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Abstract—Modern multi-core computers often adopt a multi-
socket multi-core architecture with shared caches in each
socket. However, traditional task-stealing schedulers tend to
pollute the shared cache and incur more cache misses due
to their random stealing. To relieve this problem, this paper
proposes a Cache Aware Bi-tier (CAB) task-stealing scheduler,
which improves the performance of memory-bound applica-
tions by reducing memory footprint and cache misses of tasks
running inside the same CPU socket. CAB uses an automatic
partitioning method to divide an execution Directed Acyclic
Graph (DAG) into the inter-socket tier and the intra-socket
tier. Tasks generated in the inter-socket tier are scheduled
across sockets, while tasks generated in the intra-socket tier
are scheduled within the same socket. Experimental results
show that CAB can improve the performance of memory-bound
applications up to 68.7% compared with the traditional task-
stealing.

Keywords-Multi-socket Multi-core architecture, Cache
aware, Task-stealing, Work-stealing, Cilk

I. INTRODUCTION

Multi-core processors have become mainstream as chip

manufacturers like AMD and Intel keep producing new

CPU chips with more cores. Modern multi-core computers

often use a Multi-Socket Multi-Core (MSMC) architecture

in order to obtain more computing power. In the MSMC ar-

chitecture, multiple multi-core chips share the main memory

(RAM), while the cores in the same CPU chip (also referred

as CPU socket in this paper) share the L2 or L3 caches. This

architecture is popular and will continue to be a dominating

architecture for high performance computing in future.

Despite the rapid development of the multi-core technol-

ogy, a lot of software are yet to be parallelized to utilize

the power of multi-core computers. This need has promoted

the development of parallel programming environments.

Currently, popular parallel programming environments can

be classified into two groups in terms of task scheduling.

The first group is based on manual task scheduling, where

programmers need to manually arrange tasks for each thread

or processor for optimal performance. Pthread [1], MPI [2]

and Maotai [3] are examples of this group. The drawback

of this group is that manual task scheduling is often burden-

some for developing applications.

* Quan Chen was a visiting PhD student at the University of Otago
during the course of this research.

The second group is based on automatic task scheduling.

In these programming environments, programmers can spec-

ify and generate tasks at runtime. Parallelism in programs

is mostly expressed as tasks that are scheduled automati-

cally among executing threads. Examples of this group are

Cilk [4], Cilk++ [5], TBB [6], OpenMP [7], Java’s fork-

join framework [8], X10 [9] and XWS [10]. This feature of

automatic task scheduling enables convenient expression of

dynamic tasks and automatic load balancing.

In programming environments with automatic task

scheduling, the execution of a parallel program can be

represented by a task graph, which is a Directed Acyclic

Graph (DAG) G = (V,E), where V is a set of nodes, and

E is a set of directed edges [11]. A node ni in a DAG

represents a task (i.e., a set of instructions) that must be

executed sequentially without preemption. The edges in a

DAG, denoted by (nj , nk), correspond to the dependence

relationship among the nodes.

Most DAG-based automatic task scheduling algorithms,

such as task-stealing (also known as work-stealing1) [12] and

task-sharing [7], schedule tasks onto processors randomly.

This randomness in task scheduling causes Task Relocation
Incurred Cache Interference (TRICI) syndrome in the MSM-

C architecture, which is depicted as follows.

Suppose there are three tasks γ1, γ2 and γ3 to be executed

in an MSMC architecture. γ1 and γ2 share data, but they

share nothing with γ3. If γ1 and γ2 are scheduled to the

cores of the same CPU socket, the shared data are loaded

into the shared caches (e.g., L3 cache) only once but can

be accessed by both tasks. However, this data sharing is

not respected by traditional task scheduling algorithms due

to their randomness in selecting cores for the tasks. As a

result, the task schedulers could move γ1 or γ2 to a core in

a different socket, where γ3 is being executed. Thus γ1 and

γ2 cannot share cache and have to load data into their own

caches separately.

The above random scheduling causes two problems. First,

it increases cache misses. Suppose γ2 is scheduled to the

socket of γ3. γ2 cannot use the data already loaded into the

caches by γ1 and have to read data from the main mem-

ory. Second, the random scheduling enlarges the memory

1we use “task-stealing” in this paper for the consistency of terms.
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footprint of the sockets. Since γ2 and γ3 share nothing

but run in the same socket, the memory footprint of the

socket will become larger. This increases the chance of cache

misses and causes performance degradation, because γ2 may

pollute the cache entries for γ3 due to conflicts or limited

cache capacity. Such a degrading performance problem in

the MSMC architecture is called the TRICI syndrome in

this paper, which is caused by the random task scheduling

policy.

In order to relieve the TRICI syndrome, we propose a

Cache Aware Bi-tier (CAB) policy for the task-stealing

scheduler. In traditional task-stealing [4], whenever a work-

er’s task pool becomes empty, the worker will randomly

choose a victim worker and steal a task from it. Unfortu-

nately, such a task-stealing policy suffers from the TRICI

syndrome due to the random stealing. CAB addresses the

syndrome by scheduling tasks that share data onto the cores

in the same socket in order for them to share data in caches.

It divides the execution DAG of a program into two tiers:

inter-socket tier and intra-socket tier. Tasks in the inter-

socket tier are scheduled across the sockets, while tasks in

the intra-socket tier are scheduled within the same socket.

CAB can automatically and optimally partition the execution

DAG into the two tiers according to the input data size of an

application, the data cache size, and the number of sockets.

