
Noname manuscript No.
(will be inserted by the editor)

How do Programmers Fix Bugs as Workarounds?

An Empirical Study on Apache Projects

Aoyang Yan · Hao Zhong · Daohan Song ·
Li Jia

Received: date / Accepted: date

Abstract In software development, issue tracker systems are widely used to man-
age bug reports. In such a system, a bug report can be filed, diagnosed, assigned,
and fixed. In the standard process, a bug can be resolved as fixed, invalid, du-
plicated or won’t fix. Although the above resolutions are well-defined and easy to
understand, a bug report can end with a less known resolution, i.e., workaround.
Compared with other resolutions, the definition of workarounds is more ambigu-
ous. Besides the problem that is reported in a bug report, the resolution of a
workaround raises more questions. Some questions are important for users, espe-
cially those programmers who build their projects upon others (e.g., libraries).
Although some early studies have been conducted to analyze API workarounds,
many research questions on workarounds are still open. For example, which bugs
are resolved as workarounds? Why is a bug report resolved as workarounds? What
are the repairs and impacts of workarounds? In this paper, we conduct the first
empirical study to explore the above research questions. In particular, we analyzed
200 real workarounds that were collected from 81 Apache projects. Our results lead
to eight findings and answers to all the above questions. For example, if bug reports
are resolved as workarounds, their problems often either arise in external projects
(40%) or reside in programming environments (23.5%). Although the problems
of some workarounds (38.5%) reside in the project where they are reported, it
is difficult to fix them fully and perfectly. Our findings are useful to understand
workarounds, and to improve software projects and issue trackers.

Keywords Workaround · Bug fix · Empirical study

1 Introduction

Software maintenance is expensive, and some studies [103,139] report that around
90% of software life cost is related to software maintenance. In software main-

Aoyang Yan, Hao Zhong, Daohan Song and Li Jia are with the Department of Computer
Science and Engineering, Shanghai Jiao Tong University, China.
Hao Zhong is the corresponding author.
E-mail: zhonghao@sjtu.edu.cn

2 Aoyang Yan et al.

tenance, a major task is to fix bugs [121,106]. To manage the process of fixing
bugs, issue tracker systems (e.g., JIRA [1]) are widely used in both open source
and commercial projects. In an issue tracker, Zeller [151] and Jeong et al. [115]
introduce that a bug report can be filed, diagnosed, assigned, and fixed. In the
standard process (see Section 2.1 for details), a bug report typically is resolved as
fixed, invalid, duplicated or won’t fix. Although the reporter of a bug report can
disagree with its resolution, the definitions of their resolutions are clear, and users
can make their choices based on these resolutions. For example, if the problem of
a bug report is serious and the bug is fixed, a user can update to a newer version
to avoid the problem.

Although it is less known, a bug report can be resolved as a workaround (see
Section 2.2 for such an example). By its literal definition, a workaround is a way to
resolve or avoid a problem, when the most obvious solution is not possible. After
reading this definition, the resolutions of workarounds still raise questions besides
what are already reported in bug reports. For example, are the problems fixed or
not? If a problem is literally avoided, is it a technical debt [150]? Why are bug
reports resolved as workarounds at the first place? Indeed, even the very definition
of workarounds is unclear. When the prior studies (e.g., [115]) introduce the work
flow of issue trackers, they do not mention workarounds at all. The questions
hinder users from making a good decision, even if the user knows that a bug is
fixed as a workaround.

To deepen the knowledge on workarounds, in our ICSE 2022 poster [149],
we advocate conducting an empirical study. In this study, we collected 200 real
workarounds from 81 Apache projects, and our collected workarounds included
both API workarounds and other workarounds. Compared with our two-page
poster [149], this extended version has the following additional contributions:

1. Cleansed workarounds. In our two-page poster [149], we report that program-
mers mark two different types of bug reports as workarounds. As a minor-
ity, programmers can mark a bug report as a workaround, if its problem is
already fixed (e.g., in a newer version). Some researchers criticize that these
workarounds must be removed. In this work, we follow their advice, and present
the results after removing these workarounds.

2. More protocol details and examples. For all the research questions, we present
their detailed protocols and more illustrative examples.

3. Detailed findings and interpretations. We present our detailed findings and
actionable interpretations.

Our study explores the following research questions:

– RQ1. What are symptoms of bugs, if they are fixed as workarounds?
Motivation: The answers are useful for programmers to fix bugs. If a bug
report describes a similar symptom that has been fixed as a workaround, pro-
grammers can consider to fix this bug as a workaround.
Answer: When bugs are fixed as workarounds, their symptoms are mostly
crashes (40.5%) and unexpected behaviors (33.5%) (Finding 1). Crashes are
resolved as workarounds, often when their problems reside out of the project
(Finding 8), and unexpected behaviors are resolved as workarounds, often when
they become technical debt (Finding 5).

