From Graphics to Visualization
Introduction
Light Sources
Surface Lighting Effects
Basic (Local) Illumination Models
Polygon-Rendering Methods
Texture Mapping
Transparency and Blending
Visualization Pipeline
Introduction

• **Illumination Model** (Lighting/Shading Model)
 Calculation of color on an illuminated position on the surface of an object

• **Surface Rendering**
 A procedure for applying a lighting model to obtain pixels *colors* for all projected *surface* positions
Light Sources

- Point Source

Diverging ray paths from a point light source
Light Sources

• Distributed Light Source

Light rays from an infinitely distant light source illuminate an object along nearly parallel light paths
Surface Lighting Effects

Diffuse reflections from a surface (dull/rough surface)

(shiny surface) Specular reflection superimposed on diffuse reflection vectors

(Global Illumination) Surface lighting effects are produced by a combination of illumination from light sources and reflection from other surfaces.
Illumination Models

Rendering methods differ in approximating lighting effects

- **Global illumination**: ray tracing, accurate but computationally expensive
- **Local illumination**: relate the illumination of a given scene point directly to the light set, not to any other scene points
1) **Ambient Light**

2) **Diffuse Reflection**

Angle of incidence θ between the unit light-source direction vector L and the unit normal vector N at a surface position.
Basic (Local)Illumination Models

2) Diffuse Reflection

\[I_{l,\text{diff}} = K_d I_l \cos \theta \]
\[I_{l,\text{diff}} = K_d I_l (N \cdot L) \]

\(k_d \): diffuse-reflection coefficient, or diffuse reflectivity.

◆ Lambertian reflectors
◆ Lambert’s cosine law

– Total Diffuse-reflection of a single point-source illumination

\[I_{\text{diff}} = \begin{cases}
 k_a I_a + k_d I_l (N \cdot L), & \text{if } N \cdot L > 0 \\
 k_a I_a, & \text{if } N \cdot L \leq 0
\end{cases} \]
Basic (Local) Illumination Models

3) Specular Reflection and Phong Model

Specular reflection angle equals angle of incidence θ

- Phong Specular-Reflection Model (Phong Model)

$$I_{l,\text{spec}} = W(\theta)I_l \cos^n s \Phi$$ \hspace{1cm} (2-4)

$$I_{l,\text{spec}} = \begin{cases} k_s I_l (V \cdot R)^n_s, & \text{if } V \cdot R > 0 \text{ and } N \cdot L > 0 \\ 0.0, & \text{if } V \cdot R \leq 0 \text{ or } N \cdot L \leq 0 \end{cases}$$ \hspace{1cm} (2-5)
3) Specular Reflection and *Phong* Model

Modeling specular reflections (shaded area) with parameter n_s.

The projection of either L or R onto the direction of the normal vector N has a magnitude equal to $N \cdot L$.

$$R = (2N \cdot L)N - L$$
Basic (Local) Illumination Models

3) Specular Reflection and *Phong* Model

Specular reflections from a spherical surface for varying specular parameter values and a single light source.
3) Specular Reflection and *Phong* Model

Halfway vector H along the bisector of the angle between L and V.

$$H = \frac{L + V}{|L + V|}$$
Color Intensity Calculations

- **Phong Algorithm:**
 \[I = I_a + I_d + I_s \]
 - \(I_a\): ambient reflection
 - \(I_d\): diffuse reflection
 - \(I_s\): specular reflection

\[I_a = k_a I_e \]
\[I_d = k_d I_l \cos\alpha \quad \text{here } \cos\alpha = (L \cdot N) \]
\[I_s = k_s I_l \cos^m \beta \quad \text{here } \cos\beta = (R \cdot V) \]

- **Multiple light sources:**
 \[I = I_a + \sum_{i=1}^{n} \frac{I_{d_i} + I_{s_i}}{r_i + C} \]
 Here \(r_i\) is the distance to the light \(i\) and \(C\) is a constant.

