, ¢ can only obtain a new task from
CF task pool of p. Core c is not allowed to steal a task
from other sockets because the data set of a task will be
stored into the wrong memory node if it is stolen in the first
iteration due to the first touch strategy.

Starting from the second iteration, the tasks in each iter-
ation have been packed into CF subtrees. Adopting triple
level work-stealing, free core ¢ can steal a new task from
three levels: socket-local task pool of other cores in its socket
p, CF task pool of p, and CF task pools of other sockets.

More precisely, when c is free, it first tries to obtain a task
from its own socket-local task pool. If its own task pool is
empty, c tries to steal a task from the socket-local task pools
of other cores in p. If the task pools of all the cores in p are
empty and c is the head core of p, ¢ tries to obtain a new
CF root task from p’s CF task pool.

LAWS allows a socket to help other sockets execute their
CF subtrees. For instance, after all the tasks in the CF task
pool of p are completed, the head core of p tries to steal a
task from CF task pools of other sockets. Although p needs
longer time to process the CF subtrees that are allocated to
other sockets, the workload is balanced and the performance
of memory-bound programs can be improved.

In LAWS, cores in the same socket are not allowed to
execute tasks in multiple CF subtrees concurrently. This
policy can avoid the situation that tasks in different CF
subtrees pollute the shared caches with different data sets.
Also, a socket is only allowed to steal entire CF subtrees
from other sockets for optimizing shared cache usage.

3.5 Theoretical Validation

A memory-bound D&C program has three features. First,
only leaf tasks physically access the data while other tasks
divide the data set recursively into smaller pieces. Second,
each leaf task only processes a small part of the whole data
set of the program. Third, the execution time of a leaf task
is decided by its data access time. Based on the three fea-
tures, we prove that LAWS can improve the performance of
memory-bound D&C programs theoretically.

Consider a memory-bound program that runs on an M-
socket, architecture. Suppose a leaf task « in its execution
DAG is responsible for processing data of S bytes and « still
accesses B bytes of boundary data besides its own part of
data. Let Vi and V. represent the speeds (bytes/cycle) of
a core to access data from local memory node and remote
memory nodes respectively. Needless to say, Vi > V.

If we adopt a traditional work-stealing scheduler to sched-
ule the program, the probability that « can access all the

data from local memory node is ﬁ Therefore, the cycles



expected for a to access all the needed data in traditional
work-stealing (denoted by Tr) can be calculated in Eq. 3.

S+B_ 1 S+B_M-1
TR— Vl XM VT X Wi (3)

If we adopt LAWS to schedule the program, benefit from
the task allocator, o can access its own part of data from
local memory node. As a consequence, the cycles needed by
a to access all the needed data in LAWS (denoted by T7)
can be calculated in Eq. 4, because « also has a high chance
to access its boundary data from local memory node.

B

S
T, < — 4+ — 4
L_‘/l+Vr (4)

Deduced from Eq. 3 and Eq. 4, we can get Eq. 5.

1 1
T — T > — M—-1)S—-B 5
T2 (g - ) XM -DS-B ()
In Eq. 5, because V., < Vi, we knowﬁfﬁ>0.

Therefore, Tr — T, > 0 if (M —1)S — B > 0 that is always
true in almost all the D&C programs empirically since a
task’s own data set (.5) is always far larger than its boundary
data (B). In summary, we prove that o needs shorter time
to access all the needed data in LAWS.

Because leaf tasks need shorter time to access their data in
LAWS than in traditional work-stealing schedulers, LAWS
can always improve the performance of memory-bound D&C
programs even when the optimization on reducing shared
cache misses in LAWS is not taken into account.

4. IMPLEMENTATION

We implement LAWS by modifying MIT Cilk, which is
one of the earliest parallel programming environments that
implement work-stealing [13].

Existing work-stealing schedulers adopt either parent-first
policy or child-first policy when generating new tasks. In
parent-first policy (called help-first policy in [17]), a core
continually executes the parent task after spawning a new
task. In child-first policy (called work-first policy in [5]),
a core continually executes the spawned new task once the
child is spawned. Parent-first policy works better when the
steals are frequent, while child-first policy works better when
the steals are infrequent [17].

