
CATS: Cache Aware Task-Stealing based on Online
Profiling in Multi-socket Multi-core Architectures

Quan Chen
Shanghai Key Laboratory of

Scalable Computing and
Systems,

Department of Computer
Science, Shanghai Jiao Tong

University, China
chen-quan@sjtu.edu.cn

Minyi Guo
∗

Shanghai Key Laboratory of
Scalable Computing and

Systems,
Department of Computer

Science, Shanghai Jiao Tong
University, China

guo-my@cs.sjtu.edu.cn

Zhiyi Huang
Department of Computer

Science,
University of Otago,

New Zealand
hzy@cs.otago.ac.nz

ABSTRACT
Multi-socket Multi-core architectures with shared caches in
each socket have become mainstream when a single multi-
core chip cannot provide enough computing capacity for high
performance computing. However, traditional task-stealing
schedulers tend to pollute the shared cache and incur severe
cache misses due to their randomness in stealing. To ad-
dress the problem, this paper proposes a Cache Aware Task-
Stealing (CATS) scheduler, which uses the shared cache effi-
ciently with an online profiling method and schedules tasks
with shared data to the same socket. CATS adopts an online
DAG partitioner based on the profiling information to en-
sure tasks with shared data can efficiently utilize the shared
cache. One outstanding novelty of CATS is that it does not
require any extra user-provided information. Experimen-
tal results show that CATS can improve the performance
of memory-bound programs up to 74.4% compared with the
traditional task-stealing scheduler.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement Techniques

Keywords
Cache Aware, Task-stealing, Online Profiling, Multi-socket
Multi-core, Cache misses

1. INTRODUCTION
Multi-core processors have become mainstream since they

have better performance per watt and larger computational
capacity than complex single-core processors. However, a s-
ingle CPU die can hardly contain too many cores (e.g., more

∗Minyi Guo is the correspondence author of this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’12, June 25–29, 2012, San Servolo Island, Venice, Italy.
Copyright 2012 ACM 978-1-4503-1316-2/12/06 ...$10.00.

than 128 cores) due to the physical limitations in industrial
manufacture. To fulfill the urgent desire on powerful com-
puters, many multi-core CPUs are integrated together into a
Multi-socket Multi-core (MSMC) architecture. In an MSM-
C architecture, each CPU die is plugged into a socket and
the cores in the same socket have a shared cache; howev-
er, the cores from different sockets can only share the main
memory.

To fully utilize the MSMC architectures, many parallel
programming environments have been proposed. In some of
them, such as Pthread [8], MPI [16] and Maotai [29], par-
allelism is expressed through multithreading. Programmers
need to launch threads and assign tasks to these threads
manually in multithreading. However, the manual assign-
ment of tasks is often burdensome for developing applica-
tions. To relieve the burden of parallelization and task as-
signment, parallel programming environments, such as Cilk [7],
Cilk++ [20], TBB [25], X10 [19], and OpenMP [2], assign
and schedule tasks automatically. Task-sharing [2] and task-
stealing (also known as work-stealing1) [14] are the two most
famous task scheduling strategies.

In task-sharing, workers (i.e. threads) push new tasks
into a central task pool when they are generated. Tasks
are popped out from the task pool when workers are free to
execute them. The push and pop operations need to lock the
central task pool, which often causes serious lock contention.

Task-stealing, on the other hand, provides an individual
task pool for each worker. Most often each worker push-
es tasks to and pops tasks from its own task pool without
locking. Only when a worker’s task pool is empty, it tries to
steal tasks from other workers with locking. Since there are
multiple task pools for stealing, the lock contention is much
lower than task-sharing even at task steals. Therefore, task-
stealing performs better than task-sharing as the number of
workers increases.

However, both task-sharing and task-stealing strategies
schedule tasks randomly to different cores. This randomness
can cause shared cache misses and degrade the performance
of memory-bound applications on MSMC architectures (to
be discussed in detail in Section 2). For example, two tasks
with shared data may be allocated to different sockets due to
the randomness in these strategies. In this case, both tasks

1We use “task-stealing” in this paper for the consistency of
terms.

163

cannot share the data loaded to the shared cache but have
to read the shared data from the main memory which could
be hundreds times slower than the shared cache. If the two
tasks are scheduled to cores in the same socket, only one of
them needs to read the shared data from the main memory
while the other task can access the shared data from the
shared cache directly.

Based on this observation, this paper proposes a Cache
Aware Task-Stealing (CATS) scheduler that automatical-
ly schedules tasks with shared data into the same socket
for memory-bound applications based on Jacobi method.
CATS is proposed for systems like MIT Cilk and targets
applications with tree-shaped execution DAG (Directed A-
cyclic Graph). CATS consists of two parts: an online DAG
partitioner and a bi-tier task-stealing scheduler. The on-
line DAG partitioner automatically divides the execution
DAG of a parallel program into the inter-socket tier and
the intra-socket tier based on the profiling information col-
lected during execution. The bi-tier task-stealing scheduler
allows tasks in the inter-socket tier to be stolen across sock-
ets, while tasks in the intra-socket tier are scheduled within
the same socket. Since tasks from the intra-socket tier often
share data, CATS uses the shared cache efficiently.

The contributions of this paper are as follows.

• We propose an online profiling method that automat-
ically collects run-time profiling information for cache
aware task scheduling. It enables the task scheduler to
optimally utilize the shared cache without extra user-
provided information.

• We propose an online DAG partitioner that optimally
divides tasks into the inter-socket tier and the intra-
socket tier based on the profiling information, and a bi-
tier task-stealing algorithm that schedules tasks with
shared data to the same socket.

• We demonstrate that CATS significantly reduces the
shared cache misses and thus improves the performance
of memory-bound applications. The experiment shows
that CATS can achieve a performance gain of up to
74.4% for memory-bound applications.

The rest of this paper is organized as follows. Section 2
describes the problem and explains the motivation of CAT-
S. Section 3 presents CATS, including the online DAG par-
titioner and the bi-tier task-stealing scheduler. Section 4
shows the experimental results and the limitations of CAT-
S. Section 5 discusses the related work. Section 6 draws
conclusions and sheds light on future work.

2. PROBLEM AND MOTIVATION
For many parallel programming environments such as Cilk,

the execution of a parallel program can often be expressed
by a Directed Acyclic Graph (DAG) G = (V,E), where V
is a set of nodes, and E is a set of directed edges [15]. Each
node in a DAG represents a task (i.e., a set of instruction-
s) that must be executed sequentially without preemption,
and the edges in a DAG correspond to the dependence rela-
tionship among the nodes. Fig. 1 shows execution DAG of a
general parallel program. In the figure, the solid lines repre-
sent the task generating relationship and the strings by the
side of nodes are the identifiers of the corresponding tasks.