The contributions of this paper are three-fold.

• The CAB task-stealing significantly relieves the TRICI

syndrome by scheduling tasks with shared data onto

cores of the same socket.

• CAB presents an automatic partitioning method to

divide a DAG into two tiers so that tasks in different

tiers are generated and scheduled in different ways.

• The experiment shows that CAB can significantly

achieve a performance gain of up to 68.7% for memory-

bound applications.

The rest of this paper is organized as follows. Section II

introduces the background and motivation of CAB. Sec-

tion III presents the DAG partitioning method and the CAB

task-stealing algorithm. Section IV gives the implementation

details of CAB. Section V shows the experimental results

and evaluates the performance. Section VI discusses related

work. Section VII draws conclusions and sheds light on

future work.

II. BACKGROUND AND MOTIVATION

There are two main classes of automatic task scheduling

algorithms: task-sharing and task-stealing. In task-sharing,

workers push new tasks into a central task pool when they

are generated. Tasks are popped out from the task pool

when workers are free to execute them. The push and pop

operations need to lock the central task pool, which often

causes serious lock contention.

Task-stealing, on the other hand, uses a task pool for each

worker. Most often each worker pushes and pops tasks to its

own task pool without locking. Only when a worker’s task

pool is empty, should it try to steal tasks from other workers

with locking. Since there are multiple task pools for stealing,

the lock contention is much lower than task-sharing even

at task steals. Therefore, task-stealing performs even better

than task-sharing when the number of workers is increasing.

However, as mentioned before, task-stealing still suffers

from the TRICI syndrome. Let us take the five-point heat
program as an example, which simulates the heat distribution

of a metal plate. In the program, the metal plate is divided

into points of a two-dimensional grid. At each simulation

step, the points in row r are computed based on the points

in rows r, r − 1 and r + 1 of the previous step.

Given a 10∗10 matrix as the input data with the data type

double (rows 0, 9 and columns 0, 9 are boundary data, and

the real grid to be computed is an 8∗8 matrix). In the parallel

heat program, the heat procedure recursively generates two

sub-tasks until the data set for each task is small enough.

Fig. 1 shows the execution DAG of the heat program. The

input data is recursively divided into two parts until each of

the leaf tasks in the DAG only processes two rows.

Figure 1. Execution DAG of five-point heat program

According to the dependence relationship, tasks in the

DAG can be divided into levels. If a task γ in level i
generates a task β, then β is in level i + 1. The task that

executes the “main” procedure is in level 0 and it is the

initial task in the DAG.

Note that, in Fig. 1, only the leaf tasks (i.e., T4, T5, T6,

T7) touch data, while all the other tasks in levels 0, 1, and

2 only divide the input data into two parts recursively.

Suppose this parallel heat program is executed on a dual-

socket dual-core architecture with a hypothetical shared

cache size of 480 bytes2 in each socket.

In the above scenario, if the leaf tasks T4, T5, T6 and T7

are ideally scheduled in the way as shown in Fig. 2(a), data

in the shared cache can be re-used and thus cache misses

can be reduced. In Fig. 2(a), tasks running on the cores of

the same socket ( e.g., T4 and T5) share two rows of input

data. The two tasks in each socket only need to read six

rows into the shared cache from the main memory altogether,

i.e., 6 ∗ 10 ∗ 8 = 480 bytes. This data set size can fit into

the shared cache of a socket. The overall memory footprint

2We use this hypothetical small cache size for ease of explanation, but
it does not affect our analysis since input data will be proportionally larger
for a real cache size.
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(a) One possible scheduling (b) Another possible scheduling

Figure 2. Two possible scheduling of tasks of five-point heat running
on a dual-socket dual-core architecture. The first scheduling can gain
performance improvement from cache-sharing and reduction of memory
footprint, because T4 and T5, T6 and T7 have shared data.

of the system is 2 ∗ 480 = 960 bytes if all four tasks are

considered.

However, for traditional task-stealing, since it distributes

tasks randomly, the leaf tasks T4, T5, T6 and T7 are very

likely scheduled in the way as shown in Fig. 2(b), where

tasks running on the cores of the same socket (e.g., T4 and

T6) do not share any data. In this case, every task needs to

access the main memory and reads four rows of the matrix

into the cache. Because the two tasks in each socket need

to read 2 ∗ 4 ∗ 10 ∗ 8 = 680 bytes, the data size exceeds

the capacity of the shared cache of each socket, which leads

to more capacity cache misses and increases the chances

for conflict cache misses. Furthermore, the overall memory

footprint of the system is 2∗680 = 1280 bytes, which leads

to more compulsory cache misses.

In order to relieve the TRICI syndrome and schedule

tasks in the same way as in Fig. 2(a), we propose the CAB

task-stealing, which partitions the execution DAG into two

tiers: inter-socket tier and intra-socket tier. Tasks in the inter-

socket tier are scheduled across sockets, while tasks in the

intra-socket tier are scheduled within the same socket. For

example, in Fig. 1, tasks in levels 0-2 are in the inter-socket

tier and tasks in level 3 are in the intra-socket tier. The tasks

in level 2, the boundary of the two tiers, are called leaf inter-

socket tasks. In CAB, the intra-socket tasks such as T4 and

T5 are bound to the same socket. Since the intra-socket tasks

generated by the same leaf inter-socket task often share data

in real applications, their binding to the same socket in CAB

can enforce the scheduling in Fig. 2(a) and results in fewer

cache misses.

