
SAMR: A Self-adaptive MapReduce Scheduling Algorithm
In Heterogeneous Environment

Quan Chen Daqiang Zhang Minyi Guo Qianni Deng
Department of Computer Science

Shanghai Jiao Tong University, Shanghai, China
{chen-quan, zhangdq}@sjtu.edu.cn ,
{guo-my, deng-qn}@cs.sjtu.edu.cn

Song Guo
School of Computer Science and Engineering,

The University of Aizu, Japan
sguo@u-aizu.ac.jp

Abstract—Hadoop is seriously limited by its MapReduce
scheduler which does not scale well in heterogeneous environ-
ment. Heterogenous environment is characterized by various
devices which vary greatly with respect to the capacities of
computation and communication, architectures, memorizes and
power. As an important extension of Hadoop, LATE MapRe-
duce scheduling algorithm takes heterogeneous environment
into consideration. However, it falls short of solving the crucial
problem – poor performance due to the static manner in
which it computes progress of tasks. Consequently, neither
Hadoop nor LATE schedulers are desirable in heterogeneous
environment. To this end, we propose SAMR: a Self-Adaptive
MapReduce scheduling algorithm, which calculates progress
of tasks dynamically and adapts to the continuously varying
environment automatically.

When a job is committed, SAMR splits the job into lots of
fine-grained map and reduce tasks, then assigns them to a series
of nodes. Meanwhile, it reads historical information which
stored on every node and updated after every execution. Then,
SAMR adjusts time weight of each stage of map and reduce
tasks according to the historical information respectively. Thus,
it gets the progress of each task accurately and finds which
tasks need backup tasks. What’s more, it identifies slow nodes
and classifies them into the sets of slow nodes dynamically.
According to the information of these slow nodes, SAMR will
not launch backup tasks on them, ensuring the backup tasks
will not be slow tasks any more. It gets the final results
of the fine-grained tasks when either slow tasks or backup
tasks finish first. The proposed algorithm is evaluated by
extensive experiments over various heterogeneous environment.
Experimental results show that SAMR significantly decreases
the time of execution up to 25% compared with Hadoop’s
scheduler and up to 14% compared with LATE scheduler.

Keywords-MapReduce, Scheduling algorithm, Heterogeneous
environment, Self-adaptive

I. INTRODUCTION

MapReduce is a programming model and an associated
implementation for processing and generating large data
sets [1]. It enables users to specify a map function that
processes a key/value pair to generate a set of intermediate
key/value pairs, and a reduce function that merges all the
intermediate values associated with the same intermediate
key [1]. MapReduce is used in Cloud Computing in the

beginning [2], [3], [4], [5], [6]. It is initiated by Google, to-
gether with GFS [7] and BigTable [8] comprising backbone
of Google’s Cloud Computing platform. MapReduce has
achieved increasing success in various applications ranging
from horizontal and vertical search engines to GPU to
multiprocessors, e.g, [9], [10], [11], [12], [13], [14], [15],
[16], [17].

The open-source project Hadoop is the most well-
celebrated MapReduce framework, which processes vast
amounts of data (multi-terabyte data-sets) in-parallel on
large clusters (thousands of nodes) of commodity hardware
in a reliable and fault-tolerant manner [18], [19]. Its MapRe-
duce scheduler just considers scheduling in homogeneous
environment, and fails to find tasks which prolonging exe-
cution time. Therefore it is inefficient, especialy in hetero-
geneous environment.

As an important extension of Hadoop, LATE scheduling
algorithm tries to improve Hadoop by attempting to find real
slow tasks by computing remaining time of all the tasks. It
selects a set of tasks which have longer remaining time than
those of all other nodes, and considers the set of tasks are
slow tasks. However it does not compute the remaining time
for tasks correctly, and can not find real slow tasks in the
end.