2.1 The problem
We use Fig. 1 as an example to explain the problem of

shared cache pollution in an MSMC architecture. In many
parallel programs based on the Jacobi iteration algorith-
m, neighbor tasks need to access some shared data. For
example, Five-point heat distribution and Successive Over-
Relaxation are examples of such parallel programs. There-
fore, γ1 and γ2, γ3 and γ4 in Fig. 1 have shared data respec-
tively.

Spawn

Iteration

Main

1 2 3 4

1

1_1

1_1_1 1_1_2

Figure 1: A general execution DAG for iteration-
based parallel programs.

We assume the parallel program in Fig. 1 runs on a dual-
socket dual-core architecture. If γ1, γ2, γ3 and γ4 are sched-
uled as shown in Fig. 2(a), the shared data between γ1 and
γ2 and the shared data between γ3 and γ4 is only read into
the shared cache once from the main memory. Since most
tasks can access the shared data in the shared cache of the
socket, cache misses are reduced.

C C C C

2 1 3 4

(a) Optimal scheduling

C C C C

13 2 4

(b) Another possible
scheduling

Figure 2: Two possible scheduling of γ1, γ2, γ3 and
γ4 on a dual-socket dual-core architecture. The first
scheduling can gain performance improvement due
to cache sharing and reduction of memory footprint.

However, for random task-stealing, since it randomly choos-
es a victim to steal tasks, γ1, γ2, γ3 and γ4 are likely to be
scheduled to the cores as shown in Fig. 2(b). In this case,
each task needs to read all its data from the main memo-
ry. This larger memory footprint leads to more compulsory
cache misses. Even worse, if the memory footprint exceeds
the capacity of the shared cache, the situation leads to more
capacity cache misses and increases the chances of conflict
cache misses. The resulted larger number of cache misses
leads to worse performance of memory-bound applications.

Though there were some task schedulers proposed [5, 6,
10] to reduce cache misses, they either need extra user-
provided information [10], or are not general enough for
MSMC architectures [5, 6].

2.2 Proposed solution
If a task-stealing scheduler can ensure tasks with shared

data are scheduled to the same socket as shown in Fig. 2(a),

164

the shared cache misses will be minimized and the perfor-
mance of memory-bound applications can be improved. To
achieve the purpose, we propose the Cache Aware Task-
Stealing (CATS) scheduler in this paper.

CATS is proposed based on the following three observa-
tions of the execution of parallel programs as shown in Fig. 1.
First, parallel tasks create child tasks recursively until the
data set for each leaf task is small enough. During the proce-
dure, only the leaf tasks physically touch the data. Second,
a parallel program often works on the same data set for a
large number of iterations. Finally, neighbor tasks usually
share some data.

Based on the runtime profiling information, CATS can
divide an execution DAG into the inter-socket tier and the
intra-socket tier. For example, CATS may divide the execu-
tion DAG in Fig. 1 into two tiers separated by the shaded
tasks. The shaded tasks are called leaf inter-socket tasks.
Tasks above the leaf inter-socket tasks, including the leaf
inter-socket tasks, are called inter-socket tasks, which be-
long to the inter-socket tier. Tasks in a subtree rooted with
a leaf inter-socket task are called intra-socket tasks, which
belong to the intra-socket tier. A subtree rooted with a leaf
inter-socket task is called an intra-socket subtree. For exam-
ple, in Fig. 1, tasks in an ellipse consist in an intra-socket
subtree. The goal of CATS is to schedule tasks in the same
intra-socket subtree within the same socket. In this way,
CATS can ensure γ1 and γ2 (or γ3 and γ4) to be executed
in the same socket.

However, to achieve the optimal scheduling, it is very chal-
lenging to find the proper leaf inter-socket tasks so that tasks
in the same intra-socket subtree will be able to utilize the
shared cache efficiently. If an intra-socket subtree is too
large, the involved data can be too large to fit into the shared
cache of the socket. On the other hand, if an intra-socket
subtree is too small, the workload of the subtree can be too
small to get better balanced among the cores of the same
socket.

CATS uses an online DAG partitioner to find leaf inter-
socket tasks and partition an execution DAG into two tier-
s. When CATS starts to execute a parallel program, the
partitioner first profiles the program in the first iteration.
Based on the profiling information, the online DAG parti-
tioner adaptively divides the execution DAG into two tier-
s (to be discussed in Section 3.2). According to our first
observation of parallel programs, the collected profiling in-
formation in the first iteration can be used to predict the
execution behavior of the following iterations. Therefore,
an optimal partitioning of DAG based on the profiling in-
formation of the first iteration will also be optimal for the
following iterations.

After the runtime partitioning of the DAG, a bi-tier task-
stealing algorithm is adopted in CATS to schedule tasks in
the two tiers differently. The inter-socket tasks are sched-
uled across sockets, while the tasks in the same intra-socket
subtree are scheduled within the same socket. CATS ensures
that each socket can only execute one intra-socket subtree
at the same time to avoid cache pollution. In this way, the
shared data can be reused without reloading among tasks
within an intra-socket subtree. That is, the scheduling in
Fig. 2(a) can be enforced to reduce cache misses. Fig. 3 il-
lustrates the detailed processing flow of a parallel program
in CATS.

Start
Execution Profiling End

First Iteration

Partitioning

Online DAG partitioner Bi-tier task-stealing scheduler

Executing

The following Iterations

Figure 3: The processing flow of a parallel program
in CATS.

3. CACHE AWARE TASK-STEALING
This section presents CATS, a Cache Aware Task-Stealing

scheduler. First, we give the CATS runtime environment.
Then we describe an online DAG partitioner for dividing
the execution DAG into two tiers. Lastly, we present the bi-
tier task-stealing algorithm, the task-generating policy and
the implementation details in CATS.

3.1 CATS runtime environment
To support the processing flow in Fig. 3, we have built

a runtime environment for CATS as follows. For an M -
socket N-core architecture, CATS launches M ×N workers
(i.e., threads) at runtime and affiliates each worker with one
individual hardware core as shown in Fig. 4. For convenience
of presentation, we use the term core to mean a worker in
the rest of the paper.

In each socket, only one core is selected as the head core
of the socket to look after the inter-socket task scheduling.
In CATS, we choose “core 0” in each socket as the socket’s
header core.

Figure 4: CATS runtime environment in a dual-
socket dual-core architecture. Each socket has an
inter-socket task pool and each core has an intra-
socket task pool.