How do Programmers Fix Bugs as Workarounds? 3

– RQ2. Why are workarounds introduced?
Motivation: The symptoms alone are insufficient for programmers to deter-
mine whether a bug shall be fixed as a workaround. To make correct decisions,
programmers need to understand the causes of workarounds. The causes ex-
plain why a bug report is not resolved by the standard process.
Answer: Finding 3 shows that 40% of workarounds are caused by problems
in external projects, and 23.5% of workarounds are caused by programming
environments. Although 38.5% of workarounds do not involve other projects,
they are difficult to be fully fixed (Finding 2).

– RQ3. How do workarounds repair bugs?
Motivation: If programmers cannot fully fix a bug, they may be curious about
how other programmers handle similar bugs. To answer this research question,
we analyze the repair patterns of workarounds. Our answers can be useful for
programmers to learn how to resolve bugs as workarounds.
Answer: Finding 4 shows that 41% of workarounds modify the interfaces be-
tween projects, and their problems are avoided by switching libraries (e.g., a
newer version) or switching the way to call APIs (e.g., modifying API calls).
Finding 5 shows that 40.5% of workarounds modify the project where bugs
are reported. Among them, most workarounds modify non-source files (e.g.,
settings), and the remaining workarounds are often still technical debt after re-
pairs. When a problem arises in the programming environment, as workarounds,
operating systems and underlying techniques can be modified (Finding 6). A
few workarounds have no repairs for two different reasons: some (4.5%) are
already fixed and some (3.5%) will not be fixed (Finding 7).

– RQ4. What are the associations among symptoms, causes, and re-
pairs of workarounds?
Motivation: The answers are useful for programmers to understand the rela-
tions among symptoms, causes, and repairs of workarounds. When they learn a
symptom of a workaround, programmers can understand its most likely causes,
and choose the most feasible repairs.
Answer: The associations of symptoms, causes and repairs can be non-intuitive
and inconsistent with a prior study [120] (Finding 8). For example, switching
versions is a more frequent API workaround than deep copying.

Finding 5 shows that 4% of workarounds are technical debts. Typically, the
technical debts of a project refer to the problems of this project, and such problems
can be fixed in its future versions. In contrast, workarounds can be cross-projects.
For example, when they encounter compiler bugs, programmers have to bypass
them with workarounds [155], and a bug report from NixOS [94] describes such a
workaround. This workaround is not a technical debt, and it can be removed, only
after the corresponding compiler bug is fixed.

2 Preliminary

This section introduces the standard process of handling a bug (Section 2.1), and
that of a workaround (Section 2.2).

4 Aoyang Yan et al.

Open Assign Resolved Closed

Invalid
Duplicated

Fixed

Wontfix

Reopen

Verified

Invalid
Duplicated

if resolution is fixed

Fig. 1: The life cycle of a bug report

2.1 Standard Process

The standard process of handling a bug report is intensively studied. For example,
Jeong et al. [115] report the process of Bugzilla [2]. As our analyzed workarounds
come from another bug management system called JIRA, we revised the process
according to JIRA as shown in Figure 1. In this figure, a rectangle indicates a
status of a bug report; an oval indicates an action taken by a programmer; and
an arrow denotes a transition from a status to another. A word above an arrow
denotes a resolution. A dotted line denotes that a transition may not happen.
For example, only a few bug reports are reopened, and this type of transitions is
uncommon.

As shown in Figure 1, initially, when a programmer or user reports a bug to
JIRA, a corresponding bug report is created and its status is set to open. Next,
after some inspections, if the bug report is considered as invalid or duplicate, it will
be marked as resolved, otherwise it will be assigned to an assignee. The assignee
will resolve the bug, and based on how the bug is handled, the resolution of the
bug can be marked as invalid, duplicate, fixed, or won’t fix. A fixed bug report can
be marked as closed, after other programmers inspect it. If a bug report is not
fully fixed, it can be reopened. At any step of handling a bug report, programmers
could participate in the discussion and make their contributions such as patches,
links to other related issues, and pull requests.

2.2 Workaround Process

In this study, we define workarounds as follows:

Definition 1 A workaround is a bug report whose problems are bypassed.