III. CACHE AWARE BI-TIER TASK-STEALING

This section presents CAB, a Cache Aware Bi-tier task-

stealing scheduler. First, we give an overview of CAB. Then

we introduce an automatic partitioning method for dividing

the execution DAG into two tiers. Third, we present the

CAB task generation algorithm, followed by the CAB task-

stealing algorithm. Lastly, we discuss the theoretical time

and space bounds of CAB.

A. Overview of CAB

CAB divides the workers into squads corresponding to the

MSMC architecture. A squad is a group of workers running

in the same socket. Each squad has a head worker. For an

MSMC architecture that has M sockets with N cores each,

CAB launches M ×N workers (i.e. threads) to work on the

DAG in parallel. The workers are divided into M squads

with N workers in each squad. Each worker is affiliated

with a hardware core, while each squad is affiliated with a

socket. Fig. 3 depicts the relationship among cores, sockets,

workers, and squads.

Figure 3. Relationship among cores, sockets, workers, and squads in a
Dual-socket Dual-core architecture. Workers that run on the cores of the
same socket are grouped into a squad. Each squad has an inter-socket task
pool and each worker has an intra-socket task pool.

CAB adopts two types of task pools: inter-socket task pool

and intra-socket task pool. A task pool is a double-ended

queue (deque) that is used to store tasks. The inter-socket

task pool is used to store tasks from the inter-socket tier of

the DAG, and the intra-socket task pool stores tasks from the

intra-socket tier. Each squad has one inter-socket task pool,

and each worker has one intra-socket task pool, as shown in

Fig. 3.

When CAB starts to execute a parallel program in an

MSMC architecture, CAB uses an automatic DAG partition-

ing method (to be described shortly) to divide the execution

DAG of the program into the inter-socket tier and the intra-

socket tier. After the partitioning, CAB starts to execute

the tasks by scheduling the inter-socket tasks and the intra-

socket tasks based on the following stealing protocol.

A free worker in CAB first tries to obtain a task from

its own intra-socket task pool. If the task pool is empty, it

tries to steal a task from the intra-socket task pools of other

workers in the same squad. If all the workers of the squad

have empty task pools, the head worker of the squad tries

to obtain a task from its own inter-socket task pool. If its

inter-socket task pool is empty, the head worker of the squad

tries to steal an inter-socket task from other squads.

The above protocol only allows the head worker to steal

inter-socket tasks so that the lock contention of the inter-

socket task pools is reduced. Also a squad is not allowed to

execute more than one inter-socket task at the same time,

because the data of different inter-socket tasks may pollute

the shared caches if multiple inter-socket tasks are executed

simultaneously in the same squad, which leads to more cache

misses.
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B. Automatic DAG partitioning method

As mentioned before, tasks in a DAG are divided into

inter-socket tasks and intra-socket tasks according to their

levels in the DAG. We compute a boundary level BL that

partitions the DAG into the inter-socket tier (the upper

tier) and the intra-socket tier (the lower tier). Tasks in the

boundary level BL are called leaf inter-socket tasks. Since

intra-socket tasks are scheduled within a squad, all the child

tasks of a leaf inter-socket task are executed in the same

socket.

However, finding the proper boundary level BL to partition

the DAG optimally is challenging. If the intra-socket tier is

too thick, the involved data for a squad can be too large to

fit into the shared caches of the socket of the squad. On the

other hand, if the intra-socket tier is too thin, the workload

of a squad can be too small to get better balanced among

the workers of the squad.

Therefore, we require that the DAG partitioning method

satisfy three constraints. The first constraint is that there

should be enough leaf inter-socket tasks to be distributed to

the sockets. The second constraint is that the involved data

size of a leaf inter-socket task is small enough to fit into the

shared caches of a socket. The third constraint is that a leaf

inter-socket task should be large enough to enable a squad

to have sufficient intra-socket tasks. After careful study, we

model these constraints using the following parameters: the

input data size of the application, the number of sockets

of the MSMC architecture, the shared cache size of each

socket, and the branching degree of the DAG.

Note that, in the following model we assume that the

program directly generates the task of the recursive divide-

and-conquer procedure in the main procedure, which is the

case for all our benchmarks. For example, in Fig. 1, the

main procedure directly spawns the heat procedure that

recursively spawns tasks executing itself until a cut-off

point. However, if the recursive procedure is not directly

generated by main, we need either manual adjustment of the

BL value, or compiler support to adjust BL automatically.

Further discussion on compiler support can be found in

Section IV-D.

In the model, we suppose an M -socket N -core system

has a shared cache size Sc for each socket and a recursive

divide-and-conquer program has an input data of size Sd.

We assume the program divides the input data into B parts

each time sub-tasks are generated, i.e., the branching degree

of the DAG of the recursive procedure is B. In this scenario,

the boundary level BL should have BBL−1 leaf inter-socket

tasks, since each task generates B sub-tasks for the next

level and this is repeated BL − 1 times until the boundary

level, assuming levels are numbered from 0 and the level 0
starts with main.

Since there are M squads, in order to balance workload

among squads, we should ensure that there are at least M

leaf inter-socket tasks (the aforementioned first constraint).

Therefore, BL needs to satisfy Eq. 1.

BBL−1 ≥M (1)

Since the input data are often divided evenly among

the leaf inter-socket tasks, the second constraint can be

expressed with Eq. 2.