In order to schedule inter-socket tasks and intra-socket
tasks in different ways in bi-tier task-stealing, CATS creates
an inter-socket task pool for each socket to store inter-socket
tasks, and an intra-socket task pool for each core to store
intra-socket tasks, as shown in Fig. 4. A task pool is a
double-ended queue for storing tasks.

During the first iteration of a parallel program, all the
tasks are generated and pushed into intra-socket task pools
when they are generated. In this case, tasks are scheduled
adopting traditional task-stealing policy. That is, in the first
iteration, tasks in intra-socket task pools can be scheduled
across sockets since the profiling information has not been
collected and thus the execution DAG has not been parti-
tioned. In the following iterations, tasks are generated and
pushed into different pools accordingly. If core c in socket ρ
generates a task γ that is an inter-socket task, γ is pushed
into ρ’s inter-task pool. Otherwise, if γ is an intra-socket
task, it is pushed into c’s intra-socket task pool.

165

We present the online DAG partitioner and the bi-tier
task-stealing scheduler in detail in the following sections.

3.2 Online DAG partitioner
As explained in Section 2, to partition an execution DAG

into the inter-socket tier and the intra-socket tier optimally,
the most challenging problem is to find the proper leaf inter-
socket tasks. Once the proper leaf inter-socket tasks are
identified, the DAG can be easily divided into two tiers:
all the tasks above the leaf inter-socket tasks (including the
leaf inter-socket tasks) belong to the inter-socket tier, and
those tasks in the subtrees rooted with leaf inter-socket tasks
belong to the intra-socket tier.

An optimal partitioning of an execution DAG should sat-
isfy two constraints. The first constraint is that, for any
intra-socket subtree ST , the involved data of all the tasks
in ST is small enough to fit into the shared cache of a sock-
et. The second constraint is that an intra-socket subtree ST
should be large enough to allow a socket to have sufficient
intra-socket tasks.

To fulfill the two constraints when dividing an execution
DAG, for any task γ in the execution DAG, CATS should
collects its involved data size. For convenience of descrip-
tion, we use Size Of Involved Data (SOID) to represent the
involved data size of a task γ. That is, SOID includes the
data accessed by all tasks in the subtree rooted with γ. Once
the SOIDs for all tasks in the execution DAG are known, the
online DAG partitioner can divide the execution DAG into
two tiers optimally.

3.2.1 Online Profiling
In order to collect SOIDs of all the tasks, CATS pro-

files the program during the first iteration of the execu-
tion. During the online profiling, we use the hardware Per-
formance Monitoring Counters (PMC) [3] to collect cache
misses, based on which the SOIDs for all tasks are calcu-
lated. The performance counter event we have used is the
last level private data cache (e.g. L2 in AMD Quad-core
Opteron 8380) misses. That is, we have used the perfor-
mance counter event “07Eh” with mask of “02h” to collect
the last level private data cache misses in AMD Quad-core
Opteron 8380. For detailed information of the performance
counter events, refer to BIOS and Kernel Developer’s Guide
of the corresponding processor. Though it is straightforward
to collect the event statistics of the last level private data
cache misses in modern multi-core machines like X86 64, it
is very tricky to calculate the SOIDs of the tasks based on
the last level private data cache misses.

First, limited by the hardware PMCs, a core can only
collect the cache misses of its own, but a task may have
multiple child tasks executing on different cores. Therefore,
it is impossible to collect the overall cache misses for a task
directly.

Second, it is nontrivial to relate the private cache misses
to the SOID of a task. For a task γ that runs on a core c
in socket ρ, if γ fails to get its data from the last level pri-
vate cache of c, it requests the data from the shared cache
of ρ. Since c does not execute other tasks when it is exe-
cuting γ, the last level private cache misses of c are totally
caused by γ. The last level private cache misses of c can be
used to approximate to the size of data accessed by γ for the
following reasons. Many memory-bound applications adopt
data parallelism. As mentioned in our second observation in

Section 2.2, only the leaf tasks physically access data. The
data of leaf tasks do not have much overlapping with each
other. Even when two neighbor leaf tasks have a small por-
tion of shared data, the chances for them to be executed in
the same core are small in a random task-stealing scheduler,
which is adopted during the profiling stage. Therefore, the
above approximation is accurate enough for us to calculate
the SOIDs of all tasks.

Based on the collected last level private cache misses of
γ, its SOID is calculated as follows. If γ is a leaf task, the
number of cache misses of γ times the cache line size (e.g.,
64 bytes in AMD Quad-core Opteron 8380) is γ’s SOID.
Otherwise, if γ is not a leaf task, its SOID is the sum of its
cache misses times the cache line size plus the SOIDs of all
its child tasks. Given a task β with n sub-tasks β1, β2, ...,
βn. Suppose M is β’s number of cache misses times the size
of cache line, and the SOIDs of its child tasks are S1, S2, ...,
Sn respectively, then β’s SOID, denoted by Sβ , is calculated
as in Eq. (1).

Sβ = M +
n∑

i=1

Si (1)

Based on Eq. (1), Fig. 5 presents an example of calculat-
ing SOIDs for all the tasks. In the figure, Si is the SOID
for leaf task γi, but represents the size of data physically ac-
cessed by the task itself for non-leaf tasks. In fact, for many
memory-bound applications, Si for non-leaf tasks is very s-
mall, if it is not zero, since non-leaf tasks do not physically
access data.

S4 S5 S6 S7 S8

S2+(S4+S5) S3+(S6+S7+S8)

...

S1+(S2+S4+S5)+
(S3+S6+S7+S8)

Return

1

2 3

4 5 6 7 8

Figure 5: Collect Size Of Involved Data (SOID) for
tasks.

As shown in Fig. 5, the SOID of a task is returned to its
parent task when it is completed. For example, in Fig. 5, γ2’s
SOID is added to γ1’s SOID when γ1 is completed. There-
fore, when all the tasks in the first iteration are completed,
the SOIDs of all the tasks can be calculated.

3.2.2 DAG Partitioning
Based on the SOIDs of tasks that are collected in the first

iteration, the online DAG partitioner divides the execution
DAG into inter-socket tier and intra-socket tier automati-
cally.

To satisfy the aforementioned constraints, the online DAG
partitioner identifies leaf inter-socket tasks as follows. For
a task α and its parent task αp, let Dα and Dαp represent
SOIDs of α and αp respectively. α is a leaf inter-socket task
if and only if Dα is smaller than the size of the shared cache
and Dαp is larger than the size of the shared cache.

More precisely, given a task α and its parent task αp, our
DAG partitioning method determines α’s tier as follows.

166

• If both Dαp and Dα are larger than the shared cache
of a socket, α is an inter-socket task, as shown in
Fig. 6(a).

• IfDαp is larger than the shared cache andDα is smaller
than the shared cache of a socket, α is a leaf inter-
socket task, as shown in Fig. 6(b).