During the first iteration, LAWS adopts the parent-first
policy to generate new tasks, because it is difficult to collect
the numbers of last level private cache misses caused by each
task with the child-first policy. If a core is executing a task
«, with the child-first policy, it is very likely the core will
also execute some of a’s child tasks before «a is completed.
In this case, the number of last level cache misses caused by
« itself, which is used to calculate SOSCs of tasks, may not
be collected correctly as it could include the number of last
level private cache misses of a’s child tasks.

Starting from the second iteration, LAWS generates tasks
above CF root tasks with the parent-first policy since the
steals are frequent in the beginning of each iteration. LAWS
generates socket-local tasks with the child-first policy since
the steals are infrequent in each CF subtree.

We have modified the compiler of MIT Cilk to support
both the parent-first and child-first task-generating policy
while the original Cilk only support the child-first policy. If
a task « is spawned in the first iteration, the task is spawned

with the parent-first policy and is pushed to the appropriate
CF task pool based on the method in Section 3.2. If « is
spawned in the later iterations and it is a socket-local task,
LAWS spawns « with the child-first policy and pushes « into
the socket-local task pool of the current core. Otherwise, if
« is a CF root task or a task above CF root tasks, and it
is allocated to socket p, it is spawned with the parent-first
policy and pushed into p’s CF task pool.

We use the “libpfm” library in Linux kernel to program
Hardware Performance Units for collecting last level private
cache misses of each task. We have also modified the work-
stealing scheduler of MIT Cilk to implement the triple-level
work-stealing algorithm in Section 3.4.

S. EVALUATION

We use a server that has four AMD Quad-core Opteron
8380 processors to evaluate the performance of LAWS. Each
socket has a 512K private L2 cache for each core and a 6M
L3 cache shared by all four cores. The server has 16GB
RAM and runs Linux 3.2.0-14. Therefore, each socket has a
4GB memory node.

We compare the performance of LAWS with the perfor-
mance of Cilk [5] and CATS [9]. Cilk uses the pure child-
first policy to spawn and schedule tasks. Similar to LAWS,
CATS also packs the execution DAG of a parallel program
into subtrees to reduce shared cache misses in MSMC ar-
chitectures. Once an execution DAG is packed in CATS,
the packing cannot be adjusted at runtime even the pack-
ing is not optimal. In addition, CATS did not consider the
underlying NUMA memory system.

For fairness in comparison, we also implement CATS by
modifying Cilk and we have improved CATS so that it also
allocates the data evenly to all the memory nodes in the first
iteration as LAWS does. The Cilk programs run with CATS
and LAWS without any modification.

Table 1: Benchmarks used in the experiments

Name Description

Heat/Heat-ir

2D heat distribution (regular/irreg.)

SOR/SOR-ir  Successive Over-Relaxation (regular/irreg.)
GE/GE-ir Gaussian elimination alg. (regular/irreg.)
9p/9p-ir 2D 9-point stencil comp. (regular/irreg.)
6p/6p-ir 3D 6-point stencil comp. (regular/irreg.)
25p/25p-ir 3D 25-point stencil comp. (regular/irreg.)

In order to evaluate the performance of LAWS in different
scenarios, we use benchmarks listed in Table 1 that have
both regular execution DAG and irregular execution DAG
in the experiment. Most of the benchmarks are examples
in the MIT Cilk package. We port the other benchmarks
in the same way the examples of MIT Cilk are developed.
Heat-ir, GE-ir, SOR-ir, 9p-ir, 6p-ir and 25p-ir implement
the same algorithm as their counterparts respectively, except
their execution DAGs are irregular. We create the programs
with irregular execution DAGs in the same way as suggested
in [9]. If all the nodes (except the leaf tasks) in the execution
DAG have the same branching degrees, the execution DAG
is regular. All benchmarks are compiled with “-O2”.

5.1 Performance of LAWS

Fig. 7 shows the performance of all the benchmarks in
Cilk, CATS and LAWS.
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Figure 7: The performance of all the benchmarks in
Cilk, CATS and LAWS.