To this end, we share the similar idea to LATE scheduling
algorithm in this paper and propose SAMR: a Self-Adaptive
MapReduce scheduling algorithm. SAMR significantly im-
proves MapReduce in terms of saving time of execution as
well as system resources. SAMR is inspired by facts that
slow tasks prolong the execution time of the whole job and
nodes requires various time in accomplishing the same tasks
due to their differences, such as capacities of computation
and communication, architectures, memorizes and power.
Although Hadoop and LATE also launch backup tasks for
slow tasks, they cannot find the appropriate tasks which are
really prolong the execute time of the whole job because the
two scheduler always use a static way to find slow tasks.
On the contrary, SAMR incorporates historical information
recorded on each node to tune parameters and find slow
tasks dynamically. SAMR can find slow tasks which need

978-0-7695-4108-2/10 $26.00 © 2010 IEEE

DOI 10.1109/CIT.2010.458

2736

2010 10th IEEE International Conference on Computer and Information Technology (CIT 2010)

978-0-7695-4108-2/10 $26.00 © 2010 IEEE

DOI 10.1109/CIT.2010.458

2736

2010 10th IEEE International Conference on Computer and Information Technology (CIT 2010)

978-0-7695-4108-2/10 $26.00 © 2010 IEEE

DOI 10.1109/CIT.2010.458

2736

backup task really. In order to save system resources, SAMR
classifies slow nodes into map slow nodes and reduce slow
nodes further. SAMR defines fast nodes and slow nodes to
be nodes which can finish a task in a shorter time and longer
time than most other nodes. Map/reduce slow nodes means
nodes which execute map/reduce tasks using a longer time
than most other nodes. In this way, SAMR launches backup
map tasks on nodes which are fast nodes or reduce slow
nodes.

The most important contributions of this paper are three-
fold:

• SAMR uses historical information recorded on every
node to tune weight of each stage dynamically.

• SAMR takes the two stages characteristic of map tasks
into consideration for the first time.

• SAMR classifies slow nodes into map slow nodes and
reduce slow nodes further.

The rest of this paper is organized as follows. Section
II introduces basic conceptions and analyzes the drawbacks
of existing MapReduce scheduling algorithms. Section III
introduces the SAMR and reports the implementation details.
Section IV describes the experimental results. Section V
draws the conclusion with pointing out our future work.

II. RELATED WORK

In order to understand the programming model that is
the basis of SAMR, this section provides a brief view of
MapReduce. It first introduces the preliminary knowledge
about MapReduce and then overviews the related work.

A. Basic conceptions in MapReduce

MapReduce is a programming model enabling a great
many of nodes to handle huge data by cooperation. In
traditional MapReduce scheduling algorithm, a MapReduce
application needs to be run on the MapReduce system is
called a “job”. A job can be divided into a series of
“Map tasks”(MT) and “Reduce tasks”(RT). The tasks which
execute map function are called “Map tasks”, and which
execute reduce function are called “Reduce tasks”.

In a cluster which runs MapReduce, nodes were classi-
fied into “NameNode” and “DataNode” from data storage
aspect. There is only one NameNode, which records all
the information of where data is stored. there are lots of
DataNodes which store data. There are only one “Job-
Tracker”(JT) and a series of “TaskTracker”(TT). JobTracker
is a process which manages jobs. TaskTracker is a process
which manages tasks on the corresponding nodes. Table
I lists all the conceptions and notions used in this paper.

MapReduce scheduling system involves six steps when
executing a MapReduce job, illustrated in Figure 1 [1].

First, user program forks the MapReduce job. Second,
master distributes MT and RT to different workers. Third,
MT reads in the data splits, and runs map function on the
data which is read in. Fourth, these MT write intermediate

Table I
CONCEPTIONS AND NOTIONS IN THIS PAPER

Name Description

NameNode Records where data is stored
DataNode Stores data
JobTracker(JT) Manages MapReduce jobs
TaskTracker(TT) Manages tasks
Job MapReduce application
Map tasks(MT) Tasks which run map function
Reduce tasks(RT) Tasks which run reduce function
ProgressScore(PS) Process score of a task
ProgressRate(PR) Progress rate of a task
TimeToEnd(TTE) Remaining time of a task
TrackerRate(TrR) Progress rate of a TaskTracker
HISTORY PRO(HP) Weight of historical information
SLOW TASK CAP(STaC) Parameter used to distinguish slow tasks
SLOW TRACKER CAP(STrC) Parameter used to distinguish slow TTs
SLOW TRACKER PRO(STrP) Maximum proportion of slow TTs
BACKUP PRO(BP) Maximum proportion of backup tasks
M1 Weight of first stage in MTs
M2 Weight of second stage in MTs
R1 Weight of coping data in RTs
R2 Weight of sorting in reduce tasks
R3 Weight of merging in reduce tasks

Figure 1. Overview of a MapReduce job

key/value pairs into local disks. Fifth, RT read the inter-
mediate results remotely, and run reduce function on the
intermediate results which is read in. At last, these RT write
the final results into the output files.