Sd/B
BL−1 ≤ Sc (2)

From Eq. 1 and 2, we can deduce two conditions for

selecting an appropriate value for BL, as shown in Eq. 3.{
BL ≥ logB M + 1

BL ≥ logB (Sd/Sc) + 1
(3)

From Eq. 3, we can select any BL that is large enough to

satisfy the two inequations. But, unfortunately, if BL is too

large, the number of the intra-socket tasks generated by a

leaf inter-socket task will be too small, which leads to poor

load balance within a squad. Therefore, we set BL to be the

smallest value that satisfies both inequations in Eq. 3, as

shown in Eq. 4.

BL = max{�logB M + 1�, �logB (Sd/Sc) + 1�} (4)

In our current implementation, we use a semi-automatic

method to acquire parameters B, M , Sd, and Sc and then

computes BL according to Eq. 4. Parameters M and Sc are

automatically acquired from /proc/cpuinfo by the runtime

system, but Sd and B are provided through command line

arguments. Section IV-D discusses how to automatically

acquire the parameters by the compiler through program

analysis.

In summary, CAB chooses BL to be the smallest value

while ensuring that the data set of the leaf inter-socket tasks

can fit into the shared cache and that the number of leaf inter-

socket tasks is large enough so that there is at least one inter-

socket task for each and every squad. Experimental results in

Section V show that our automatic DAG partitioning method

can find the optimal boundary level that enables the highest

performance of the CAB scheduler.

C. CAB task generation

Tasks in the inter-socket tier and the intra-socket tier

are generated with different policies in CAB. There are

generally two policies for task generation: child-first and

parent-first. In the child-first policy, a worker executes the

child task immediately after it is generated, leaving the

parent task for later execution or for stealing by other

workers. For example, the MIT Cilk uses the child-first

policy, which is called work-first in [4]. In the parent-first

policy, a worker executes the parent task continually after

spawning a child task, pushing the child task into the task

pool. One such example is the help-first policy proposed

in [13].
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Both policies have advantages in different situations. The

child-first policy works better than the parent-first policy

when the execution DAG is deep. However, the parent-first

policy works better when the initial DAG is shallow and

the steals are frequent, since enough tasks can be quickly

produced for free workers [13].

Because there are more steals needed in the inter-socket

tier where the execution DAG is expanding initially, CAB

adopts the parent-first policy in the inter-socket tier in order

to distribute the leaf inter-socket tasks to squads as soon

as possible. After a squad gets a leaf inter-socket task, it

uses the child-first policy to generate the intra-socket tasks.

Since the number of workers is small and the steals are not

frequent in a squad, the child-first policy is more suitable

for intra-socket tasks. Another advantage of the child-first

policy is more space efficient.

D. CAB task-stealing

As mentioned before, a free worker follows the stealing

protocol in Section III-A to obtain or steal tasks. According

to the protocol, a squad is not allowed to execute more than

one inter-socket task at the same time. In order to fulfill this

requirement, CAB uses a boolean variable busy state for

each squad. busy state indicates whether there is an inter-

socket task running in the squad right now. When there is

an inter-socket task running in a squad, busy state of the

squad is true. When a squad finishes its inter-socket task, its

busy state is set false. Only when busy state is false, can the

squad obtain or steal another inter-socket task. Algorithm I

shows the detailed task-stealing algorithm that implements

the stealing protocol.

E. Theoretical time and space bounds of CAB

We model the execution of a parallel program as an

execution DAG G. Each node in G represents a unit task,

and each edge represents a dependence between tasks. Our

following discussion is based on the time and space bounds

of task-stealing proved in [12].

1) Time bound: For a DAG G, the work T1(G) is the

number of nodes in G, and the critical-path length T∞(G)
is the number of nodes along the longest path from the start

node to the end node.

Since CAB divides a DAG into two tiers and executes

them differently, we need to divide a DAG into sub-DAGs

using the leaf inter-socket tasks. Given a leaf inter-socket

task γ, we use the notation Gγ to represent the subgraph

rooted with γ, which includes the set of tasks that are

generated from γ. Therefore, the total work of G is divided

as in Eq. 5, where Ginter represents the subgraph of the

inter-socket tier and K is the total number of the leaf inter-

socket tasks at the boundary level BL.

T1(G) = T1(Ginter) +
K∑
i=1

T1(Gγi) (5)

Algorithm I
CAB TASK-STEALING ALGORITHM

Assumption: Suppose a worker w belongs to a squad ρ. The worker w
is free and trying to get a new task.

Select victim from intra-socket tier:
Step 1: w tries to get a new task from its own task pool. If there is any
task in the task pool, w obtains a task from the task pool and jumps to
Step 7; otherwise, w goes to Step 2.
Step 2: w checks busy state of ρ. If busy state is true, w goes to Step
3; otherwise, if w is the head worker of ρ, w goes to Step 4, or else w
goes back to Step 1.
Step 3: w tries to steal an intra-socket task from the workers in ρ. It
chooses a victim worker wvictim within ρ randomly and then goes to
Step 6.
Select victim from inter-socket tier:
Step 4: w tries to obtain an inter-socket task from ρ. If there is any task
in the inter-socket task pool of ρ, w obtains a task from the task pool.
Then w sets busy state of ρ to be true and goes to Step 7. Otherwise,
if the inter-socket task pool of ρ is empty, w goes to Step 5.
Step 5: w tries to steal an inter-socket task from other squads. w
randomly chooses a victim squad ρvictim and goes to Step 6.
Stealing from victim:
Step 6: (a) When the victim is a worker, if the task pool of wvictim is
not empty, w pops a task from the task pool and then goes to Step 7,
otherwise, w goes back to Step 2.