L, N, R, V are vectors.
Shading

- Technique To Render Solid Surfaces
- Determines How Surfaces Will Be Filled
- Process for Computing the Color Intensity Value for Each Pixel Contained in a Polygon
- The Most Common Shading Techniques Are:
 - Flat Shading
 $\text{glShadeModel (GL_FLAT)}$;
 - Gouraud Shading
 $\text{glShadeModel (GL_SMOOTH)}$;
 - Phong Shading
 (OpenGL by default doesn't do phong shading)

Shading Techniques

- No Shading
- Flat Shading
- Gouraud Shading
- Phong Shading
Flat Shading
Flat Shading

• Constant Shading Or Flat Shading
• The Simplest and Cheapest and Therefore Fastest Shading Method
• Filling An Entire Polygon with One Color Intensity
• This Model is Only Valid (Realistic) If:
 – The light source is imagined to be at infinity
 – The viewer is at infinity
 – The polygon is not an approximation to a curved surface
Gouraud Shading
Gouraud Shading

• Also called Smooth shading
• Color Interpolation Algorithm
 – *Interpolation along polygon edges*
 – *Interpolation across polygon surfaces*

Color Values Given On A Per Vertex Basis
Interpolation Along The Edges
Interpolation Across The Surface
Gouraud Shading Illustration

\[I_a = \frac{1}{y_1 - y_2} \left[I_1(y_s - y_2) + I_2(y_1 - y_s) \right] \]

\[I_b = \frac{1}{y_1 - y_3} \left[I_1(y_s - y_3) + I_3(y_1 - y_s) \right] \]

\[I_s = \frac{1}{x_b - x_a} \left[I_a(x_b - x_s) + I_b(x_s - x_a) \right] \]

\[y_s = j + 1 \]

\[I_{a,j+1} = I_{a,j} + \Delta I_a \]

\[\Delta I_a = \frac{1}{y_1 - y_2} (I_1 - I_2) \]

\[I_{b,j+1} = I_{b,j} + \Delta I_b \]

\[\Delta I_b = \frac{1}{y_1 - y_3} (I_1 - I_3) \]

\[I_{i+1,s} = I_{i,s} + \Delta I_s \]

\[\Delta I_s = \frac{1}{x_b - x_a} (I_b - I_a) \]
Phong Shading
Phong Shading

• An Interpolation Process Similar To Gouraud Shading
• Interpolation Over Normal Vector Instead of Vertex Color
 – Normal vectors tell about an objects orientation
 – Surface orientation is important in respect to the position of
 • The observer/viewer of a scene
 • The source of lighting
• Creates greater realism than Gouraud shading
 – Specially when combined with an illumination model
 – Usually implemented through application software
 – Very computing intense
Phong Shading Illustration

\[\vec{N}_a = \frac{1}{y_1 - y_2} \left[\vec{N}_1(y_s - y_2) + \vec{N}_2(y_1 - y_s) \right] \]

\[\vec{N}_b = \frac{1}{y_1 - y_3} \left[\vec{N}_1(y_s - y_3) + \vec{N}_3(y_1 - y_s) \right] \]

\[\vec{N}_s = \frac{1}{x_b - x_a} \left[\vec{N}_a(x_b - x_s) + \vec{N}_b(x_s - x_a) \right] \]
Fill-Area Primitives

- **Fill (Filled) Area**
 - An area filled with some solid color or a pattern

- **Surface Tessellation**
 - Approximating a curved surface with polygon facets (a polygon mesh)
Texture Mapping
(a) Texture Image; (b) Texture-mapped object
Texture Mapping

Texture Image
Texture Mapping: Coordinates Transformations
Texture Mapping

- Texture Mapping
Transparency and Blending

Height plot of $e^{-(x^2+y^2)}$ drawn on top of the domain grid.

The Gaussian Surface

The Grid
Visualization Pipeline

\[f(x, y) = e^{-(x^2 + y^2)} \]

Data Acquisition

float data[\text{N}_x, \text{N}_y]

Data Mapping

Class Quad

Rendering

Continuous data

Discrete dataset

Geometric object

Displayed image