B. MapReduce scheduling algorithm in Hadoop

The most famous implementation of MapReduce,
Hadoop, suffers from a problem that it cannot distinguish
tasks which need backup tasks on fast nodes correctly.

Hadoop monitors the progress of tasks using “Progress
Score(PS)” (range from 0 to 1). The average progress score
is PSavg . The Progress Score of the ith task is PS[i].
Suppose the number of tasks which are being executed is T,
the number of key/value pairs need to be processed in a task

273727372737

is N, the number of key/value pairs have been processed in
the task is M, and the task has finished K stages (only for
reduce task. There are three stages in a reduce task: copy
data phase, sort phase and reduce phase). Hadoop gets PS
according to the Eqs. 1 and 2 and launches backup tasks
according to the Eq. 3.

PS =

{
M/N For MT,
1/3 ∗ (K +M/N) For RT.

(1)

PSavg =

T∑
i=1

PS[i]/T (2)

For task Ti: PS[i] < PSavg − 20% (3)

If the Eq. 3 is fulfilled, Ti needs a backup task. The main
shortcomings of this method include:

(1) In Hadoop, the values of R1, R2, R3, M1, M2 are 0.33,
0.33. 0.34, 1 and 0 respectively. However R1, R2, R3, M1
and M2 are dynamic when tasks running on different nodes,
especially in heterogeneous environment.

(2) Hadoop always launches backup tasks for those tasks
of which PSs are less than PSavg − 20%. In this case,
Hadoop may launch backup tasks for wrong tasks. For
example, task Ti’s PS is 0.7 and needs 100 seconds to finish
its work, while another task Tj’s PS is 0.5, but only needs
30 seconds to finish its work. Suppose the average progress
score PSavg is 0.8, the method will launch a backup task
for Tj according to the Eq. 3. If we launch a backup task
for Ti instead of Tj, it will save more time. What’s more,
tasks that PS is larger than 0.8 will have no chance to have
a backup task, even though they are very slow and need a
very long time to finish. This is because PSavg will never
be larger than 1.

(3) Hadoop may launch backup tasks for fast tasks. For
example, there are 3 RT Ri, Rj, Rk, and their PSs are 0.33,
0.66 and 0.66. In this case, PSavg = (0.33+0.66+0.66)/3 =
0.55. According to the Eq. 3, we should launch a backup task
for Ri. However, the second stage, sort stage, only needs a
very short time in a real system. It is unnecessary to launch
a backup task for Ri.

C. LATE MapReduce scheduling algorithm

LATE MapReduce scheduling algorithm always launches
backup tasks for those tasks which have more remaining
time than other tasks. Suppose a task T has run Tr seconds.
Let PR denotes the progress rate of T, and TTE denotes how
long time remaining until T was finished. LATE MapReduce
scheduling algorithm computes PR and TTE according to the
Eqs. 4 and 5. PS in the Eq. 4 is computed according to the
Eq. 1.

PR = PS/Tr (4)

TTE = (1.0− PS)/PR (5)

Although LATE uses an efficient strategy to launch backup
tasks, it often launches backup tasks for inappropriate tasks.
This is because LATE cannot find TTE for all the running
tasks correctly.

One shortcoming of LATE, which is same to Hadoop, is
the values of R1, R2, R3, M1, M2 are 0.33, 0.33. 0.34, 1
and 0 respectively. This setting may lead to the wrong TTE.
Suppose R1, R2 and R3 are 0.6, 0.2 and 0.2 respectively in a
real system. When the first stage finishes in Tr seconds, the
reduce task still needs (1−0.6)∗(Tr/0.6) = 0.67Tr seconds
to finish the whole task. However, the TTE computed in
LATE scheduling algorithm is (1−0.33)∗(Tr/0.33) = 2∗Tr
seconds.

Another shortcoming of LATE MapReduce scheduling
algorithm is it does not distinguish map slow nodes and
reduce slow nodes. One node may executes MT quickly, but
executes RT slower than most of other nodes. LATE just
considers one node either fast node or slow node, does not
classify slow nodes further.