As an example of workarounds, we next introduce BEAM-6460 [3]. Beam [4] is
a framework that handles batch and streaming data. It is built on Flink [5], a
framework that handles data streams. On 17th Jan. 2019, Max* (the full name is
hidden for privacy) filed a bug report [3] of Beam as shown in Figure 2. The bug
report is slightly modified to fit space limit. In this figure, we mark the sentences
that describe its symptom: when the application restarts due to a failure, old
objects may not be garbage collected. Max* determined that this is not a Beam bug,
but Flink leaks when the application restarts. Although the bug cannot be fully

How do Programmers Fix Bugs as Workarounds? 5

2020/4/21

1

1

2020/4/21 [BEAM-6460] Jackson Cache may hold on to Classloader after pipeline restart - ASF JIRA

Beam BEAM-6460
Jackson Cache may hold on to Classloader after pipeline restart

Details

Type:
Priority:

Bug
Blocker

Status:
Resolution:

RESOLVED
Workaround

Affects Version/s: 2.7.0 Fix Version/s: 2.10.0
Description

It looks like Jackson has an internal cache which may continue to hold the Flink application classloader through its TypeFactory class.
When the pipeline is restarted due to a failure, a new classloader is created which can result in too many classes being loaded.
Reported on the user mailing list:
https://lists.apache.org/thread.html/e201891684ef3dcffce48d20d1f9be0e19fc2294334362cc7092c0ff@%3Cuser.beam.apache.org%3E
Issue Links

Activity 　
Max... added a comment - 22/Jan/19 00:00

Update on this: Not a Beam issue. Flink leaks classloaders when libraries are loaded through the Flink root classloader which have
static caches. For example, when Flink's "yarn-cluster" mode is used, the user jar is part of the Flink root classloader.
The subtlety of this issue warrants that we clear the Jackson cache to avoid other users running into this. Ultimately, this should be
fixed upstream by Flink.

symptom

cause

is related to

FLINK-10928 Job unable to stabilise after restart CLOSED

A related bug
report of its library

Fig. 2: A workaround

fixed, as a workaround, Max* submitted a pull request [6] as shown in Figure 3.
Its message in Figure 3a says that the Flink classloader is not garbage collected,
if an object of the classloader is still referenced. As Beam programmers cannot
directly modify Flink, Max* determined to delete the cache of Beam, when the
application restarts. For example, Figure 3b shows one of the buggy locations. The
invokeTeardown method fails to clean all the objects, and can throw exceptions due
to the mentioned problem of Flink. As the problem cannot be perfectly fixed, Max*
added the deleteStaticCache method after the invokeTeardown method to delete the
caches. To fully fix the problem, as shown in Figure 2, another bug report has been
filed to Flink [7]. The programmers of Flink determined that this problem is caused
by the garbage collection of JVM. As it is difficult to fix the problem, the bug has
not been fixed since it was reported. Although it was finally marked as resolved,
from its code repository [8], we do not find code changes that are related to the
Flink bug report. We inspected the latest version of the close method. Compared
Figure 3d with Figure 3c, although it calls a different method, it still relies on
some workarounds to handle this problem. In this example, the Beam bug report is
resolved as a workaround, because its problem resides in Flink. Although its repair
is imperfect, programmers have to live with similar repairs because the problem
of Flink resides in JVM and is difficult to fix.

Many bug reports are resolved as workarounds, because their problems are out
of scope. To understand the scope of a bug report, we introduce the following
terms. If a bug report is filed to a project, we call this project as my project. In
the above example, Beam is my project, since the bug report is filed to Beam. My
library is a project that is called by my project. In the above example, Flink is my
library, i.e., a library of Beam. My client is a project that calls my project. Based
on the scope, we classify the causes of workarounds (see Section 5.2 for details).
Please note that the role of a project can change according to call relations. For

6 Aoyang Yan et al.

example, as a Java project, Flink calls the APIs of J2SE. In this call relation, Flink
is a client of J2SE.

2.3 API Workarounds and Workarounds in Issue Trackers

If a workaround occurs in a library, it can lead to far-reaching impacts on its
downstream projects, and a workaround on an API can reveal problems of its
upstream projects. As API workarounds have notable impacts on programmers,
researchers have conducted some early studies on API workarounds. Bogart et
al. [101] report that users can intentionally modify or bypass a problematic API
as a workaround. Lamothe and Shang [120] summarize four patterns on API
workarounds. Workarounds in issue trackers and API workarounds are different
in their scopes. For example, in the study of Lamothe and Shang [120], they ana-
lyzed Stack Overflow posts, but our study analyzes workarounds in issue trackers.
As a result, our results are more useful for programmers to handle issue reports.
As issue reports present more types of workarounds, the findings of our study en-
rich the knowledge of the prior studies. For example, Lamothe and Shang [120]
summarize four patterns on API workarounds. As introduced in Section 5.4, from
issue reports, we have found more API workarounds that were not reported by
Lamothe and Shang [120]. In practice, Herzig et al. [113] show that program-
mers can wrongly classify issue reports. As workarounds are less known, many
workarounds can be resolved as other resolutions. Our study improves the aware-
ness of workarounds, and is useful for programmers to correctly handle their issue
reports.

