Chapter 3 Design Theory for Relational Databases
Contents

- Functional Dependencies
- Decompositions
- Normal Forms (BCNF, 3NF)
- Multivalued Dependencies (and 4NF)
- Reasoning About FD’s + MVD’s
Our example of chapter 2

Beers(name, manf)
Bars(name, addr, license)
Drinkers(name, addr, phone)
Likes(drinker, beer)
Sells(bar, beer, price)
Frequents(drinker, bar)

Some questions:
1. Why do we design relations like the example?
2. What makes a good relational database schema?
3. what we can do if it has flaws?
Functional Dependencies

- $X \rightarrow Y$ is an assertion about a relation R that whenever two tuples of R agree on all the attributes of X, then they must also agree on all attributes in set Y.

- Say “$X \rightarrow Y$ holds in R.”
- Convention: ..., X, Y, Z represent sets of attributes; A, B, C,... represent single attributes.
- Convention: no set formers in sets of attributes, just ABC, rather than $\{A,B,C\}$.
Functional Dependency (cont.)

- Exist in a **relational schema** as a constraint.
- Agree for all **instances** of the schema. (*t and u are *any* two tuples*)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td></td>
</tr>
<tr>
<td>u</td>
<td></td>
</tr>
</tbody>
</table>

If *t* and *u* agree here, then they must agree here.

Why we call “**functional**” dependency?
Some examples

Beers(name, manf)
name → manf
manf → ?

Sells(bar, beer, price)
Bar, beer → price
Splitting Right Sides of FD’s

- $X \rightarrow A_1 A_2 \ldots A_n$ holds for R exactly when each of $X \rightarrow A_1$, $X \rightarrow A_2$, ..., $X \rightarrow A_n$ hold for R.

Example: $A \rightarrow BC$ is equivalent to $A \rightarrow B$ and $A \rightarrow C$.

- There is no splitting rule for left sides.
Trivial Functional Dependencies

Sells(bar, beer, price)

bar, beer \rightarrow bar (trivial functional dependencies)

bar, beer \rightarrow price (nontrivial function dependencies)

A’s \rightarrow B’s

A’s \rightarrow C’s
Example: FD’s

Drinkers(name, addr, beersLiked, manf, favBeer)

- Reasonable FD’s to assert:
 1. name -> addr favBeer (combining rule)
 - Note this FD is the same as name -> addr and name -> favBeer. (splitting rule)
 2. beersLiked -> manf
Example: Possible Data

<table>
<thead>
<tr>
<th>name</th>
<th>addr</th>
<th>beersLiked</th>
<th>manf</th>
<th>favBeer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Bud</td>
<td>A.B.</td>
<td>WickedAle</td>
</tr>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>WickedAle</td>
<td>Pete's</td>
<td>WickedAle</td>
</tr>
<tr>
<td>Spock</td>
<td>Enterprise</td>
<td>Bud</td>
<td>A.B.</td>
<td>Bud</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bud</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Because name -> addr

Because beersLiked -> manf

Because name -> favBeer
For example, given data \rightarrow FD’s

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

- FD:
 - $AB \rightarrow C$? \times
 - $A \rightarrow B$? $\sqrt{\ }$
Keys of Relations

- K is a **superkey** for relation R if K functionally determines all of R.
- K is a **key** for R if K is a superkey, but no proper subset of K is a superkey. *(minimality)*
Example: Superkey

Drinkers(name, addr, beersLiked, manf, favBeer)

- \{name, beersLiked\} is a superkey because together these attributes determine all the other attributes.
 - name -> addr favBeer
 - beersLiked -> manf
- Other superkey such as \{name, beersLiked, addr\}, \{name, beersLiked, manf\}, … any superset of \{name, beersLiked\}.
Example: Key

• \{name, beersLiked\} is a key because neither \{name\} nor \{beersLiked\} is a superkey.
 – name doesn’t -> manf;
 – beersLiked doesn’t -> addr.

• Keys are also superkeys.
Where Do Keys Come From?

1. Just assert a key K.
 - The only FD’s are $K \rightarrow A$ for all attributes A.

2. Assert FD’s and deduce the keys by systematic exploration.

3. More FD’s From “Physics”
 - Example: “no two courses can meet in the same room at the same time” tells us: hour room \rightarrow course.
Inferring FD’s

- Given a relation R and its FD’s $X_1 \rightarrow A_1$, $X_2 \rightarrow A_2$, ..., $X_n \rightarrow A_n$,

\rightarrow whether an FD $Y \rightarrow B$ must hold in any relation (instance) in this R.