III. SAMR: SELF-ADAPTIVE MAPREDUCE SCHEDULING
ALGORITHM

SAMR is developed with a similar idea to LATE MapRe-
duce scheduling algorithm. However, SAMR gets more ac-
curate PSs of all the tasks by using historical information.
By using accurate PSs, SAMR finds real slow tasks and
decreases more execute time comapared with Hadoop and
LATE. Algorithm 1 illustrates the process of SAMR. Sub-
section III-A describes how to reading historical information
and tune parameters using it. Subsection III-B describes how
to find slow tasks. Subsection III-C describes how to find
slow TTs. Subsection III-D describes when SAMR launches
backup tasks. Subsection III-E describes the implementation
details of SAMR.

Algorithm 1 SAMR algorithm

1: procedure SAMR
2: input: Key/Value pairs
3: output: Statistical results

4: Reading historical information and tuning parameters using it
5: Finding slow tasks
6: Finding slow TaskTrackers
7: Launching backup tasks
8: Collecting results and updating historical information
9: end procedure

A. Reading historical information and tuning parameters
using historical information

TTs read historical information(R1, R2, R3, M1, M2) that
recorded on the disks from nodes where the TTs are running.
The historical information is stored on every node in xml
format. The values of R1, R2, R3, M1, M2 are 0.33, 0.33.
0.34, 1 and 0 by default. Algorithm 1 updates the values
after every execution(line 8 in Algorithm 1). In order to get

273827382738

Figure 2. The way to use and update historical information

(a) Map Task

(b) Reduce Task

Execute map function Reorder intermediate

results

Copy data Order Merge

R1 R2 R3

M1 M2

100%

100%

Figure 3. The two stages of MT and three stages of RT

the correct remaining time of tasks, SAMR computes PS by
tuning parameters which used to compute PS.

SAMR uses a parameter, HISTORY PRO(HP)(range from
0 to 1) to tune weight of historical information in setting
parameters. If HP is too large (close to 1), parameters
in the current tasks are depend on historical information
seriously. Thus specific situation of current job is overlooked
by SAMR. Meanwhile, if HP is too small (close to 0),
the parameters of current task are depend on the finished
tasks which in the same job seriously. SAMR uses historical
information following 4 steps, illustrated in Figure 2.

First, TTs read historical information from the nodes
where they are running on. The historical information in-
cludes historical values of M1, M2, R1, R2 and R3. Then,
TTs tune M1, M2, R1, R2 and R3 according to historical
information, HP, and information collected from the current
running system. Consequently, TTs collect values of M1, M2,
R1, R2 and R3 according to the real running information
after the tasks finished. Finally, TTs write these historical
information back to the xml stored on the nodes (line 8 in
algorithm 1).

In addition, every TT read historical information from
node which it is running on. There is not any additional
communication is needed when read and update historical
information, So SAMR is scalable.

Figure 3 illustrates the divisions and weights of stages in
MT and RT. In Hadoop and LATE, M1 of MT is 1.0, M2

of MT is 0, R1, R2 and R3 of RT are all 1/3.

B. Finding slow tasks

SLOW TASK CAP(STaC)(range from 0 to 1) is used to
classify tasks into fast and slow tasks. If the progress rate
of task Ti, PRi and the average progress rate of all the
running tasks, APR fulfill the Eq. 6, Ti is judged to be slow
task. Suppose the number of task running now is N, APR is
computed according to the Eq. 7.

PRi < (1.0− STaC) ∗APR (6)

APR =
N∑
j=1

PRj/N (7)

According to the Eq. 6, if STaC is too small (close to 0),
SAMR will classify some fast tasks into slow tasks. If STaC
is too large (close to 1), SAMR will classify slow tasks into
fast tasks.

C. Finding slow TaskTrackers

SLOW TRACKER CAP(STrC)(range from 0 to 1) is used
to classify TaskTrackers into fast TTs and slow TTs. One TT
only runs on one node, so slow nodes are the same as slow
TTs.

Suppose there are N TTs in the system. The rate of the
ith TaskTracker, TTi, for MT is TrRmi, for RT is TrRri,
the average rate of all the TTs for MT is ATrRm, for RT is
ATrRr. If there are M MT and R RT run on TTi, TrRmi,
TrRri, ATrRm and ATrRr can be computed according to
the Eqs. 8, 9, 10 and 11.

TrRmi =
M∑
i=1

PRi/M (8)

TrRri =
R∑
i=1

PRi/R (9)

ATrRm =
N∑
i=1

TrRmi/N (10)

ATrRr =
N∑
i=1

TrRri/N (11)

For TTi, if it fulfills the Eq. 12, it is a slow map TT. If it
fulfills the Eq. 13, it is a slow reduce TT.