3 Related Work

Our work is related to the following research themes.

3.1 Empirical Study on Bug Report and API Library

Various empirical studies are conducted to understand bug reports and their han-
dling process. Anvik et al. [97] introduce the standard life cycle of bug reports.
Bettenburg et al. [99] show the values of duplicate reports. Guo et al. [110] sum-
marized the factors (e.g., reputations of programmers) to determine which bug
shall be fixed. Some studies analyze how to improve the quality of bug reports [98,
157], because poor bug reports can result in too many reassignments [111]. Lin et
al [125] compare two bug triage approaches. Xia et al. [148] made an empirical
study on bug report field reassignment. For bug fix, there have been some empirical
studies on bug fixing time [152,153], bug fixing in open source projects [108,100].
Li and Zhong [123] analyzed the impacts of obsolete bug fixes. Our study focuses
on the workarounds of bug reports, which are ignored by the above studies.

There are numerous empirical studies on API libraries. These studies explore
the knowledge on API documents [127,104,140], API deprecation [136], API evo-
lution [114,140], the impact of API changes on software quality [145], the impact
of API changes on Stack Overflow discussions [146], parallel API libraries [131],

How do Programmers Fix Bugs as Workarounds? 7

specific API libraries [128,116], API libraries in specific languages [134], mining
API properties [156], and API learning obstacles [138]. Lamothe et al. [119] con-
duct a systematic survey on the evolution of APIs. Our study reveals that many
workarounds are related to API calls, and it can be feasible to reduce workarounds
by improving the designs of APIs.

3.2 Technical Debt

Technical debts have been intensively studied. Potdar and Shihab et al [133] ana-
lyze the technical debts from four large open source projects. Kazman et al [117]
analyze the architectural roots of technical debts. Tang et al [142] analyze refac-
torings and technical debts in machine learning systems. Ramasubbu and Ke-
merer [135] propose an approach to manage technical debts. Vetrò and Anto-
nio [147] propose a static-analysis approach to identify technical debts. Tom et
al [144] conduct a systematic review on technical debts. Our study reveals that
some workarounds are caused by technical debts.

3.3 Mining API Rule

Nguyen et al. [130] mine API rules based on graphs, and some researchers [96,
109,132] mine automata for API rules. Robillard et al. [137] explain the above two
approaches are equivalent. Li et al. [124] extract function call pairs, and Engler et
al. [105] consider bugs as deviant behavior from frequent call sequences. Related
research can be reduced to mining sequential patterns [95]. Ernst et al. [107] detect
invariants for API rules, and Lorenzoli et al. [126] use frequent call sequences and
invariants, to extract models of functional behavior. Dallmeier et al. [102] leverage
test cases for API rules mining. Compared with Lamothe and Shang [120], our
study reveals more API workarounds, and analyzes software workarounds as a
general problem.

4 Methodology

This section introduces our dataset (Section 4.1) and protocols (Section 4.2).

4.1 Dataset and Preprocessing

To collect the dataset, we search Apache JIRA [1] for bug reports whose resolutions
are workarounds and statuses are resolved or closed. In other words, we select
closed bug reports that are resolved as workarounds by their developers. We select
Apache projects, because they have an easy-to-use search interface. In particular,
we collect our workarounds through a query:

https://tinyurl.com/yxvxjd2f.

In total, we collected 221 workarounds, and to ensure the diversity of the
dataset, these workarounds were collected from 88 Apache projects. The size of

https://tinyurl.com/yxvxjd2f

8 Aoyang Yan et al.

[BEAM-6460] Remove cached class references upon start/shutdown The Flink Classloader can only

be garbage collected if the classes it loaded are not referenced anymore. Users have reported that

old classes leaked through Jackson’s TypeFactory ...