(b) When the victim is a squad, if the inter-socket task pool of
ρvictim is not empty, w pops a task from the task pool. Then w sets
busy state of ρ to be true and goes to Step 7. Otherwise, if the task pool
of ρvictim is empty, w goes to Step 5.
Step 7: w starts to execute the task.

The execution time of G in an M -socket N -core architec-

ture, TM∗N (G), can be divided into two parts: the execution

time of the inter-socket tier TM∗N (Ginter) and the execution

time of the intra-socket tier TM∗N (Gintra). Even though the

two parts can be overlapped, we use their sum to get the

worst bound of TM∗N (G) as shown in Eq. 6.

TM∗N (G) = TM∗N (Ginter) + TM∗N (Gintra) (6)

Since the inter-socket tier is executed by M head workers

using task-stealing, according to the proof of [12], the

execution time of Ginter is bounded by Eq. 7.

TM∗N (Ginter) ≤ T1(Ginter)
M

+ T∞(Ginter) (7)

For the execution of the intra-socket tier, each Gγi is

executed by N workers within a squad using task-stealing.

Therefore, the execution time of Gγi is bounded by Eq. 8.

TN (Gγi) ≤
T1(Gγi)

N
+ T∞(Gγi) (8)

Since K leaf inter-socket tasks are scheduled among M
squads using task-stealing, the execution time of the intra-

socket tier is bounded by Eq. 9.

TM∗N (Gintra) ≤
∑K

i=1 TN (Gγi)

M
+ T∞(Gintra) (9)

Deducing from Eq. 8 and 9, we can get Eq. 10.

TM∗N (Gintra) ≤
∑K

i=1 T1(Gγi)

M ∗N +

∑K
i=1 T∞(Gγi)

M
+

T∞(Gintra)
(10)
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From Eq. 6, 7 and 10, TM∗N (G) can be bounded as in

Eq. 11.

TM∗N (G) ≤T1(Ginter)
M

+ T∞(Ginter) +
∑K

i=1 T1(Gγi)

M ∗N
+

∑K
i=1 T∞(Gγi)

M
+ T∞(Gintra)

(11)

After further tidying Eq. 11 up, we have Eq. 12.

TM∗N (G) ≤T1(Ginter)
M

+

∑K
i=1 T1(Gγi)

M ∗N +∑K
i=1 T∞(Gγi)

M
+ T∞(G)

(12)

According to Eq. 4, K is at most several times of M .

Therefore, the third item in Eq. 12 can be merged with the

fourth item. Finally, we have the time bound of G in an

M -socket N -core architecture as shown in Eq. 13.

TM∗N (G) = O(
T1(Ginter)

M
+

T1(Gintra)
M ∗N + T∞(G)) (13)

According to Eq. 13, the inter-socket tier is executed by

only M head workers. However, in most recursively divide-

and-conquer applications, only the leaf tasks in the DAG

process input data, while the higher level tasks only divide

the input data into smaller parts. Therefore, for a divide-

and-conquer application, the main part of the execution time

is spent by the leaf tasks, i.e., the intra-socket tasks. Our

experiments show that the execution time of the inter-socket

tier is often less than 5% of the overall execution time.

Therefore, the time bound of Eq. 13 is very close to the

traditional task-stealing schedulers such as Cilk for many

divide-and-conquer applications.

2) Space bound analysis: According to the proof of [12],

the space used by G in an M -socket N -core architecture is

bounded by Eq. 14, where S1(G) denotes the space used by

the serial execution of the program.

SM∗N (G) ≤M ∗N ∗ S1(G) (14)

Eq. 14 assumes that there are at most M ∗ N workers

expanding the DAG using the child-first policy. However,

since CAB uses the parent-first policy to expand the inter-

socket tier quickly, each of the leaf inter-socket tasks may

use S1 space in the worst case. Therefore, the space used by

the CAB scheduler SM∗N (G), can be bounded as in Eq. 15.

SM∗N (G) ≤ max{K ∗ S1(G),M ∗N ∗ S1(G)} (15)

According to Eq. 4, the number of leaf inter-socket tasks,

K, is not much larger than M , so the space bound has the

same O-notation as the traditional task-stealing schedulers.

IV. IMPLEMENTATION OF CAB

In this section, we present the implementation of CAB.

First, we briefly introduce the MIT Cilk in which CAB

is implemented. Then, we present the compiler support

implemented for CAB, followed by the implementation of

the CAB runtime system. Lastly, we discuss issues related

to the implementation. Note that Cilk programs can run in

our current implementation without any modifications.

A. Overview of MIT Cilk

MIT Cilk is one of the earliest parallel programming

environments that implement task-stealing [4]. It extends

C with three keywords: cilk, spawn and sync to declare

parallelism in the program. cilk identifies a procedure as a

Cilk procedure, spawn is used to generate a child task, and

sync waits for all the child tasks that are generated by the

current task to return. Only Cilk procedures can be invoked

with spawn as a task.

MIT Cilk consists of a compiler and a scheduler. Cilk

compiler, named as cilk2c, is a source-to-source translator

that transforms a Cilk source into a C program. Once a task

is generated, a task frame is created to store the information

needed by the task and the scheduler. Cilk scheduler is a

traditional task-stealing scheduler.