TrRmi < (1− STrC) ∗ATrRm (12)

TrRri < (1− STrC) ∗ATrRr (13)

According to the Eqs. 11 and 12, if STrC is too small
(close to 0), SAMR will classify some fast TTs into slow
TTs. If STrC is too large (close to 1), SAMR will classify
some slow TTs into fast TTs.

SLOW TRACKER PRO(STrP)(range from 0 to 1) is used
to define the maximum proportion of slow TTs in all the

273927392739

TTs. Suppose the number of slow TTs is SlowTrackerNum,
the number of all the TTs is TrackerNum. The Eq. 15 must
be fulfilled in the system.

SlowTrackerNum < STrP ∗ TrackerNum (14)

If the Eqs. 12 and 14 are fulfilled at the same time, SAMR
views the TT as a map slow TT.

D. Launching backup tasks

If there are slow tasks, and Eq. 15 is fulfilled, a
backup task can be launched when some of TTs are free.
BACKUP PRO(BP)(range from 0 to 1) is used to define
the maximum proportion of backup tasks in all the tasks.
Suppose the number of backup tasks is BackupNum, the
number of all the running tasks is TaskNum. The Eq. 15
must be fulfilled in the system.

BackupNum < BP ∗ TaskNum (15)

E. Implementation of SAMR

This subsection introduces implementation details of
SAMR. SAMR supposes the weight of “Execute map func-
tion” is M1, and the weight of “Reorder intermediate results”
is M2, the weights of “copy data”, “sort”, and “merge” are
R1, R2 and R3 respectively, which are illustrated in Figure
3. Therefore, M1 + M2 = 1 and R1 + R2 + R3 = 1.
M1, M2, R1, R2 and R3 are computed according to method
illustrated in Figure 2.

Suppose the number of key/value pairs which have been
processed in a task is Nf , the number of overall key/value
pairs in the task is Na, the current stage of processing is
S (limited to be 0, 1, 2), the progress score in the stage is
SubPS.

The SubPS in the stage can be computed according to
the Eq. 16. PS of tasks is computed according to the Eqs.
17 and 18.

SubPS = Nf/Na (16)

For MT: PS =

{
M1 ∗ SubPS if S = 0,

M1 +M2 ∗ SubPS if S = 1.
(17)

RT: PS =

R1 ∗ SubPS if S = 0,

R1 +R2 ∗ SubPS if S = 1,

R1 +R2 +R3 ∗ SubPS if S = 2.

(18)

SAMR computes PS more accurate than Hadoop and
LATE, Because M1, M2, R1, R2 and R3 are tailored ac-
cording to historical information. However, in Hadoop and
LATE, M1, M2, R1, R2 and R3 are 1, 0, 0.33, 0.33, 0.34
respectively, which cannot adaptive to different environment.
After getting exact PS, SAMR computes the remain time
of all the running tasks, TTE, according to the Eq. 5. By
this way, SAMR finds real slow tasks and launches backup
tasks for these slow tasks on fast nodes of this kind of tasks
consequently.

Figure 4. Overview on SAMR, TTs tries to launch new tasks first. If stack
of new tasks is empty, they try to launch backup tasks for tasks in queue
of slow tasks

SAMR can launch a backup task on TaskTracker TTj for
task Ti only when Ti is a slow task which fulfills the Eq.
6, TTj is not a slow TT, according to the Eqs. 12 and 13,
and the number of backup tasks is less than the maximun
number of backup tasks, which was got according to the Eq.
15.

SAMR schedules tasks in the following 3 steps, illustrated
in Figure 4.

First, all the TTs obtain new tasks from stack of new
tasks according to data locality property. Then, the TTs
compute PR and TTE for all the tasks running on it.
Next, the algorithm finds which tasks are slow MT or
slow RT. Consequently, these slow tasks are inserted into
correspondent queue of slow tasks (queue of slow MT or
queue of slow RT). Meanwhile, if stack of new tasks is
empty, the TT tries to find slow task in the queue of slow
tasks, and launches backup task. Only when the TT is not a
map/reduce slow TT, it can launch backup tasks for MT/RT.

IV. EVALUATION

In order to verify the effectiveness of SAMR, we carry
a series of experiments. In particular, we try to answer 3
questions bellow:

• What’s the best parameters for SAMR?
• Is the historical information recorded correct in SAMR?
• What is the performance of SAMR in heterogeneous

environment?