• If both Dαp and Dα are smaller than the shared cache,
α is an intra-socket task, as shown in Fig. 6(c).

P c

c

(a) α is an inter-
socket task

P c

c

(b) α is a leaf
inter-socket task

P c

c

(c) α is an intra-
socket task

Figure 6: Conditions that α is an inter-socket task,
leaf inter-socket task or intra-socket task.

After the profiling and the partitioning, the online DAG
partitioner has already divided the execution DAG into t-
wo tiers optimally. Then, based on the partitioning, bi-tier
task-stealing can be adopted to schedule tasks for optimizing
shared cache in the following iterations.

In order to identify the same task in the following itera-
tions, during the execution of a parallel program, each task
is given an identifier (a string) according to the spawning
relationship between tasks. If a task γ’s identifier is S, then
its ith sub-task’s identifier is S i. For example, Fig. 1 shows
the way of constructing identifiers for tasks. The strings be-
side the tasks are the identifiers in Fig. 1. The identifiers of
all the completed tasks are saved in a hash table with their
SOIDs. When a new task is spawned, CATS tries to find
its identifier in the hash table. If the identifier is found, it
means the first iteration has completed since a new task in
the same location of the execution DAG has been spawned.
In this case, CATS uses the bi-tier task-stealing scheduler
to schedule tasks based on their tiers which are decided ac-
cording to their SOIDs as shown above.

It is worth noting that, in our implementation, we obtain
the size of the shared cache from /proc/cpuinfo by the CAT-
S runtime system. To this end, all the needed information
for optimal bi-tier task-stealing is obtained automatically by
the runtime system of CATS. In this way, CATS can auto-
matically improve the performance of parallel application
without human intervention.

3.3 Bi-tier task-stealing scheduler
Task-stealing algorithm is used by a free core to obtain

or steal a new task. When CATS starts to execute a par-
allel program, during the first iteration, CATS has not par-
titioned its execution DAG into two tiers. Therefore, the
cores adopt the traditional task-stealing algorithm to obtain
or steal a new task in the first iteration. In the following it-
erations, CATS adopts a bi-tier task-stealing algorithm to
schedule tasks so that tasks in a subtree rooted with a leaf
inter-socket task are scheduled to the same socket. Since
traditional task-stealing has been discussed in detail in [14],
this section only presents the bi-tier task-stealing in CATS.

When a core c in socket ρ is free, it first tries to obtain a
task from its own intra-socket task pool. If its own task pool
is empty, c tries to steal a task from the intra-socket task
pools of other cores in ρ. If the task pools of all the cores in
ρ are empty, the head core of ρ tries to obtain a task from
its own inter-socket task pool. If its inter-socket task pool is
empty, the head core tries to steal an inter-socket task from
other sockets.

In CATS, only the head core of each socket can steal inter-
socket tasks so that the lock contention of the inter-socket
task pools is reduced. In addition, cores in the same sock-
et are not allowed to execute tasks in different intra-socket
subtrees at the same time. This policy can avoid the situa-
tion where different intra-socket subtrees pollute the shared
caches with different data sets. The downside of the policy
is that some cores in a socket may be idle waiting for other
cores to finish their tasks. An alternative policy is to allow
a socket to execute tasks from more than one intra-socket
subtrees at the same time. This alternative policy can en-
sure most cores are busy, but different intra-socket subtrees
may pollute the shared caches, which leads to more cache
misses. For the memory-bound applications that CATS is
targeting, the cache misses are more critical to the perfor-
mance according to our experimental results. Therefore, we
have adopted the first policy in CATS.

3.4 Task generating Policy
Two types of task-generating policies, parent-first and

child-first, can be adopted for task stealing. In the parent-
first policy, a core continually executes the parent task after
spawning a child task, leaving the child task for later ex-
ecution or for stealing by other cores. One such example
is the help-first policy in [17, 18]. Parent-first policy works
better when the steals are frequent and the execution DAG
is shallow [17]. In the child-first policy, a core executes the
child task immediately after the child is spawned, leaving
the parent task for later execution or for stealing by other
cores. For example, MIT Cilk uses the child-first policy, a-
ka. work-first in [7]. Child-first policy works better when
the steals are infrequent [17].

During the first iteration of a parallel program, tasks have
not been divided into inter-socket tasks and intra-socket
tasks. For the convenience of collecting SOID, we choose
to adopt the parent-first policy in the first iteration.

After the execution DAG has been divided into two tier-
s, CATS generates inter-socket tasks with the parent-first
policy and generates intra-socket tasks with the child-first
policy. CATS adopts the parent-first policy for generating
inter-socket tasks so that leaf inter-socket tasks can be gen-
erated as soon as possible. The parent-first policy is more
efficient in this case because inter-socket tasks take short
time and thus are frequently stolen. On the other hand,
CATS adopts the child-first policy to generate intra-socket
tasks. The child-first policy works better in this case be-
cause the leaf tasks take longer time and thus the steals are
infrequent. Also the child-first policy is more space efficient.

3.5 Implementation
We implement CATS in MIT Cilk that is one of the earli-

est task-stealing programming environments [14]. MIT Cilk
consists of a compiler and a scheduler. Cilk compiler, named
as cilk2c, is a source-to-source translator that transforms a

167

Cilk source into a C program. Cilk programs can run with
CATS without any modifications.

The compiler is modified to support both the parent-first
and the child-first task-generating policy. At each spawn,
CATS finds out whether the spawn happens in the first it-
eration of the program. If it is in the first iteration, the
to-be-spawned task is spawned with the parent-first policy.
If it is not in the first iteration and the to-be-spawned task’s
SOID is smaller than the size of the shared cache, CATS
spawns the task with the child-first policy and pushes the
task into the intra-socket task pool of the current core. Oth-
erwise, CATS spawns the task with the parent-first policy
and pushes the task into the inter-socket task pool of the
current socket.

Since CATS aims to reduce shared cache misses, CAT-
S may not work very well for CPU-bound applications s-
ince the cache misses have neutral effect on their perfor-
mance. On the contrary, CATS may adversely affect the
performance of the CPU-bound applications. To avoid the
problem, an interface could be provided for users so that
they can tell CATS that whether the to-be-executed pro-
gram is CPU-bound or not through command line. How-
ever, even if the users could not figure out if the program
is memory-bound or CPU-bound, CATS has provided the
following mechanism to identify whether it is CPU-bound
based on the profiling information collected in the first iter-
ation. Given an MSMC architecture with k levels of caches
and the cache miss penalty (i.e. the delay) of the ith level
cache is pi. Let ni represent the ith level cache misses of γ.
The normalized cache misses of γ is M =

∑k
i=1(ni × pi

p1
).