- Example: If $Y \rightarrow A$ and $A \rightarrow B$ hold, we want to infer whether $Y \rightarrow B$ holds.

Three ways to infer $y \rightarrow B$:
1. A simple test for it
2. Use FD to deduce
3. Calculate closure of y
1: a simple test

- To test if $Y \rightarrow B$, start by assuming two tuples agree in all attributes of Y.

- $\leftrightarrow Y \rightarrow B$

- 00000000. . . 0
- 00000?? . . ?
2: Use given FDs to deduce

- R(Y, A, B) with FD’s: Y \rightarrow A, A \rightarrow B
- To prove Y \rightarrow B?

Inference steps:

1) Assume two tuples that agree on Y
2) Because Y \rightarrow A, a1=a2
3) Because A \rightarrow B, b1=b2
Many Inference rules

- **Reflexivity:**
 If \(\{B_1B_2\ldots B_m\} \subseteq \{A_1,A_2,\ldots A_n\} \) then
 \(A_1,A_2,\ldots A_n \rightarrow B_1B_2\ldots B_m \) called trivial FD’s

- **Augmentation:**
 If \(A_1,A_2,\ldots A_n \rightarrow B_1B_2\ldots B_m \) then,
 \(A_1,A_2,\ldots A_n C_1,C_2\ldots C_k \rightarrow B_1B_2\ldots B_m C_1,C_2\ldots C_k \)

- **Transitivity:**
 If \(A_1,A_2,\ldots A_n \rightarrow B_1B_2\ldots B_m \), and \(B_1B_2\ldots B_m \rightarrow C_1,C_2\ldots C_k \)
 then, \(A_1,A_2,\ldots A_n \rightarrow C_1,C_2\ldots C_k \)
3: Closure Test

- An easier way to test is to compute the closure of Y, denoted Y^+.
- **Basis**: $Y^+ = Y$.
- **Induction**: Look for an FD’s left side X that is a subset of the current Y^+. If the FD is $X \rightarrow A$, add A to Y^+.
- **End**: when Y^+ can not be changed.

![Diagram](chart.png)
3: Closure Test: example

- R(Y,A,B) with FD’s: Y → A, A → B
- To prove Y → B?

- Calculating steps for Y⁺:
 1. Y⁺ = Y
 2. Y⁺ = Y, A
 3. Y⁺ = Y, A, B

Closure and Keys: if the closure of X is all attributes of a relation, then X is a key/superkey.
Computing the closure of a set of attributes

- The closure algorithm 3.7 (pp.76) can *discovers* all true FD’s.

- We need a FD’s (minimal basis) to represent the full set of FD’s for a relation.
Example: $R(A,B,C)$ with all FD's:
$A \rightarrow B, A \rightarrow C, B \rightarrow A, B \rightarrow C, C \rightarrow A, C \rightarrow B, AB \rightarrow C, AC \rightarrow B, BC \rightarrow A,…$

We are free to choose any **basis** for the FD’s of R, a set of FD’s that can infer all the FD’s that hold for R:

FD1: $A \rightarrow B, B \rightarrow A, B \rightarrow C, C \rightarrow B$

FD2: $A \rightarrow B, B \rightarrow C, C \rightarrow A$
Given Versus Implied FD’s

- **Given**: FD’s that are known to hold for a relation R
- **Implied FD’s**: other FD’s may follow logically from the given FD’s

Example:
- \(R(A,B,C) \) with FD’s: \(A \rightarrow B \), \(B \rightarrow C \), \(C \rightarrow A \)
- \(A \rightarrow C \) is implied FD
Finding All Implied FD’s

- **Motivation**: “normalization” the process where we break a relation schema into two or more schemas.

- **Example**: $ABCD$ with FD’s $AB \rightarrow C$, $C \rightarrow D$, and $D \rightarrow A$.
 - Decompose into ABC, AD. What FD’s hold in ABC?

 Not only $AB \rightarrow C$, but also $C \rightarrow A$!
Why?

C → A

ABCD with FD’s *AB → C*, *C → D*, and *D → A*.