A. Experimental environment

We establish experimental environment by using virtual
machines on five personal computers. All the virtual ma-
chines use Ubuntu operating system. The version of JDK
is 1.6.0.10, and the version of Hadoop is 0.19.1. The
SAMR is implemented based on Hadoop 0.19.1. Because
we cannot get the primary version of LATE MapReduce
scheduling algorithm, so we implement a new one, according

274027402740

280

285

290

295

300

305

10% 20% 30% 50% 80% 100%

E
x

e
cu

te
 t

im
e

 (
s)

Value of HP

Figure 5. Affection of “HP” on the execute time, “HP” does not affect
execute time too much

to the method mentioned in [20]. The detail experimental
environment are showed in table II and III.

Table II
DETAIL ENVIRONMENT OF EXPERIMENTS

No. of vm(VM/PC) No. of PC No. of nodes write rate(MB/S)

1 1 1 2.87
2 3 6 1.40
real pc 1 1 3.43

Table III
PROFILES OF EXPERIMENTS

No. of copies TT/node m/r slots on TTs benchmarks

2 1 2/2 “Sort”,“WordCount”

The benchmarks used in these experiments are examples
in Hadoop: “Sort” and “WordCount”, because LATE also
uses the two programs as benchmarks. The two benchmarks
show key characteristic of MapReduce clearly.

B. Best parameters in SAMR

Before evaluating the performance of SAMR, we should
select a best combination of parameters in SAMR. Defini-
tions of these parameters are shown in table I.

In order to select the best parameters in SAMR, we
changes one parameter while keeping all the other pa-
rameters constant. In the experiments, We run “Sort” and
“WordCount” benchmarks ten times each for every setting.
We only post the results of “Sort”. Results of “WordCount”
are similar to the results of “Sort”.

1) HP: HP means weights of historical information in
setting weights of each stage in MT and RT. As illustrated in
Figure 5, the time of execution does not change dramatically
while HP changing. The HP tunes historical information
close to the real world when SAMR run for first several
times. But, HP is important when different types of jobs
run on the same system. Because different jobs usually have

150

170

190

210

230

250

270

290

310

330

350

10% 20% 30% 50% 80% 100%

E
x

e
cu

te
 t

im
e

 (
s)

Values of STaC, STrC and STrP

STaC STrC STrP

Figure 6. Affection of “STaC”, “STrC”, and “STrP” on the execute time.
The time of execution first decreases then increases with the increase of
STaC. It is shortest when STrC is 0.2, and decreases then increases with
the increase of STrP.

different R1, R2, R3, M1, M2 when running on the same
system.

2) STaC: STaC is a parameter used to find slow tasks
according to the Eq. 6. In Figure 6, the time of execution
first decreases then increases with the increase of STaC. This
is because SAMR judges fewer tasks to be slow tasks with
the increase of STaC according to the Eq. 6. When STaC
is smaller than 0.3, SAMR judges several fast tasks to be
slow tasks. Backup tasks of these fast tasks consume a great
many of system resources. So the execute time is prolonged.
On the other hand, when STaC is larger than 0.3, some real
slow tasks are judged to be fast tasks. These slow tasks
will prolong the execute time. We set STaC to be 0.3 in the
following experiments.

3) STrC: STrC is a parameter used to find slow TTs
according to the Eqs. 12 and 13.

As shown in Figure 6, the time of execution is shortest
when STrC is 0.2. This is because SAMR judges fewer TTs
to be slow TTs with the increase of STrC according to the
Eqs. 12 and 13. When STrC is small than 0.2, SAMR judges
several fast TTs to be slow ones. In this condition, the system
resources can be used are decreased. When STrC is larger
than 0.2, some slow TTs are judged to be fast ones. In this
condition, backup tasks may run on these slow TTs, so the
execute time cannot be shorten. We set STaC to be 0.3 in
the following experiments.