Suppose the number of instructions in γ is N , we can use
CMPI (Cache Misses Per Instruction), CMPI γ = M

N
, to de-

cide γ is CPU-bound or memory-bound. If CMPI γ is smaller
than a predefined threshold, γ is CPU-bound. If most tasks
are CPU-bound, CATS treats the program as a CPU-bound
program. In this case, CATS simply generates and schedules
tasks of CPU-bound programs in traditional task-stealing.
We have also discussed ways to optimize the performance of
CPU-bound programs in [9] by balancing workloads among
cores. Experiment results in Section 4.3 show that the extra
overhead in CATS for CPU-bound programs is negligible.

4. EVALUATION
We use Otago’s Dell 16-core computer that has four AMD

Quad-core Opteron 8380 processors (codenamed“Shanghai”)
running at 2.5 GHz to evaluate the performance of CATS.
Each Quad-core socket has a 512K private L2 cache for each
core and a 6M L3 cache shared by all four cores. The com-
puter has 16GB RAM and runs Linux 2.6.29.

Since CATS is proposed to reduce cache misses, we use
memory-bound benchmarks to evaluate the performance of
CATS. However, CPU-bound benchmarks are also used to
measure the extra overhead of CATS compared with random
task-stealing.

To evaluate the performance of CATS in different scenar-
ios, we use only benchmarks that have both balanced and
unbalanced execution DAGs in the experiments, although
CATS can improve the performance of many similar pro-
grams (e.g., almost all the stencil-based programs [4]). Ta-
ble 1 lists the used CPU-bound and memory-bound bench-
marks. Heat-ub, GE-ub and SOR-ub implement the same
algorithm as Heat, GE and SOR respectively, except their
execution DAGs are unbalanced trees. For example, we im-

Table 1: Benchmarks used in the experiments

Name Bound Description

Mandelbrot CPU Calculate Mandelbrot Set
Queens(15) CPU N-queens problem
FFT CPU Fast Fourier Transform
GA CPU Island Model of Genetic Algorithm
Knapsack CPU 0-1 knapsack problem
Heat Memory Five-point heat
Heat-ub Memory Five-point heat (unbalance)
SOR Memory Successive Over-Relaxation
SOR-ub Memory Successive Over-Relaxation (ub)
GE Memory Gaussian elimination
GE-ub Memory Gaussian elimination (unbalance)

plement Heat-ub in Algorithm 1. According to the algorith-
m, the branching degree of tasks created from cilk procedure
heat is 2 while the branching degree of tasks created from
cilk procedure heat2 is 4. Obviously, Heat-ub’s DAG is an
unbalanced tree. GE-ub and SOR-ub are implemented in
the similar way.

Algorithm 1 The source code skeleton of Heat-ub

cilk void heat (int start, int end) {
int mid = (start + end) / 2;
spawn heat2 (start, mid);
spawn heat (mid, end);
sync; return;

}
cilk void heat2 (int start, int end) {

int quad = (end - start) / 4;
spawn heat (start, start + quad);
spawn heat (start + quad, start + 2 * quad);
spawn heat2 (start + 2 * quad, start + 3 * quad);
spawn heat (start + 3 * quad, end);
sync; return;

}

As mentioned before, CATS affiliates each worker with a
hardware core. However, MIT Cilk does not affiliate workers
with the cores. Therefore, we have modified the MIT Cilk
(denoted as Cilk for short) to affiliate each worker with a
hardware core (denoted as Cilk-a for short) in order to ensure
fair comparison, since the affiliation of workers with cores
can improve the performance of memory-bound applications
(to be shown in Fig. 7).

Cilk-a uses the pure child-first policy to schedule tasks,
while CATS flexibly uses both the child-first and parent-
first policies to achieve the best performance. We implement
Cilk-a and CATS based on MIT Cilk. The MIT Cilk pro-
grams run with Cilk-a and CATS without any modification.

All benchmarks are compiled with “cilk2c -O2” based on
gcc 4.4.3. Furthermore, for each test, every benchmark is
run ten times. Since the execution time is very stable, the
average execution time is used in the final results.

4.1 Performance of memory-bound programs
Fig. 7 shows the performance of memory-bound bench-

marks in Cilk, Cilk-a and CATS with a 1024 × 512 matrix
as the input data. For GE and GE-ub, the used input data
is a 1024 × 1024 matrix.

168

From the figure we can find that Cilk-a provides much bet-
ter performance compared with Cilk for all the benchmarks.
For memory-bound applications, the better performance in
Cilk-a results from the affiliation of the workers with the
cores. In the rest of our experiments, we only compare the
performance of CATS with Cilk-a.

GE GE-ub Heat Heat-ub SOR SOR-ub
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e

 Cilk-a Cilk CATS

Figure 7: The performance of memory-bound
benchmarks in Cilk-a, Cilk and CATS.

As we can see from Fig. 7, CATS can significantly improve
the performance of memory-bound applications compared
to Cilk-a while the performance improvement ranges from
35.3% to 74.4%.

To explain why CATS can improve the performance of
memory-bound applications compared with Cilk-a, we col-
lect the cache misses of all the benchmarks and list them
in Table 2. Observed from the table, we can find that the
shared cache (L3) misses are prominently reduced while the
private cache (L1 and L2) misses are also slightly reduced in
CATS compared with Cilk-a. Since CATS schedules tasks
with shared data into the same socket, the shared cache
misses have been significantly reduced.

Table 2: Cache misses in Cilk-a and CATS (*1E6)
Application Scheduler L1 L2 L3

GE
Cilk-a 60.8 58.8 14.5
CATS 53.9 50.3 2.94

GE-ub
Cilk-a 37.2 37.1 10.7
CATS 23.9 20 2.15

Heat
Cilk-a 82.7 79.6 24.8
CATS 71.1 67.5 5.9

Heat-ub
Cilk-a 82.2 78.7 29.7
CATS 71.3 67.6 3.72

SOR
Cilk-a 88.5 85 29.6
CATS 70.7 66.2 4.75

SOR-ub
Cilk-a 89.8 85.5 30.7
CATS 73.6 67.4 8.27

Although scheduling tasks with shared data to the same
socket only reduces the shared L3 cache misses, the affilia-
tion of an intra-socket subtree with a socket in CATS can
help reduce the L2 cache misses slightly. In CATS, for a
task γi in an intra-socket subtree, if it is executed by core c
in socket ρ, its neighbor tasks (i.e., γi−1 and γi+1) are also
executed by c as well unless they are stolen by other cores
in ρ. Compared with random task-stealing where any free
cores can steal γi’s neighbor tasks, there are fewer cores that
can steal γi’s neighbor tasks in CATS. Therefore, the prob-
ability that neighbor tasks are executed by the same core is

larger in CATS. For this reason, the private cache (e.g., L2)
misses have also been slightly reduced in CATS.