B. Compiler support of CAB

We have modified cilk2c to support two types of spawns

for the inter-socket and intra-socket tasks respectively. At

each spawn, we compare the DAG level of the current task

with the boundary level BL. If the level is smaller than BL,

we spawn the child task as an inter-socket task and follow

the parent-first policy. Otherwise, we spawn the child task

as in intra-socket task and follow the child-first policy.

We also modified cilk2c to support two types of sync for

the inter-socket and intra-socket tasks. This is because we

use the child-first policy to generate the intra-socket tasks but

use the parent-first policy to generate the inter-socket tasks.

We use the different syncs to manipulate different return

behaviors.

We add into each task frame three variables: level, parent
and inter counter. level represents the level of the task in

the execution DAG, parent is a pointer to the parent frame,

and inter counter is the number of outstanding child inter-

socket tasks spawned by the task. For example, when a task

γ generates a child inter-socket task γ1, the inter counter
in the task frame of γ is increased by one. When γ1
returns, through the parent pointer in its task frame, the

inter counter of γ is decreased by one. If γ’s inter counter
equals zero, that means all the inter-socket tasks generated

by γ have finished and the sync can be passed through.

C. CAB runtime system

For an M-socket N-core architecture, CAB launches M ∗
N workers and affiliates each worker to one individual core.
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The ID of each worker is the same as the ID of the core

on which the worker is running. CAB groups workers into

squads according to their IDs. If the core i is in the socket

j, the worker i is grouped into the squad j. In each squad,

the worker with the smallest ID is the head worker.

CAB executes a parallel program following Algorithm II.

Note that in the algorithm BL is set to 0 when there is only

one socket in the architecture so that all tasks are generated

as intra-socket tasks, which is the same as MIT Cilk.

Alogrithm II
CAB RUNTIME ALGORITHM

Assumption: Suppose an M-socket and N-core architecture and a worker
w belongs to a squad ρ.

Global initiation:
Step 1: CAB launches M ∗ N workers and affiliates them to the
corresponding cores.
Step 2: CAB calculates BL. If M equals 1, CAB sets BL to 0. Otherwise,
CAB calculates BL according to Eq. 4.
Step 3: Worker 0 begins to execute the initial task, while all the other
workers are trying to steal tasks.
Task scheduling: Assume worker w is executing task γ.

(a) γ generates γ1: γ computes the level of γ1. If γ1 is in the inter-
socket tier, it is generated as an inter-socket task. Then w pushes γ1 into
the inter-socket task pool of ρ and continues to execute γ. Otherwise, if
γ1 is in the intra-socket tier, it is generated as an intra-socket task, which
is pushed into the task pool of w and to be executed by w immediately.

(b) γ suspends: w tries to obtain a task according to Algorithm I.
(c) γ returns: w returns the results of γ and sets busy state of ρ to

false if γ is an inter-socket task. Then w tries to get a task according to
Algorithm I.
Termination: If all the tasks have finished, CAB terminates.

D. Discussion

Our current implementation uses a semi-automatic method

to acquire the parameters for the calculation of BL. M
and Sc are acquired automatically from the system, while

the branching degree B and the input data size Sd of the

recursive procedure are provided through command line.

It is desirable to fully automate the acquisition of all

parameters used for the calculation of BL. Compiler support

can be useful in finding the branching degree B by analyzing

the source code based on the pattern of task generation, e.g.,

the keyword spawn in Cilk. However, the input data size Sd

of a procedure can still be challenging for compilers, because

the compiler needs to track the runtime calling chains and

arguments of the procedure. Though it is easy to track the

data size of arguments in many strongly typed languages,

such a task is still challenging for the C language used by

Cilk.

CAB scheduler also provides a new keyword inter spawn
to generate inter-socket tasks. This mechanism allows pro-

grammers to explicitly control the type of tasks and to fine-

tune the program’s behavior for the maximum efficiency.

However, this method requires the programmer to manually

modify the existing Cilk programs. According to our experi-

ments, our semi-automatic method can achieve performance

comparable to the well-tuned programs using this manual

method.
Besides recursive task generating model, some programs

use flat task generating scheme, where all the tasks are

generated by a function at one time. For these programs,

our CAB scheduler can also distribute tasks into inter-socket

and intra-socket tiers for the maximum cache sharing in the

same socket. Our preliminary experimental results show that

programs can improve performance up to 25%. Due to space

limit, this paper doesn’t elaborate on this type of programs.

V. PERFORMANCE EVALUATION

In the performance evaluation, we use a Dell 16-core

computer that has four AMD Quad-core Opteron 8380

processors (codenamed ”Shanghai”) running at 2.5 GHz.

Each Quad-core socket has a 512K L2 cache for each core

and a 6M L3 cache shared by all four cores. The computer

has 16GB RAM and runs Linux 2.6.29. Accordingly, CAB

sets up four squads with four workers each.

Table III
BENCHMARKS USED IN THE EXPERIMENTS

Name Type(bound) Description

Queens(20) CPU N-queens problem
Fft CPU Fast Fourier Transform
Ck CPU Rudimentary checkers
Cholesky CPU Cholesky decomposition
Heat Memory Five-point heat
Mergesort Memory Merge sort on 1024 ∗ 1024 numbers
SOR Memory 2D Successive Over-Relaxation
GE Memory Gaussian elimination algorithm

Table III lists the benchmarks used in our experiments.