In this experiment, for Heat, Heat-ir, SOR and SOR-ir,
the input data used is a 8096 x 1024 matrix. For GE and
GE-ir, the input data used is a 2048 x 2048 matrix due
to algorithm constraint. For 6p, 6p-ir, 25p and 25p-ir, the
input data is a 8096 x 64 x 64 3D matrix.

As we can see from Fig. 7, LAWS can significantly improve
the performance of benchmarks compared with Cilk while
the performance improvement ranges from 23.5% to 54.2%.
CATS can also improve the performance of benchmarks up
to 19.6% compared with Cilk.

In MSMC architectures, the performance of a memory-
bound application is decided by the straggler socket that
seldom access data from its local memory node because the
tasks in the straggler socket need the longest time to access
their data. Note that, during the execution of a memory-
bound application, any socket can be the straggler socket.

To explain why LAWS outperforms both Cilk and CATS
for memory-bound applications, we collect the shared cache
misses (Event 4E1H) and the local memory accesses (Event
1EOH) of the straggler socket. The information about the
events of hardware performance units can be found in [2].
For each benchmark, Table 2 lists its shared cache misses
and the local memory accesses of the straggler socket in
Cilk, CATS and LAWS.

Observed from Table 2, we can find that the shared cache
(L3) misses are reduced and the local memory accesses of the
straggler socket are prominently increased in LAWS com-
pared with Cilk and CATS. Since LAWS schedules tasks to
the sockets where the local memory nodes store their data,
the tasks can access their data from local memory node and
thus the local memory accesses have been significantly in-
creased. Furthermore, since LAWS packs tasks allocated
to each socket into CF subtrees to preserve shared data in
shared cache, the shared cache misses are also reduced.

Only for GE and GE-ir, the local memory accesses of the
straggler socket are not increased in LAWS. This is because
their input data is small enough to be put into the shared
cache directly. In this situation, most tasks can access the
data from the shared cache directly and do not need to access
the main memory any more. Because the L3 cache misses are
prominently reduced, LAWS can still significantly improve
the performance of GE and GE-ir.

The performance improvement of the benchmarks in CATS
is due to the reduced shared cache misses. However, since
CATS cannot divide an execution DAG optimally like LAWS,
it still has more shared cache misses than LAWS as shown
in Table 2.

Surprisingly, CATS can also slightly increase the local
memory accesses of the straggler socket. As mentioned be-
fore, we have improved CATS so that the adjacent data is
stored in the same memory node. Although tasks have the
same possibility (ﬁ on an M-socket architecture) to find its
data in the local memory node in Cilk and CATS, if a task
can find its own data in the local memory node in CATS,
it has higher possibility to also find its boundary data in
the local memory node. The local memory accesses of the
straggler socket in CATS are increased in consequence.

Careful readers may find that CATS performs much worse
here than in the original paper [9]. While CATS can only
improve the performance of benchmarks up to 19.6% here,
it can improve their performance up to 74.4% in [9]. The
reduction of performance improvement of CATS comes from
the much larger input data set used in this paper. This result
matches with the findings in [9]. That is, with the increasing
of the size of the input data set, the percentage of shared
data among tasks decreases and the effectiveness of CATS
degrades in consequence.

5.2 Effectiveness of the adaptive DAG packer

To evaluate the effectiveness of the adaptive DAG packer
in LAWS, we compare the performance of LAWS with LAWS-
NC, a scheduler that only schedules each task to the socket
where the memory node stores its part of data but does not
further pack the tasks into CF subtrees.

From Fig. 7 we find that LAWS-NC performs better than
both Cilk and CATS. This is because most tasks in LAWS-
NC can access their data from local memory nodes. How-
ever, since tasks are not packed into CF subtrees for opti-
mizing shared cache in LAWS-NC, LAWS-NC incurs more
shared cache misses and performs worse than LAWS.
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Figure 8: Execution time of each iteration in 25p,
6p-ir and Heat-ir.