(a) message

public void c l o s e () throws Exception {
doFnInvoker . invokeTeardown () ;

}

(b) One buggy location

public void c l o s e () throws Exception {
try {

doFnInvoker . invokeTeardown () ;
} f i n a l l y {

Fl inkC la s s l oad ing . de l e t eS ta t i cCache s () ;
}

}
public c lass Fl inkC la s s l oad ing {

public stat ic void de l e t eS ta t i cCache s () {// Clear
cache to get r i d o f any r e f e r e n c e s to the Fl ink
C la s s l oade r
// See https :// j i r a . apache . org / j i r a /browse/BEAM

−6460
TypeFactory . d e f au l t I n s t an c e () . c learCache () ;

}
}

(c) Fixed code

public void c l o s e () throws Exception {
try {

metr icConta iner . r e g i s t e rMe t r i c sFo rP ip e l i n eRe su l t
() ;

Optional . o fNu l l ab l e (doFnInvoker) . i f P r e s e n t (
DoFnInvoker : : invokeTeardown) ;

} f i n a l l y {
Workarounds . d e l e t eS ta t i cCache s () ;

}
}

(d) The latest code

Fig. 3: The pull request of Max*

our dataset is comparable to those of other related empirical studies. For example,
Zhang et al. [154] analyzed 175 tensorflow [9] bugs.

Figure 4 shows our dataset. The Apache Foundation classifies its projects into
several categories [10]. An Apache project can be classified to multiple categories.
For example, JCLOUDS [11] is classified to cloud and library because it provides
interfaces to call various cloud services (e.g., Amazon and Azure). The result
shows that our workarounds come from all categories of Apache projects, which
highlights the diversity of our dataset.

Herzig et al. [113] find that researchers and programmers have different def-
initions on the types of issue reports. After our inspection, we find that even
programmers themselves have different definitions on workarounds. In particular,
we find that in total, the problems of 21 workarounds are already fixed when they
are reported. For example, the problem of a bug report [12] is fixed in newer ver-
sions, and the problem of another bug report [13] is fixed when repairing other

How do Programmers Fix Bugs as Workarounds? 9

0 10 20 30 40 50 60 70

big-data

library

network

framework

database

cloud

xml

data processing

content

mobile

iot

osgi

build-management

graphics

machine learning

security

Number of projects

Number of workarounds

Average number of
programmers

Fig. 4: The distribution of our selected workarounds.

related issues. Although they are marked as workarounds by programmers, in our
previous submissions, multiple reviewers insist that these workarounds shall be
removed from our dataset, since the resolutions of these bugs are somewhat incon-
sistent with the literal definition of workarounds. Following their suggestions, in
this study, we remove the 21 workarounds, and conduct our study on the remaining
200 workarounds.

4.2 Overall Protocol

In our study, we manually inspected all the 200 workarounds with the following
steps: First, for each bug report, we read the website of the project to understand
its functionality and users (e.g., programmers or end users). This analysis is useful
to understand the scope of bug reports. Second, we read the title, description
and discussions of a bug report to understand its symptoms. Third, we read the
discussions of a bug report to understand its causes and repairs. A programmer
marks a bug report as a workaround, and the comments from this program are
typically useful to understand why a bug is resolved as a workaround. If bug
reports have related issue reports and pull requests, we further read their related
issue reports and pull requests. For each bug report, we checked its code from
its github repository and searched for commits that resolve a bug with its issue
number. If such commits are found, we read their code changes to determine their
types of causes and repairs. The categories of symptoms are predefined by prior

10 Aoyang Yan et al.

studies [154,141,143,116], but the categories of causes and repairs are defined by
ourselves, since no prior study has built such taxonomy for workarounds. Following
this protocol, we inspected the bugs independently, and compared the results for
differences. If any result was inconsistent, we discussed it on our group meetings
and through emails.

Researchers typically apply two types of sorting studies [129]. In an open card
sorting study, there is no predefined categories, researchers classify cards accord-
ing to their understanding, and in a closed card sorting study, researchers classify
cards according to predefined categories. As the symptoms of bugs are already
intensively explored, in the first research question, we apply the closed card sort-
ing study, and our symptoms are predefined in the prior studies [154,141,143,
116]. As the cases and repairs of workarounds are rarely explored, we apply the
open sorting study in the other research questions. Our study is conducted in two
rounds. In the first round, the third and the fourth authors build the taxonomy,
and in the second round, the first author rebuild the taxonomy. The second author
plays as the reviewer for both rounds. Krippendorff’s α testing is widely used to
measure the inconsistencies among items [118,120]. This value is between zero and
one, where zero denotes a random chance and one denotes a perfect agreement.
Initially, between the two rounds, the α values of RQ1, RQ2 and RQ3 are 0.874,
0.929, and 0.935, respectively. Although Krippendorff’s α testing presents a statis-
tic confidence, it still leaves such inconsistencies to readers, and it is ambiguous
to calculate the percentages in the presence of inconsistent cases. In this study,
we tried to resolve all inconsistencies. If we could not come to an agreement, we
contacted their programmers by sending emails or directly discussing on its bug
report. For example, a bug report [14] is difficult to understand. It does not have
an informative title; its description contains only a stack trace; and its discussions
are brief. Although the bug report presents two related pull requests, the relations
between the bug report and the two pull requests are unclear to us. As a result,
it was difficult for us to fully determine the causes of the workaround. We asked
programmers who handle the bug report, and a programmer named Makoto Yui
confirmed that this bug is caused by the memory requirements of Spark [15] and
they have fixed this problem.