SOID = 17.9MB

8.57MB 8.52MB

3.79MB 4.54MB 4.79MB 3.72MB

16MB

8MB 8MB

4MB 4MB 4MB 4MB

...... ...

Figure 8: Calculated SOIDs of tasks in Heat with a
1024 × 512 matrix as input data.

Fig. 8 shows the SOIDs of Heat with a 1024× 512 matrix
as input data that are calculated with Eq. (1). The real
involved data size of tasks in Fig. 8 are shown in the circles.
Since Heat uses two matrices of “double” during the execu-
tion, the overall input data size is 1024×512×16×2 = 16MB.
Then the real data set is evenly divided every time when the
tasks are spawned. From the figure, we can find that the
calculated SOIDs are close to the real involved data sizes,
which shows our online DAG partitioner is reasonably accu-
rate. In future, to calculate SOIDs more accurately, we will
explore more hardware performance counters. Another pos-
sible way to improvement is to adopt the technique in [26]
in our online DAG partitioner.

4.2 Scalability of CATS
To evaluate scalability of CATS in different scenarios, we

use benchmarks that have both balanced and unbalanced ex-
ecution DAGs. In this experiment, we execute benchmarks
with different input data sizes in CATS and Cilk-a to com-
pare their scalability.

During the execution of all the benchmarks, every task
divides its data set into several parts by rows to generate
child tasks unless the task meets the cutoff point (i.e., the
data set size of a leaf task). Since the data set size of the
leaf tasks affects the measurement of scalability, we should
ensure that the data set size of the leaf tasks is constant in
our experiment. To satisfy this requirement, we use a con-
stant cutoff point, 8 rows, for the leaf tasks, and a constant
number of columns, 512, for the input data. We only adjust
the number of rows of the input matrix in the experiment.
In this way, we can measure the scalability of CATS with-
out the impact of the granularity of the leaf tasks. In all the
following figures, the x-axis represents the number of rows
of the input matrix.

1K 2K 3K 4K 5K 6K 7K 8K
0
1
2
3
4
5
6
7
8

E
xe

cu
tio

n
Ti

m
e

(s
) Cilk-a CATS

(a) Performance of Heat

1K 2K 3K 4K 5K 6K 7K 8K
0
1
2
3
4
5
6
7
8

E
xe

cu
tio

n
tim

e
(s

) Cilk-a CATS

(b) Performance of SOR

Figure 9: Performance of Heat and SOR with dif-
ferent input data sizes.

169

4.2.1 Balanced execution DAGs
We use Heat and SOR as benchmarks to evaluate the s-

calability of CATS for applications with balanced execution
DAGs. Other benchmarks, such as GE, have similar results.

Fig. 9 shows the performance of Heat and SOR with dif-
ferent input data sizes in Cilk-a and CATS. From Fig. 9, we
can see that Heat and SOR achieve better performance in
CATS for all sizes of the input data up to 8192 rows com-
pared with Cilk-a. When the input data size is small (i.e.,
1024 × 512), CATS reduces 40.4% execution time of Heat
and reduces 56.1% execution time of SOR. When the input
data size is large (i.e., 8192 × 512), CATS reduces 12.3%
execution time of Heat and reduces 21.1% execution time of
SOR.

1K 2K 3K 4K 5K 6K 7K 8K
0

100

200

300

400

500

600

L2
 C

ac
he

 M
is

se
s

(*
1E

6) Cilk-a CATS

(a) L2 cache misses of Heat

1K 2K 3K 4K 5K 6K 7K 8K
0

100

200

300

400

500

600

L3
 C

ac
he

 M
is

se
s

(*
1E

6)

 Cilk-a CATS

(b) L3 cache misses of Heat

Figure 10: L2 and L3 cache misses of Heat with
different input data sizes.

Fig. 10 shows the L2 and L3 cache misses of Heat with
different input data sizes in Cilk-a and CATS. Observed
from the figure, we can find that both the shared cache
misses and the private cache misses are reduced in CATS
compared with Cilk-a. The better performance of Heat in
CATS results from the less cache misses in CATS compared
with Cilk-a. When the input data size is small (1024×512),
CATS can reduce 76.1% L3 cache misses and 15.2% L2 cache
misses compared with Cilk-a. When the input data size is
large (8192× 512), CATS can reduce 55.9% L3 cache misses
and 3.6% L2 cache misses compared with Cilk-a. Therefore,
when CATS schedules regular applications with balanced
execution DAGS, it is scalable. Other benchmarks show
similar results of cache misses. We omit them here due to
limited space.

4.2.2 Unbalanced execution DAGs
We use Heat-ub and SOR-ub as benchmarks to evaluate

the scalability of CATS for applications with unbalanced
execution DAGs. Other benchmarks, such as GE-ub, have
similar results.

Fig. 11 shows the performance of Heat-ub and SOR-ub
with different input data sizes in Cilk-a and CATS. From
Fig. 11 we can find that Heat-ub and SOR-ub also achieve
better performance in CATS for all input data sizes com-
pared with Cilk-a. When the input data size is small (i.e.,
1024×512), CATS reduces 35.3% execution time of Heat-ub
and reduces 44.9% execution time of SOR-ub. When the in-
put data size is large (i.e., 8192×512), CATS reduces 11.4%
execution time of Heat-ub and reduces 18% execution time
of SOR-ub.

Fig. 12 shows the L2 and L3 cache misses of SOR-ub with
different input data sizes. Observed from the figure, we can
find that both the shared cache misses and the private cache
misses of SOR-ub are reduced in CATS compared with Cilk-

1K 2K 3K 4K 5K 6K 7K 8K
0
1
2
3
4
5
6
7
8

E
xe

cu
tio

n
Ti

m
e

(s
) Cilk-a CATS

(a) Performance of Heat-ub

1K 2K 3K 4K 5K 6K 7K 8K
0
1
2
3
4
5
6
7
8

E
xe

cu
tio

n
Ti

m
e

(s
) Cilk-a CATS

(b) Performance of SOR-ub

Figure 11: Performance of Heat-ub and SOR-ub
with different input data sizes.

a. The better performance of SOR-ub in CATS results from
the less cache misses in CATS compared with Cilk-a. When
the input data size is small, CATS can reduce 73.1% L3
cache misses and 21.2% L2 cache misses compared with Cilk-
a. When the input data size is large, CATS can reduce
38.2% L3 cache misses and 5.2% L2 cache misses compared
with Cilk-a. Other benchmarks show similar results of cache
misses. We omit them here due to limited space.