To evaluate the auto-tuning approach (Algorithm 1) pro-
posed to optimally pack tasks into CF subtrees, Fig. 8 gives
the execution time of 200 iterations of Heat-ir, 25p and 6p-ir
in LAWS. From the figure we find that the execution time
of an iteration in all the benchmarks is significantly reduced
after the optimal packing is found in several iterations.

In summary, the adaptive DAG packer in LAWS is effec-
tive and the auto-tuning algorithm for searching the optimal
packing of tasks in Algorithm 1 works also fine.

5.3 Scalability of LAWS

To evaluate scalability of LAWS, we compare the perfor-
mance of benchmarks with different input data sizes in Cilk,
CATS and LAWS.

During the execution of all the benchmarks, every task
divides its data set into several parts by rows to generate



Table 2: Shared cache misses and local memory accesses of the straggler socket (*1E6)

Heat | Heat-ir | SOR | SOR-ir GE | GE-ir 6p | 6p-ir 9p 9p-ir | 25p | 25p-ir

L3 Cilk 572 574 | 1151 1013 | 220.3 | 230.1 | 2518 | 2543 | 573.2 577 | 2484 2477
Cache CATS 531 541.8 | 1070 886 | 147.4 | 113.3 | 2420 | 2361 | 539.1 469.2 | 2383 2372
Misses LAWS 462 504.5 | 1005 876 29.1 28.7 | 2375 | 2345 | 504.5 | 446.03 | 2340 2354
Local Cilk 16.1 17.2 | 32.8 29 6.1 5.64 81.5 74.4 17.2 15.3 | 83.2 81.5
Memory | CATS | 21.3 18.6 | 41.4 30.4 4.5 3.58 | 100.5 | 97.3 | 21.9 19.3 | 90.6 85.8
Accesses | LAWS | 25.8 27.5 | H7.1 39.3 0.65 0.47 | 151.9 | 134.7 27.2 24.8 125 | 117.7

child tasks unless the task meets the cutoff point (i.e., the
rows of a leaf task, and 8 rows is used in the experiment).
Since the data set size of the leaf tasks affects the measure-
ment of scalability, we ensure that the data set size of the
leaf tasks is constant by using a constant cutoff point for the
leaf tasks. If the input data is an z X y 2D matrix, we set
y = 1024 for all the input 2D matrix. If the input data is
an x X y X z 3D matrix, we set y = 64 and z = 64 for all the
input 3D matrix. We only adjust the = of the input matrices
in the experiment. In this way, we can measure the scala-
bility of LAWS without the impact of the granularity of the
leaf tasks. In all the following figures, the x-axis represents
the x of the input matrixes.

We use Heat-ir and 6p as benchmarks to evaluate the scal-
ability of CATS in scenario that applications with a regular
execution DAG and an irregular execution DAG. All the
other benchmarks have similar results.
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Figure 9: Performance of Heat-ir and 6p with dif-
ferent input data sizes.

Fig. 9 shows the performance of Heat-ir and 6p with dif-
ferent input data sizes in Cilk, CATS and LAWS. We can
find that Heat-ir and 6p achieve the best performance in
LAWS for all input data sizes. When the input data size is
small (i.e., x = 1k), LAWS reduces 30.4% execution time of
Heat-1r and reduces 36.6% execution time of 6p compared
with Cilk. When the input data size is large (i.e., z = 16k),
LAWS reduces 43.6% execution time of Heat-ir and reduces
45.8% execution time of 6p compared with Cilk.

In Fig. 9, the execution time of benchmarks in Cilk, CATS
and LAWS increases linearly with the increasing of their
input data sizes. Since their execution time increases much
slower in LAWS than in Cilk and CATS, for all the input
data sizes, LAWS can always reduce the execution time of
memory-bound applications. In summary, LAWS is scalable
in scheduling both regular execution DAGs and irregular
execution DAGs.