In each RQ, we analyzed the 200 workarounds according to its correspond-
ing protocol. In RQ1, RQ2, and RQ3, after we determine the categories of all
workarounds, the percent of a category A is calculated as follows:

ratioA =
NA

NAll
(1)

where NA is the number of workarounds in category A, and NAll is the number of
all workarounds, i.e., 200. In RQ1, a workaround is put into exactly one category,
so the sum of the percentages is one. In RQ2 and RQ3, several workarounds are
classified into multiple categories, so the sums of the percentages can be more than
one.

5 Empirical Result

Figure 5 shows the overview of our identified categories. The grey bar behind each
category denotes its percentage, and the links denote their associations. We next

How do Programmers Fix Bugs as Workarounds? 11

41.0%

9.0%

8.5%

5.5%

5.0%

3.0%

3.0%

3.0%

2.0%

1.5%

1.0%

1.0%

40.5%

23.5%

11.0%

4.0%

3.0%

13.5%

7.5%

4.5%

1.5%

8.0%

4.5%

3.5%

40%

24%

16%

38.5%

21.5%

6.5%

4.5%

4.0%

1.5%

0.5%

23.5%

6.5%

5.5%

5.0%

4.0%

2.5%

R1. Repairs on interfaces

R1.1 Modifying API calls

R1.2 Modifying the settings of libraries

R1.3 Switching to other libraries

R1.4 Switching to older versions

R1.5 Switching to newer versions

R1.6 Deep copying

R1.7 Bypassing APIs with bugs

R1.8 Implementing wrappers

R1.9 Modifying input formats

R1.10 Modifying input values

R1.11 Overridden APIs

R2. Repairs on my project

R2.1 Modifying my settings

R2.2 Modifying build files or options

R2.3 Repairing as technical debt

R2.4 Modifying documents

R3. Repairs on the programming env.

R3.1 Switching to other techniques

R3.2 Modifying operating systems

R3.3 Deleting temporary files

R4. No repairs

R4.1 No need to fix

R4.2 Unfixed problems

C1. Problems in external projects

C1.1 Problems in my libraries

C1.2 Problems in my clients

C2. Problems in my project

C2.1 Problems in settings

C2.2 Flawed repairs

C2.3 Incompatible issues

C2.4 Borderline cases

C2.5 Flaky problems

C2.6 External contributors

C3. Problems in programming env.

C3.1 Problems in operating systems

C3.2 Incorrect techniques

C3.3 Unavailable resources

C3.4 Problems in languages

C3.5 Problems in the network

Causes Repairs
S1. Crash

40.5%

S2. Unexpected behavior

33.5%

S3. Build and testing error

21%

S4. Hang

2.5%

S5. Security threat

1.5%

S6. Performance issue

0.5%

S7. Errors in warning messages

0.5%

Symptoms

Fig. 5: The distributions and associations of symptoms, causes and repairs.

introduce our classified symptoms, causes, and repairs. More details are presented
on our website:
https://github.com/tetradecane/Workaround_journal_website

5.1 RQ1. Symptoms and Standard Process

5.1.1 Protocol

In this research question, we classify bug reports by their symptoms. A symptom of
a bug report is the observable buggy behavior of its described bug. As this research
question explores which symptoms are likely to be resolved as workarounds, our
symptom taxonomy has to be aligned with those of the prior studies [154,141,143,
116]. As they did, we read a bug report to identify its symptom. In particular,
from a bug report, we inspected its title, description, and comments. Based on
their taxonomies [154,141,143,116], when we inspected bug reports, we located
sentences that are useful to identify the category of a bug (e.g., crashes, hangs,
and unexpected behaviors). For example, in Section 2.2, we highlight the symptom
sentence of the sample bug report, because this sentence describes an unexpected
behavior of garbage collection.

5.1.2 Result

In the standard process, if a bug has a symptom, programmers identify the root
cause of the symptom, and typically modify code to fix the bug. As a comparison,
for each symptom, we introduce examples in this process.

S1. Crash (81/200, 40.5%). A crash occurs, when a program fails to termi-
nate normally. For example, a workaround [16] describes a crash: “DNS Packets

https://github.com/tetradecane/Workaround_journal_website

12 Aoyang Yan et al.

with dns.flags.rcode=1 cause ml ops.sh to crash”. In the standard process, pro-
grammers determine that a crash [17] is caused by a wrong way to retrieve values
from a table, and fix the code to retrieve the correct values.