1K 2K 3K 4K 5K 6K 7K 8K
0

100
200
300
400
500
600
700
800

L2
 C

ac
he

 M
is

se
s

(*
1E

6) Cilk-a CATS

(a) L2 misses of SOR-ub

1K 2K 3K 4K 5K 6K 7K 8K
0

100

200

300

400

500

600

L3
 C

ac
he

 M
is

se
s

(*
1E

6) Cilk-a CATS

(b) L3 misses of SOR-ub

Figure 12: L2 and L3 cache misses of SOR-ub with
different input data sizes.

As illustrated in Fig. 9 and Fig. 11, the execution times of
the benchmarks in both Cilk-a and CATS increase linearly
to the input data size, because the execution times of the
memory-bound benchmarks in both Cilk-a and CATS are
determined by the input data size. However, for all the
input data sizes, CATS can reduce the execution times of the
memory-bound applications accordingly. Therefore, CATS
is scalable in scheduling both balanced execution DAGs and
unbalanced execution DAGs.

In addition, Fig. 10 and Fig. 12 further verify that CATS
can also slightly reduce private cache misses by scheduling
tasks with shared data into the same socket, which is due to
the same reason explained previously.

4.3 Performance of CPU-bound programs
Since CATS is proposed to reduce shared cache misses

of memory-bound applications, it is neutral to CPU-bound
applications. Therefore, for CPU-bound applications, CATS
uses child-first policy to schedule the tasks as Cilk-a.

Fig. 13 shows the performance of CPU-bound benchmark-
s listed in Table 1 in Cilk-a and CATS. By comparing the
performance of CATS with Cilk-a, we can find the extra
overhead of CATS. Observed from Fig. 13, we see the ex-
tra overhead of CATS is negligible compared with Cilk-a.
The extra overhead of CATS mainly comes from the pro-
filing overhead in the first iteration of a parallel program,
when CATS can determine if the program is CPU-bound or
memory-bound based on the profiling information.

170

FFT Queens Mandelbrot GA Knapsack
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

 Cilk-a CATS

Figure 13: Performance of CPU-bound benchmarks
in Cilk-a and CATS.

4.4 Discussion
As mentioned before, CATS targets memory-bound pro-

grams whose execution DAGs are tree-shaped. Therefore
the most important limitation of CATS is that CATS is not
suitable for programs whose DAGs are not tree-shaped s-
ince the DAG partitioner is not applicable to non-tree DAGs.
CATS is applicable to divide-and-conquer programs because
they have tree DAGs. We have modified cilk2c to check for
the divide-and-conquer programs at compile time by ana-
lyzing the task generating pattern in the source code. If any
function in the source code generates new tasks that run
the same function as itself, the program is assumed to be a
divide-and-conquer program. For programs that do not fol-
low the divide-and-conquer pattern, CATS can simply adopt
the traditional task-stealing in the execution. Therefore, the
above limitation does not affect the applicability of CATS
with the compiler identifying the class of programs that are
suitable for CATS.

5. RELATED WORK
Reducing cache misses of parallel programs in parallel ar-

chitectures is a popular research issue. However, many of the
existing works either need extra user-provided information
or are not general enough for MSMC architectures.

In [22], MTS (Multi-Threaded Shepherds) was proposed
to reduce cache misses in MSMC architecture. In MTS,
when all the cores in a socket are free, the head core of the
socket steals a batch of tasks from other sockets. However,
MTS cannot ensure tasks executed by cores in the same
socket have shared data, and thus cannot reduce shared
cache misses in MSMC. In [5], CONTROLLED-PDF was
proposed to reduce cache misses in single-socket multi-core
architecture. The scheduler divided nodes of a DAG into
L2-supernodes that contain data fit for the shared L2 cache.
By executing L2-supernodes sequentially, the cache misses
can be reduced. The scheduler needed users to provide space
complexity function of the executed program and was only
applicable to single-socket multi-core architecture. Also the
paper did not evaluate the proposed scheduler through ex-
periments. In [28], another task scheduler is proposed to
improve the cache performance for single-socket multi-core
architectures. The scheduler needs users to provide work-
ing set size of tasks. However, CATS obtains the required
information automatically. In [27], a less reused cache filter
was proposed to filter out the less reused data so that the
frequently reused data can stay in the cache.

Based on page-coloring, many works enable programmers

to manage shared cache explicitly. In [23], a cache partition-
ing method was proposed. Based on the method, a cache
control tool is implemented so that users can control the
partitioning of cache. In [13], ULCC was proposed to explic-
itly manage and optimize last level cache usage by allocating
proper cache space for different data sets of different thread-
s. Although programmers may improve their programs by
managing last level cache , the management is burdensome
for programmers. In contrast, CATS can improve the last
level cache (L3) performance of memory-bound applications
automatically without extra user-provided information.

Task-stealing is popular for automatic load balancing in-
side parallel applications due to its high performance. Many
works have been done on its improvement [21, 18].

There are also some works aiming to reduce cache misses
in task-stealing on parallel architectures. In [1], a theoreti-
cal bound on the number of cache misses for random task-
stealing was presented and a locality-guided task-stealing
algorithm was implemented on a single-socket SMP. In [12],
the authors analyzed the cache misses of algorithms using
random task-stealing, focusing on the effects of false sharing.
In [11], cache behaviors of task-stealing and a parallel depth-
first scheduler were compared and analyzed. It was proposed
to promote constructive cache sharing through controlling
task granularity. However, the above studies did not take
the MSMC architecture into consideration, and thus did not
target the reduction of shared cache misses as CATS does.

In [24], PWS (Probability Work-Stealing) and HWS (Hier-
archical Work-Stealing) were proposed to reduce communi-
cations among different computers for hierarchical distribut-
ed platform. In PWS, processors had higher probability to
steal tasks from processors in the same computer. HWS
used a rigid boundary level to divide tasks into global tasks
and local tasks which are similar to inter-socket tasks and
intra-socket tasks in CATS. However, the boundary level in
HWS must be given by users manually. It is also worth
noting that PWS and HWS were proposed for reduction of
communications in distributed environments.

In [10], a task-stealing scheduler, called CAB, is proposed
to reduce shared cache misses in MSMC. Similar to HWS,
CAB used a rigid boundary level to divide tasks into global
tasks and local tasks. Though the boundary level is calculat-
ed at run-time, users have to provide a number of command
line arguments for the scheduler to calculate the boundary
level. If the arguments are not correct, the performance of
applications may degrade seriously. In addition, CAB is not
as adaptive as CATS since it cannot work with irregular and
unbalanced execution DAGs that CATS works with.