4) STrP: STrP is a parameter used to limit the maximum
number of slow TTs according to the Eq. 14. As shown in
Figure 6, the time of execution first decreases then increases
with the increase of STrP. This is because the maximum
number of slow TTs becomes more with the increasing of
STrP. when STrP is smaller than 0.3 and STrC is larger than
0.2, some real slow TTs are judged to be fast TTs. Backup
tasks can run on these slow nodes, the system resources
competition on slow nodes will prolong the execute time.
On the other hand, if STrP is larger than 0.3, and STrC is
smaller than 0.2, SAMR judges several fast TTs to be slow

274127412741

100

150

200

250

300

350

400

10 20 30 40 50 60 70 80 100

E
x

e
cu

te
 t

im
e

 (
s)

Value of BP (%)

Figure 7. Affection of “BP” on the execute time. The time of execution
first decreases then increases with the increase of BP

Figure 8. Historical information and real information recorded on all the
8 nodes. Historical information is little different from real information

ones. System resources can be used is decreased. We set
STaC to be 0.3 in the following experiments.

5) BP: BP is a parameter used to limit the maximum
number of backup tasks according to the Eq. 15. As shown in
Figure 7, the time of execution first decreases then increases
with the increase of BP. This is because the maximum
number of backup tasks become larger with the increasing
of BP. When BP is smaller than 0.2, SAMR cannot launch
backup tasks for all the slow tasks because of the limitation
of the number of backup tasks. On the other hand, when
BP is larger than 0.2, backup tasks will consume a lot of
system resources, so the time of execution is prolonged. We
set STaC to be 0.3 in the following experiments.

After a series of experiments, the best parameters for
SAMR are: HP = 0.2, STaC = 0.3, STrC = 0.2, STrP = 0.3,
BP = 0.2. These parameters must be re-specified in new
environment.

C. Correctness of historical information

In order to verify the correctness of historical information
used in SAMR, we list historical information and information
collected from the real system in Figure 8. For either MT
or RT, the weights of stages recorded in the historical
information are not far from the weights collected from the
real system. The weights of all the stages are far from the
constant weights in Hadoop and LATE.

D. Performance of SAMR

In order to evaluate performance of SAMR, We com-
pare performance of five different MapReduce scheduling

Figure 9. The execute results of “Sort” running on the experiment platform.
Backup mechanism and Historical information are all very useful in “Sort”.
SAMR decreases time of execution about 24% compared to Hadoop.

algorithm by running Sort and WordCount ten times each.
The five algorithms are Hadoop without backup mechanism,
scheduling algorithm in Hadoop, LATE, LATE using histor-
ical information and SAMR. Parameters used in SAMR are
gotten from experiments in subsection IV-B.

Figure 9 shows the efficiency of SAMR when running
Sort benchmark. We uses the execute time of Hadoop as the
baseline, and finds that Hadoop without backup mechanism
spends about double time in executing the same job. LATE
decreases about 7% execute time, LATE using historical
information mechanism decreases about 15% execute time,
SAMR decreases about 24% execute time compared to
Hadoop. This is because RT spend a long time in Sort.
Backup tasks on fast nodes for slow RT can finish in a
shorter time than the primary slow RT, and hence saving a
lot of time. By finding real slow tasks and launching backup
tasks on fast nodes, SAMR has archived better performance
than all the other MapReduce schedulers.

In Figure 10, Hadoop without backup mechanism spends
just a little more time than Hadoop when running WordCount
benchmark. LATE scheduling algorithm can decrease about
8% , LATE scheduling algorithm with historical information
mechanism can decrease about 13% execute time, SAMR can
decrease about 17% execute time compared to Hadoop. This
is because RT spends a shorter time in WordCount than Sort
benchmark and backup tasks for slow tasks cannot save too
much time.

V. CONCLUSION

In this paper, we have proposed SAMR: a Self-adaptive
MapReduce scheduling algorithm, which uses historical
information and classifies slow nodes into map slow nodes
and reduce slow nodes. Experimental results have shown
the effectiveness of the self-adaptive MapReduce scheduling
algorithm. The algorithm decreases the execution time of
MapReduce jobs, especially in heterogeneous environments.
The algorithm selects slow tasks and launch backup tasks
accordingly while classifying nodes correctly, and saving a
lot of system resources.

274227422742

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Maximum value Minimum value Average value

Use historical info in LATE Hadoop

Hadoop without backup SAMR

LATE

Figure 10. The execute results of “WordCount” running on the experiment
platform. Backup tasks and Historical information are not very useful in
“WordCount”. SAMR decreases time of execution about 17% compared to
Hadoop

However, the proposed algorithm could be further im-
proved in term of several aspects. First, this algorithm will
focus on how to account for data locality when launching
backup tasks, because data locality may remarkably acceler-
ate the data load and store. Second, SAMR is considering a
mechanism to incorporate that tune the parameters should be
added. Third, SAMR will be evaluated on various platforms
by first evaluated on rented Cloud Computing platform.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplied data pro-
cessing on large clusters,” in OSDI 2004: Proceedings of 6th
Symposium on Operating System Design and Implemention,
(New York), pp. 137–150, ACM Press, 2004.