S2. Unexpected behavior (67/200, 33.5%). An unexpected behavior oc-
curs, when a user or programmer experiences deviation from expected behaviors.
The symptom of a workaround [18] is an unexpected behavior, because the report
has a sentence: “I’m getting some extremely strange behavior when trying to ex-
tract features for a learning to rank model”. In the standard process, programmers
determine that an unexpected behavior [19] is caused by the wrong calculation of
two values. To fix the problem, the correct value is calculated [20].

S3. Build and testing error (42/200, 21%). Build and testing errors occur
in the building and testing process. Apache provides some Continuous Integration
(CI) tools to support the automation of building and testing. If these tools report
errors, we also put these errors into this category. For example, the symptom of a
workaround [21] is a build error: “Builds are failing in pipeline due to SSL locator
tests failing”. In the standard process, a bug report [22] complains that a test
case wrongly failed on Java 7, and programmers determine it is caused by missing
vendor names. The bug is fixed by adding those missing names [23].

S4. Hang (5/200, 2.5%). A hang is a situation when a program does not
stop nor respond. For example, the symptom of a workaround [24] is a hang: “...
noticed that a job reading avro files would have some tasks that never finish.
Looking at the threads they got stuck in”. In the standard process, programmers
determine that a hang [25] is caused by a logic error in the URI class, and the error
is fixed to resolve the hang.

S5. Security threat (3/200, 1.5%). A security threat presents the vulnera-
bility on software security issues. For example, the symptom of a workaround [13]
is a security threat, because a user can improperly change the permission of other
users:“ Lets suppose user1 has created Notebook 9 and he has not changed the
note permissions. When user2 logins, as the Notebook 9 is visible to user2, user2
can change the permissions of the user1 note (Notebook 9)”. In the standard pro-
cess, a bug report [26] complains that a user can see the personal data of other
users. This security threat is caused by too lax default permissions, and it is fixed.

S6. Performance issue (1/200, 0.5%). If a program does not respond
in expected time or consumes too many computational resources, we determine
it as a performance issue. For example, the symptom of a workaround [27] is a
performance issue: “REST search queries make Ranger incredibly slow”. In the
standard process, programmers determine that a performance issue [28] is caused
by setting the size of a table as a constant. To fix the bug, programmers re-
implement the table to allow it to increase its size.

S7. Errors in warning messages (1/200, 0.5%). This type of errors occurs,
when warning messages are wrong or producing warning messages leads to errors.
For example, a workaround [29] includes a wrong warning messages: “It seems like
for each integration test run we produce about 400MB of logs. This is way too
much for one run”. In the standard process, programmers determine that an error
in warning messages [30] is caused by a missing forward slash (“/”) in web.xml file.
Adding missing required slashes fixes this bug.

Li et al. [122] report that the symptoms of most bugs are incorrect function-
alities (64.3% to 69.4%) and crashes (14.3% to 19.1%). Our unexpected behaviors

How do Programmers Fix Bugs as Workarounds? 13

correspond to their incorrect functionalities. We find that incorrect functionalities
and more crashes are likely to be resolved as workarounds:

Finding 1 When bugs are resolved as workarounds, their symptoms are often
crashes (40.5%) and unexpected behaviors (33.5%).

5.2 RQ2. Causes of Workarounds

5.2.1 Protocol

In this research question, we determine the causes of a workaround. As they have
never been explored, in this and the following research questions, we follow differ-
ent analysis methodologies from the prior ones [154,141,143,116]. The prior ones
analyze the causes of bugs. The cause of a bug explains why this bug occurs. In
our study, we do not analyze the causes of bugs, but the causes of workarounds.
In particular, given a bug report, we analyze why programmers do not choose the
standard process as described in Section 2.1, but would rather repair the bug as a
workaround (e.g., the one as described in Section 2.2). In particular, from a bug
report, we searched for the sentences that explain why a bug has to be fixed as a
workaround, and the sentences that explicitly mention workarounds. For example,
as shown in Figure 2, the bug report is fixed as a workaround, because program-
mers believe that this problem shall be fixed by its library. Although the bug is
reported to Beam, the problem resides in its library, Flink. Although Beam program-
mers have bypassed the problem, the problem itself is resolved imperfectly. As the
programmer said, the problem shall be fixed by the upstream, Flink. In this exam-
ple, the bug is fixed as a workaround, because its problem resides in the library,
and we put it to C1.1 Problems in my libraries.

5.2.2 Result

The causes of workarounds are as below:

C1. Problems in external projects (80/200, 40%). These bug reports are
resolved as workarounds, because the programmers of a project typically cannot
fix the problems external of the project.