The Cilk benchmarks run with CAB without any modifica-

tion. All benchmarks are compiled with “cilkc -O2”, which

is based on gcc 4.4. For each test, every benchmark is run ten

times and the average execution time is used as the result.

A. Performance of memory-bound applications
Fig. 4 shows the performance of four memory-bound

applications with a 1024 ∗ 1024 matrix as input data. We

can see that CAB can significantly improve the performance

of memory-bound applications, with the performance gain

ranging from 10% to 55%. Meanwhile, SOR has achieved up

to 68.7% performance gain with CAB when the input data

is a 512 ∗ 512 matrix (to be explained shortly in scalability

part).
The performance gain of CAB is resulted from the re-

lieved TRICI syndrome. Table IV shows that the L2 and L3

cache misses are prominently reduced in CAB compared

with Cilk, this is because the data set used by a squad is

often shared by the workers of the squad and can fit into the

L3 cache in CAB. Cilk uses random scheduling that results

in larger memory footprint, thus has more cache misses for

workers inside the same socket. Due to the reduced cache

misses, CAB performs significantly better than Cilk.
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Figure 4. Normalized execution time of memory-bound applications with
a 1k*1k matrix as input data.

Table IV
L2/L3 CACHE MISSES IN CAB AND CILK

GE Mergesort Heat SOR
L2 in Cilk 4203604 5717785 8457899 14134418
L2 in CAB 2617207 3448768 5577723 10863876
L3 in Cilk 1545310 1974802 2812464 5259771
L3 in CAB 180145 998605 755786 1256203

B. Effectiveness of automatic DAG partitioning method

In Section III-B, we have proposed a model to calculate

the boundary level BL in order to partition the DAG. The

model uses four parameters: B, M , Sd, and Sc, as shown in

Eq. 4. This experiment uses heat to evaluate the effectiveness

of the model, and we have verified that the model works for

other applications as well.

We evaluate the performance of heat with all possible BL
values. Since the heat program divides the input data into

two parts each time sub-tasks are generated until the data

size becomes 128 rows, there are fewer possible BL values

when the input data sizes are small.

Fig. 5 shows the performance of heat with different input

data sizes and all possible BL values. For example, for a

3k ∗ 2k matrix of double, there are 7 levels (0-6) in the

execution DAG and the overall input data size is 3072 ∗
2048 ∗ 8 = 48MB. According to Eq. 4, CAB calculates

BL as max{�log2 4 + 1�, �log2 (48MB/6MB) + 1�} = 4.

From Fig. 5, we see that heat gains the best performance

for data size 3k∗2k when BL is 4. The BL values calculated

for other data sizes are the ones with the best performance

as well according to Fig. 5. This proves the effectiveness of

Eq. 4 and our automatic DAG partitioning method.

Note that, for larger data sizes, when BL is smaller than 3,

the performance of CAB is worse than Cilk. This is because,

when BL is small, there are only a small number of leaf inter-

socket tasks. In this situation, workload is not balanced well

in CAB, because CAB may not utilize all the sockets due

to the lack of inter-socket tasks. One such extreme case is

when BL = 1, there is only one leaf inter-socket task, and

thus only one squad can get the task.

On the other hand, if BL is too large (e.g., >4), each
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Figure 5. Impact of BL on performance of heat with different input data
size. Our automatic DAG partitioning method can find the best value for
BL.

leaf inter-socket task only contains a small number of intra-

socket tasks. In this situation, the workload within a squad

cannot be balanced well. For example, for BL = 6 in the

case of 3k ∗ 2k, leaf inter-socket tasks are in level 6 and

do not generate any intra-socket tasks. In this case, there is

only one worker contributing to the performance of every

squad.

C. Scalability of CAB

Input data sizes can affect the performance of CAB. If

input data is very large, the performance gain of CAB

tends to be smaller. This experiment uses heat and SOR
to illustrate the scalability of CAB and other benchmarks

show similar results.

Fig. 6 shows the performance of heat and SOR with dif-

ferent input data sizes. We can observe that the performance

gain of heat in CAB is 54.6% when the input data is small

(512*512), but drops to 14% when the input data is large

(4k*4k), the performance gain of SOR in CAB is 68.7%

when the input data is small (512*512) but drops to 13.6%

when the input data is large (4k*4k).

One reason for the diminishing gain is that, with the

increasing input data sizes, the shared data set between intra-

socket tasks becomes relatively smaller, which increases the

proportion of non-shared data and the cache misses in the

leaf inter-socket tasks. Fig. 7 shows the L2 and L3 cache

misses of heat and SOR with different input data sizes. When

the size of input data is small, CAB can reduce nearly 68.2%

L3 cache misses and 43.1% L2 misses compared to Cilk.

When the input data size is large, however, CAB can only

reduce about 4% L3 cache misses and 2.1% L2 misses.

Another reason for the diminishing gain is that, when the

input data is large, the granularity of the leaf tasks becomes

large, which is not good for load balance within a squad.

D. Performance of CPU-bound applications

Since CAB is proposed to relieve the TRICI syndrome of

memory-bound applications, CPU-bound applications can-

not achieve better performance in CAB compared to the
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(a) Performance of Heat in CAB and Cilk
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(b) Performance of SOR in CAB and Cilk

Figure 6. Performance result of Heat and SOR with different input data
sizes.

traditional task-stealing. Therefore, CAB schedules the tasks

of CPU-bound applications as the traditional task-stealing by

setting BL to be 0.