[2] J. Dean and S. Ghemawat, “MapReduce: a flexible data
processing tool,” Communications of the ACM, vol. 53, no. 1,
pp. 72–77, 2010.

[3] J. Varia, “Cloud architectures,” White Paper of Amazon,
jineshvaria.s3.amazonaws.com/public/cloudarchitectures-
varia.pdf, 2008.

[4] L. Barroso, J. Dean, and U. Holzle, “Web search for a planet:
The Google cluster architecture,” IEEE Micro, vol. 23, no. 2,
pp. 22–28, 2003.

[5] L. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner,
“A break in the clouds: towards a cloud definition,” ACM
SIGCOMM Computer Communication Review, vol. 39, no. 1,
pp. 50–55, 2008.

[6] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging IT platforms: vision, hype,
and reality for delivering computing as the 5th utility,” Future
Generation Computer Systems, vol. 25, no. 6, pp. 599–616,
2009.

[7] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google
file system,” in SOSP 2003: Proceedings of the 9th ACM
Symposium on Operating Systems Principles, (New York, NY,
USA), pp. 29–43, ACM, 2003.

[8] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber, “Bigtable:
A distributed storage system for structured data,” in Proceed-
ings of the 7th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2006), 2006.

[9] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis, “Evaluating mapreduce for multi-core and mul-
tiprocessor systems,” in HPCA 2007: Proceedings of the 2007
IEEE 13th International Symposium on High Performance
Computer Architecture, (Washington, DC, USA), pp. 13–24,
IEEE Computer Society, 2007.

[10] M. de Kruijf and K. Sankaralingam, “Mapreduce for the
cell b.e. architecture,” tech. rep., Department of Computer
Sciences, University of WisconsinCMadison, 2007.

[11] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang,
“Mars: a mapreduce framework on graphics processors,” in
PACT 2008: Proceedings of the 17th International Conference
on Parallel Architectures and Compilation Techniques, (New
York, NY, USA), pp. 260–269, ACM, 2008.

[12] M. Schatz, “CloudBurst: highly sensitive read mapping with
MapReduce,” Bioinformatics, vol. 25, no. 11, p. 1363, 2009.

[13] S. Zhang, J. Han, Z. Liu, K. Wang, and S. Feng, “Spatial
Queries Evaluation with MapReduce,” in Proceedings of the
2009 Eighth International Conference on Grid and Cooper-
ative Computing-Volume 00, pp. 287–292, IEEE Computer
Society, 2009.

[14] M. Zaharia, D. Borthakur, J. Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica, “Job scheduling for multi-user
mapreduce clusters,” tech. rep., Technical Report UCB/EECS-
2009-55, University of California at Berkeley, 2009.

[15] C. Tian, H. Zhou, Y. He, and L. Zha, “A dynamic MapReduce
scheduler for heterogeneous workloads,” in Proceedings of
the 2009 Eighth International Conference on Grid and Coop-
erative Computing-Volume 00, pp. 218–224, IEEE Computer
Society, 2009.

[16] P. Elespuru, S. Shakya, and S. Mishra, “MapReduce system
over heterogeneous mobile devices,” in Proceedings of the
7th IFIP WG 10.2 International Workshop on Software Tech-
nologies for Embedded and Ubiquitous Systems, pp. 168–179,
Springer, 2009.

[17] C. Jin and R. Buyya, “MapReduce programming model for
.NET-based distributed computing,” in Proceedings of the
15th European Conference on Parallel Processing (Euro-Par
2009), Citeseer, 2009.

[18] Yahoo, “Yahoo! hadoop tutorial.”
http://public.yahoo.com/gogate/hadoop-tutorial/start-
tutorial.html.

[19] Hadoop, “Hadoop home page.” http://hadoop.apache.org/.

[20] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica, “Improving mapreduce performance in heteroge-
neous environments,” in 8th Usenix Symposium on Operating
Systems Design and Implementation, (New York), pp. 29–42,
ACM Press, 2008.

274327432743