6. CONCLUSIONS
The traditional task-stealing algorithm steals tasks ran-

domly from other cores. Although the random stealing work-
s efficiently in a multi-core processor, it tends to pollute the
shared caches in MSMC architectures. To solve the problem,
we have designed and implemented the CATS scheduler that
reduces cache misses but requires no extra user-provided in-
formation. By profiling a parallel program at its first itera-
tion, CATS uses an online DAG partitioner to automatically
divide the execution DAG into inter-socket tier and intra-
socket tier. Scheduling tasks of an intra-socket subtree with-
in the same socket, CATS can reduce the shared cache miss-
es significantly. Experimental results show that CATS can
achieve up to 74.4% performance gain for memory-bound ap-

171

plications compared with random task-stealing. The extra
overhead of CATS for CPU-bound applications is negligible.

One future research direction is to improve CATS for more
complex architectures such as NUMA and cc-NUMA archi-
tectures. Another interesting future work is to explore task-
stealing in asymmetric architectures and to design a task-
stealing scheduler to allocate tasks with different features
onto different asymmetric cores optimally in order to better
utilize the system resources.

Acknowledgment
This work was partially supported by Shanghai Excellent
Academic Leaders Plan(No. 11XD1402900), 863 program
2011AA01A202, NSFC (Grant No. 60725208, 61003012)
and National Science Fund for Distinguished Young Scholars
with Grant Nos. 61028005.

7. REFERENCES
[1] U. Acar, G. Blelloch, and R. Blumofe. The data

locality of work stealing. Theory of Computing
Systems, 35(3):321–347, 2002.

[2] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger,
Y. Lin, F. Massaioli, X. Teruel, P. Unnikrishnan, and
G. Zhang. The design of openmp tasks. IEEE
Transactions on Parallel and Distributed Systems,
20(3):404–418, 2009.

[3] R. Azimi, M. Stumm, and R. Wisniewski. Online
performance analysis by statistical sampling of
microprocessor performance counters. In ICS’05,
pages 101–110. ACM, 2005.

[4] M. Berger and J. Oliger. Adaptive mesh refinement for
hyperbolic partial differential equations. Journal of
computational Physics, 53(3):484–512, 1984.

[5] G. Blelloch, R. Chowdhury, P. Gibbons,
V. Ramachandran, S. Chen, and M. Kozuch. Provably
good multicore cache performance for
divide-and-conquer algorithms. In SODA’08, pages
501–510. Society for Industrial and Applied
Mathematics, 2008.

[6] G. Blelloch, J. Fineman, P. Gibbons, and H. V.
Simhadri. Scheduling irregular parallel computations
on hierarchical caches. In SPAA’11, San Jose,
California, June 2011.

[7] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: An
efficient multithreaded runtime system. Journal of
Parallel and Distributed computing, 37(1):55–69, Aug.
1996.

[8] D. Butenhof. Programming with POSIX threads.
Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, 1997.

[9] Q. Chen, Y. Chen, Z. Huang, and M. Guo. WATS:
Workload-Aware Task Scheduling in Asymmetric
Multi-core Architectures. In IPDPS’12. IEEE, 2012.

[10] Q. Chen, Z. Huang, M. Guo, and J. Zhou. CAB:
Cache-aware Bi-tier task-stealing in Multi-socket
Multi-core architecture. In ICPP’11, Taipei, Taiwan,
2011. IEEE.

[11] S. Chen, P. Gibbons, M. Kozuch, V. Liaskovitis,
A. Ailamaki, G. Blelloch, B. Falsafi, L. Fix,
N. Hardavellas, T. Mowry, et al. Scheduling threads

for constructive cache sharing on CMPs. In SPAA’07,
page 115. ACM, 2007.

[12] R. Cole and V. Ramachandran. Analysis of
Randomized Work Stealing with False Sharing. ArXiv
e-prints, Mar. 2011.

[13] X. Ding, K. Wang, and X. Zhang. ULCC: a user-level
facility for optimizing shared cache performance on
multicores. In PPoPP’11, pages 103–112, 2011.

[14] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language.
In PLDI’98, pages 212–223, Montreal, Canada, June
1998. ACM.

[15] A. Gerasoulis and T. Yang. A comparison of clustering
heuristics for scheduling directed acyclic graphs on
multiprocessors. Journal of Parallel and Distributed
Computing, 16(4):276–291, 1992.

[16] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:
portable parallel programming with the message
passing interface. MIT Press, 1999.

[17] Y. Guo, R. Barik, R. Raman, and V. Sarkar.
Work-first and help-first scheduling policies for
async-finish task parallelism. In IPDPS’09, pages
1–12. IEEE, 2009.

[18] Y. Guo, J. Zhao, V. Cave, and V. Sarkar. Slaw: a
scalable locality-aware adaptive work–stealing
scheduler. In IPDPS’10, 2010.

[19] J. Lee and J. Palsberg. Featherweight X10: a core
calculus for async-finish parallelism. In PPoPP’10,
pages 25–36. ACM, 2010.

[20] C. Leiserson. The Cilk++ concurrency platform. In
DAC’09, pages 522–527. ACM, 2009.

[21] M. M. Michael, M. T. Vechev, and V. A. Saraswat.
Idempotent work stealing. In PPoPP’09, pages 45–54.
ACM, 2009.

[22] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, and
J. F. Prins. Scheduling task parallelism on
multi-socket multicore systems. In ROSS’11, pages
49–56. ACM, 2011.

[23] S. Perarnau, M. Tchiboukdjian, and G. Huard.
Controlling cache utilization of hpc applications. In
ICS’11, pages 295–304. ACM, 2011.

[24] J.-N. Quintin and F. Wagner. Hierarchical
work-stealing. In EuroPar’10, pages 217–229.
Springer-Verlag, 2010.

[25] J. Reinders. Intel threading building blocks. O’Reilly,
2007.

[26] D. Tam, R. Azimi, L. Soares, and M. Stumm.
Rapidmrc: Approximating l2 miss rate curves on
commodity systems for online optimizations. ACM
Sigplan Notices, 44(3):121–132, 2009.

[27] L. Xiang, T. Chen, Q. Shi, and W. Hu. Less reused
filter: improving l2 cache performance via filtering less
reused lines. In ICS’09, pages 68–79. ACM, 2009.

[28] T. Yang, C. Lin, and C. Yang. Cache-aware task
scheduling on multi-core architecture. In
VLSI-DAT’10, pages 139–142. IEEE, 2010.

[29] J. Zhang, Z. Huang, W. Chen, Q. Huang, and
W. Zheng. Maotai: View-Oriented Parallel
Programming on CMT processors. In ICPP’08, pages
636–643. IEEE, 2008.

172

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