Fig. 8 shows the performance of CPU-bound benchmarks

listed in Table III. For most cases, the extra overhead added

into the applications by CAB is around 1-2%. For fft, the

extra overhead caused by manipulating the variable level in

the task frames is less than 5%, though optimizations are

possible to further reduce this overhead.

VI. RELATED WORK

Task-stealing is increasingly popular for automatic task

scheduling. There has been a lot of research work on its

adaptation and improvement [14], [15], [16], [17], [18], [19].

There are generally two policies for task-stealing: child-

first and parent-first. In [13], the performance of the t-

wo policies was compared. Both child-first and parent-

first policies have their strengths and are used pervasively

in task-stealing schedulers. For example, MIT Cilk [4],

Cilk++ [5], and Intel TBB [6] use the child-first policy, while

Java’s fork-join framework [8], Wool [20] and Task Parallel

Library (TPL) [21] use the parent-first policy. Also there are

some task-stealing schedulers that adopt both policies, e.g.,
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(a) L2 and L3 cache misses of Heat in CAB and Cilk
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(b) L2 and L3 cache misses of SOR in CAB and Cilk

Figure 7. L2 and L3 cache misses of Heat and SOR in Cilk and CAB.
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Figure 8. Normalized execution times of CPU-bound applications in CAB.
By setting BL to be 0, CAB schedules tasks as the traditional task-stealing.

SLAW [22]. In SLAW, tasks are generated following either

the child-first policy or the parent-first policy according to

the stack pressure and task-stealing conditions. Although

SLAW uses both policies as in our CAB scheduler, it does

not associate the policies to the DAG level of tasks as we do

in CAB. We adopt the parent-first policy to quickly generate

the tasks in the inter-socket tier, but use the child-first policy
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to prevent the excessive task proliferation in the intra-socket

tier.

Reducing the overhead of task-stealing has been a popular

research issue. The overhead of task-stealing mainly includes

task generating overhead and large numbers of unnecessary

steals. AdaptiveTC [16] proposes an adaptive task generation

strategy to keep all workers busy most of the time while

reducing the number of tasks generated. XWS [10] proposes

an adaptive batching schemes to batch several small tasks

together into a larger task. In [17], a non-blocking steal-

half algorithm was introduced for a worker to steal half

of the tasks from the victim worker, which can reduce the

number of steals. Wool [20] proposes a low overhead task-

stealing algorithm to cope with the high overhead of task

creating in applications with fine grained tasks. In [18],

an idempotent task-stealing was introduced and several

algorithms were proposed to exploit the relaxed semantics

of task execution in order to achieve a better performance.

The relaxed semantics guarantee that each task is eventually

executed at least one time, instead of exactly one time. The

techniques of these studies are orthogonal to our approach

and could be integrated into our CAB scheduler to further

reduce task-stealing overhead.

Other studies have extended task-stealing to asymmetric

multi-processors and distributed memory systems. In [23],

a work-stealing model in which each processor maintains

an estimation of its speed was presented. The model allows

a fast processor to grab tasks from a slow processor when

all the task pools are empty. In [24], a scalable task-stealing

scheduler that works on both shared memory and distributed

memory architectures was proposed to balance workload

among cores and processors dynamically. In [25], a runtime

system was proposed for supporting task-stealing on 8,192

processing cores on a cluster computer with distributed

memory. In [26], Guoping et al. designed a manycore

architecture to support task-stealing at hardware level. In

contrast to these special architectures, CAB is designed for

the popular MSMC architecture.

Cache awareness is another interesting issue in task-

stealing. In [27], a theoretical bound on the number of

cache misses for random task-stealing was presented and

a locality-guided task-stealing algorithm was implemented

on a single-socket SMP. In [28], cache behaviors of task-

stealing and a parallel depth-first scheduler were compared

and analyzed on a multi-core simulator that has shared L2

caches among cores. It proposed to promote constructive

cache sharing through controlling task granularity. However,

the above studies did not take the MSMC architecture into

consideration, and thus did not address the TRICI syndrome

described in this paper.

There are also some researches aiming to gain good cache

performance based on other techniques. In [29], a hybrid

parallel depth first scheduling algorithm was proposed to

avoid scheduling tasks that have large data sets (greater than

the L2 cache) onto the same core simultaneously to reduce

capacity and conflict cache misses. In [30], a bank-aware

cache partitioning scheme was proposed. In the scheme, the

last level shared cache was partitioned optimally for multiple

running applications based on its cache miss prediction

model. In [31], a profile-based cache-aware task dividing

scheme was proposed to minimize cache misses for nested

parallel loops in multi-core architecture. However, these

techniques did not target problems in task-stealing.

VII. CONCLUSIONS AND FUTURE WORK

Traditional random task-stealing suffers from the TRICI

syndrome in the MSMC architecture. To address this prob-

lem, we have designed and implemented CAB scheduler,

which automatically partitions the execution DAG into the

inter-socket and the intra-socket tiers. Through careful cal-

culations, tasks that have data sharing are placed on the

same CPU socket, thus greatly reducing the number of

cache misses. Experimental results demonstrate that CAB

can achieve up to 68.7% performance gain for memory-

bound applications and the extra overhead for CPU-bound

applications is only 1-2%.

One of our future work is to design a more flexible DAG

partitioning method that can decide inter-socket and intra-

socket tasks with heuristic information and compiler support

instead of a single boundary level. Pre-fetching with helper

thread is another technique for improving performance [3].

An interesting future direction is to integrate this technique

into CAB for more performance gains.
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