Thus, tuples in the projection with equal C’s have equal A’s; *C → A*.
Basic Idea for projecting functional dependencies

1. Start with given FD’s and find all nontrivial FD’s that follow from the given FD’s.
 - Nontrivial = right side not contained in the left.
2. Restrict to those FD’s that involve only attributes of the projected schema.
An algorithm of projecting FD’s

1. For each set of attributes X, compute X^+.
2. Add $X \rightarrow A$ for all A in $X^+ - X$.
3. However, drop $XY \rightarrow A$ whenever we discover $X \rightarrow A$.
 - Because $XY \rightarrow A$ follows from $X \rightarrow A$ in any projection.
4. Finally, use only FD’s involving projected attributes.
Example: Projecting FD’s

- **ABC** with FD’s **A ->B** and **B ->C**. Project onto **AC**.
 - **A**⁺=**ABC**; yields **A ->B**, **A ->C**.
 - We do not need to compute **AB**⁺ or **AC**⁺.
 - **B**⁺=**BC**; yields **B ->C**.
 - **C**⁺=**C**; yields nothing.
 - **BC**⁺=**BC**; yields nothing.

- Resulting FD’s: **A ->B**, **A ->C**, and **B ->C**.

- Projection onto **AC**: **A ->C**.
 - Only FD that involves a subset of {A, C}.

If we find **X**⁺ = all attributes, so is the closure of any superset of **X**.
Consider a relation R(A,B,C,D,E) with the following functional dependencies:
A \rightarrow B, CD \rightarrow E, E \rightarrow A, B \rightarrow D

Specify all keys for R
- Keys: AC, BC, CD, CE
Goal of relational schema design is to avoid anomalies and redundancy.

- *Update anomaly*: one occurrence of a fact is changed, but not all occurrences.
- *Deletion anomaly*: valid fact is lost when a tuple is deleted.
Example of Bad Design

```
Drinkers(name, addr, beersLiked, manf, favBeer)
```

<table>
<thead>
<tr>
<th>name</th>
<th>addr</th>
<th>beersLiked</th>
<th>manf</th>
<th>favBeer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Bud</td>
<td>A.B.</td>
<td>WickedAle</td>
</tr>
<tr>
<td>Janeway</td>
<td>???</td>
<td>WickedAle</td>
<td>Pete’s</td>
<td>???</td>
</tr>
<tr>
<td>Spock</td>
<td>Enterprise</td>
<td>Bud</td>
<td>???</td>
<td>Bud</td>
</tr>
</tbody>
</table>

Data is redundant, because each of the ???’s can be figured out by using the FD’s name -> addr favBeer and beersLiked -> manf.
This Bad Design Exhibits Anomalies

<table>
<thead>
<tr>
<th>name</th>
<th>addr</th>
<th>beersLiked</th>
<th>manf</th>
<th>favBeer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Bud</td>
<td>A.B.</td>
<td>WickedAle</td>
</tr>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>WickedAle</td>
<td>Pete’s A.B.</td>
<td>WickedAle</td>
</tr>
<tr>
<td>Spock</td>
<td>Enterprise</td>
<td>Bud</td>
<td>A.B.</td>
<td>Bud</td>
</tr>
</tbody>
</table>

- **Update anomaly**: if Janeway is transferred to *Intrepid*, will we remember to change each of her tuples?
- **Deletion anomaly**: If nobody likes Bud, we lose track of the fact that Anheuser-Busch manufactures Bud.
Solve the Problem

Problems caused by FD’s

Drinkers(name, addr, beersLiked, manf, favBeer) →
decompose into smaller relations:

Drinker = projection (name, addr, favBeer) (Drinkers)
Likes = projection (name, beersLiked) (Drinkers)
Beer = projection (beersliked, manf) (Drinkers)

Drinkers = Drinker natural join Likes natural join beer
not more, not less
Solve the problem (cont.)

<table>
<thead>
<tr>
<th>name</th>
<th>addr</th>
<th>beersLiked</th>
<th>manf</th>
<th>favBeer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Bud</td>
<td>A.B.</td>
<td>WickedAle</td>
</tr>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>WickedAle</td>
<td>Pete’s</td>
<td>WickedAle</td>
</tr>
<tr>
<td>Spock</td>
<td>Enterprise</td>
<td>Bud</td>
<td>A.B.</td>
<td>Bud</td>
</tr>
</tbody>
</table>

Any anomalies?

<table>
<thead>
<tr>
<th>Janeway</th>
<th>Bud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>WickedAle</td>
</tr>
<tr>
<td>Spock</td>
<td>Bud</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bud</th>
<th>A.B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WickedAle</td>
<td>Peter’s</td>
</tr>
</tbody>
</table>
Remember our questions:

- Why do we design relations like the example? → good design
- What makes a good relational database schema? → no redundancy, no Update/delete anomalies,
- what we can do if it has flaws? → decomposition

New Question:

- any standards for a good design?
 → Normal forms: a condition on a relation schema that will eliminate problems
- any standards or methods for a decomposition?
 → yes.