Corresponding to Fig. 9, Fig. 10 and Fig. 11 show the L3
cache misses and the local memory accesses of the straggler
socket in executing Heat-ir and 6p with different input data
sizes. Observed from the figure, we can find that the shared
cache misses are reduced, while the local memory accesses of

10

@
3

%
Local memory accesses (*1E6)
2N ow s oo

o 3 8 8 &8 g

—=—Cilk —O— CATS —A— LAWS]

—m— Cilk —O— CATS —A— LAWS]

L3 cache misses (*1E6)

Srr eSS e

Figure 10: L3 cache misses and local memory ac-
cesses of the straggler socket in Heat-ir.

the straggler socket are increased in LAWS. When the input
data size is small (i.e., z = 1k), LAWS can reduce 82%
L3 cache misses and increase 132.1% local memory accesses
compared with Cilk. When the input data size is large (i.e.,
x = 16k), LAWS can reduce 17.3% L3 cache misses and
increase 70.6% local memory accesses compared with Cilk.
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Figure 11: L3 cache misses and local memory ac-
cesses of the straggler socket in 6p.

Fig. 10 and Fig. 11 further explain why LAWS performs
much better than CATS. Since LAWS can optimally pack
tasks into CF subtrees through auto-tuning, it can reduce
more L3 cache misses of memory-bound benchmarks than
CATS. In addition, since LAWS can schedule a task to the
socket where the local memory node stores its data, it signif-
icantly increases local memory accesses. The two key advan-
tages of LAWS result in the better performance of LAWS.

As we all know, if the input data of a memory-bound pro-
gram is small, the shared cache is big enough to store the in-
put data. In this case, if the shared cache misses are greatly
reduced, the performance of memory-bound programs can
be improved. If the input data is large, the performance
bottleneck of the program is the time of reading data from
main memory. Therefore, CATS performs efficient when the
input data size is small but performs poor when the input
data size is large. On the contrary, because LAWS can in-
crease more local memory accesses when input data size gets
larger, it performs even better when the input data is large
as shown in Fig. 10 and Fig. 11. This feature of LAWS is



promising as the data size of a problem is becoming larger
and larger.

5.4 Overhead of LAWS

Because LAWS aims to reduce remote memory accesses
and shared cache misses, LAWS is neutral for CPU-bound
programs. Based on the runtime information, if LAWS finds
that a program is CPU-bound, LAWS schedules tasks of the
program in traditional work-stealing. Another option is to
use techniques in WAT'S [7, 8] scheduler to improve the per-
formance of CPU-bound programs by balancing workloads
among cores.
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Figure 12: Performance of CPU-bound benchmarks
in Cilk, CATS and LAWS.

Fig. 12 shows the performance of several CPU-bound ap-
plications in Cilk, CATS and LAWS. The applications in this
experiment are examples in Cilk package. By comparing the
performance of CPU-bound applications in Cilk, CATS and
LAWS, we can find the extra overhead of LAWS.

Observed from Fig. 12, we see the extra overhead of LAWS
is negligible compared with Cilk and CATS. The extra over-
head of LAWS mainly comes from the overhead of distribut-
ing data to all the memory node evenly and the profil-
ing overhead in the first iteration of a parallel program,
when LAWS can determine if the program is CPU-bound
or memory-bound based on the profiling information.

5.5 Discussion

LAWS assumes that the execution DAGs of different iter-
ations in an iterative program are the same. The assump-
tion is true for most programs. Even if a program does
not satisfy this assumption, LAWS can still ensure that ev-
ery task can access its data from local memory node since
the load-balanced task allocator allocates tasks to sockets in
each iteration independently according to their data set in
the current iteration. However, in this situation, the opti-
mization on shared cache utilization is not applicable since
the optimal packing for the past iterations may not be opti-
mal for future iterations due to the change of the execution
DAG. In summary, even the above assumption is not satis-
fied, LAWS can improve the performance of memory-bound
programs due to the increased local memory accesses.

6. RELATED WORK

Work-stealing is increasing popular due to its automatic
load balancing feature and high performance. There are
many works have been done to improve its performance [18,
9] and energy efficiency [27] on various hardwares. How-
ever, most existing work-stealing schedulers are designed
for single-socket architectures and degrade the performance
of memory-bound programs in MSMC architectures with
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NUMA memory system. There are two main approaches
for improving the performance of memory-bound programs
in MSMC architectures: increasing local memory accesses
and reducing shared cache misses.

Many studies have been done to improve the performance
of a particular application [26, 6] or general applications [28,
23] by increasing local memory accesses in NUMA memory
system (i.e., the first approach).

In [26], nuCATS and nuCORALS improved the perfor-
mance of iterative stencil computations for NUMA memory
system by optimizing temporal blocking and tiling. While
nuCATS and nuCORALS focused on the tiling scheme for
stencil programs, through online scheduling, LAWS can im-
prove the performance of iterative stencil programs without
changing the tiling scheme. In [28], a dynamic work-stealing
strategy is proposed for on-chip NUMA multi-core proces-
sors based on the topology of underlying hardware. Based on
Charm-++ [19], NUMALB [23] is proposed to improved the
performance of parallel programs. NUMALB balances the
workload while avoiding unnecessary migrations and reduc-
ing across-core communication. While the above schedulers
only increase local memory accesses, LAWS can further re-
duce the shared cache misses and thus performs better for
memory-bound programs.

Using the second approach, there are also several work-
stealing schedulers [1, 18, 24, 15] are proposed to tackle
the cache-unfriendly problem in various parallel architec-
tures (e.g., multi-CPU and multi-GPU architectures [15]).
In [12], the authors analyzed the cache misses of algorithms
using traditional task-stealing, focusing on the effects of false
sharing. In SLAW [18], workers are grouped into places and
a worker is only allowed to steal tasks from other workers
in the same place. The scheduling policy is similar to the
triple-level work-stealing policy in LAWS. However, SLAW
did not consider the NUMA memory systems and did not
pack tasks for optimizing shared cache usage as LAWS does.

Similar to LAWS, HWS [24] and CAB [11] used a rigid
boundary level to divide tasks into global tasks and local
tasks (similar to socket-local tasks in LAWS). By schedul-
ing local tasks within the same socket, the shared cache
misses can be reduced. However, users have to give the level
manually in HWS or provide a number of command line ar-
guments for the scheduler to calculate the boundary level
in CAB. To relieve the above burden, CATS [9] was pro-
posed to divide an execution DAG based on the information
collected online, without extra user-provided information.
While the adaptive DAG packer in LAWS can find the opti-
mal packing of tasks into CF subtrees through auto-tuning,
all the above schedulers cannot optimally partition an exe-
cution DAG. In addition, they did not consider the NUMA
memory system at all. Our experiment results also show
that LAWS significantly outperforms CATS.

In [29], an offline graph-based locality analysis framework
based on METIS [20] is proposed to analyze the inherent lo-
cality patterns of workloads. Leveraging the analysis results,
tasks are grouped and mapped according to cache hierarchy
through recursive scheduling. Because the framework relied
on offline analysis, a program has to be executed at least one
time before it can achieve good performance in the frame-
work. On the contrary, LAWS can improve the performance
of programs online without any prerequisite offline analysis,
because it can optimally pack tasks into CF subtrees based
on online collected information and auto-tuning.



7. CONCLUSIONS

Traditional work-stealing schedulers pollute shared cache
and increase remote memory accesses in MSMC architec-
tures with NUMA-based memory system. To solve the two
problems, we have proposed the LAWS scheduler, which
consists of a load-balanced task allocator, an adaptive DAG
packer and a triple-level work-stealing scheduler. The task
allocator evenly distributes the data set of a program to
all the memory nodes and allocates a task to the socket
where the local memory node stores its data. Based on
auto-tuning, for each socket, the adaptive DAG packer can
optimally pack the allocated tasks into CF subtrees. The
triple-level work-stealing scheduler schedules tasks in the
same CF subtree among cores in the same socket and makes
sure that each socket executes its CF subtrees sequentially.
In this way, the shared cache misses are greatly reduced and
the local memory accesses are prominently increased. Ex-
perimental results demonstrate that LAWS can achieve up
to 54.2% performance gain for memory-bound applications
compared with traditional work-stealing schedulers.
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