C1.1 Problems in my libraries (48/200, 24%). Although a bug report is
submitted in a project, it is caused by the libraries of this project. As it is infeasible
to repair a problem in libraries, the bug report is often marked as a workaround.
For example, Thrift [31] is a framework for developing scalable cross-language
services, and it calls hspec-core [32] as a library. A bug report [33] complains about
a build failure when compiling with hspec-core 2.4.0. Programmers determine that
hspec-core 2.4.0 has a bug, and limit hspec-core to a version below 2.4.0 to avoid
the build failure.

C1.2 Problems in my clients (32/200, 16%). Although a bug is reported
to a project, its problem does not reside in the project, but in the clients of the
project. For example, Log4j [34] is a logging service, and is called by other projects
like IBM WebSphere. A bug report [35] of Log4j describes a crash when a WebSphere

server calls Log4j. Although the problem is reported to Log4j, it turns out to be a

14 Aoyang Yan et al.

bug in WebSphere, and it is fixed as a WebSphere bug [36]. In some cases, programmers
of clients do not fully understand the APIs of a project, and report their problems
to the project. For example, Spark [15] presents a BigDecimal type to define decimal
values. A bug report [37] complains that the multiplication of two BigDecimal values
returns null. A programmer of Spark explains that Spark implements a technique
to detect overflow and the null value indicates a detected overflow.

C2. Problems in my project (77/200, 38.5%). Programmers cannot fully
or perfectly fix some problems of their projects, and mark their bug reports as
workarounds. Some problems are related to technical debt [150].

C2.1 Problems in settings (43/200, 21.5%). If the problem of a bug report
is caused by wrong settings, programmers can recommend correct settings, and
mark the bug report as a workaround. For example, a bug report [38] of Spark [15]
complains that Spark applications are invisible from JSON APIs. According to a
document [39] in the Spark website, spark.eventLog.enabled must be set as true to
enable JSON APIs, but the reporter did not set it as true. In a comment of this bug
report, a program explains that it takes significant programming effort to fully
fix the bug, but it is simple to fix the bug as a workaround by turning on the
eventLogging setting.

C2.2 Flawed repairs (13/200, 6.5%). Although the problem of a bug re-
port seems to be fixed, the fixed code can be flawed, and can produce wrong
results in some cases. For example, Mesos [40] is a distributed cluster manager. A
bug report [41] of Mesos complains that a test case wrongly fails. A programmer de-
termines that a thread does not terminate in the expected time. As a workaround,
the programmer changes the expected time from 5 seconds to 10 seconds. He be-
lieves that the repair is flawed and recommends a better repair for this problem
in his comments.

C2.3 Incompatible issues (9/200, 4.5%). Although the problem of a bug
report is fixed, the fixed code can introduce incompatible issues. For example,
OpenJPA [42] is a persistence framework. A bug report [43] of OpenJPA complains
that it maps the double type in Java to the NUMERIC type in HSQLDB. A straightfor-
ward repair is to change the mapping from the NUMERIC type to DOUBLE, but the
modification can introduce a backward incompatible issue. Instead, programmers
reject this modification, and live with the problem.

C2.4 Borderline cases (8/200, 4%). A bug report can be triggered by
borderline cases (e.g., special inputs). Instead of fixing buggy code, program-
mers can avoid such borderline cases and mark the corresponding bug report as
a workaround. For example, Spot [44] can detect security threats in network flows
and packets. A bug report [16] of Spot describes a crash when it scans a specific
type of packets. Instead of fixing the buggy code, programmers modify its setting
file and ignore such packages.

C2.5 Flaky problems (3/200, 1.5%). The problems of some bug reports are
flaky and difficult to reproduce. For example, Impala [45] is an SQL query engine.
A bug report [46] of Impala complains about a hang in its build process. However,
programmers cannot reproduce it, and the problem disappears after restarting the
build task.

C2.6 External contributors (1/200, 0.5%). Before a bug report is fixed,
users can implement their own tools to fix the problem of the bug report. As
these tools are not included in the reported project, the bug report is marked

How do Programmers Fix Bugs as Workarounds? 15

as a workaround. For example, a bug report [47] requests a migration tool, but
programmers ignore this problem after it is reported. To handle the problem, the
reporter implements and releases his own tool on Github [48], and the bug report
is marked as a workaround.

The above causes lead to the following finding:

Finding 2 In 38.5% of workarounds, programmers modify their own projects,
but their repairs are imperfect (e.g., flawed repairs 6.5%), difficult to repro-
duce (e.g., flaky problems 1.5%), modifications on non-source code (e.g., settings
21.5%), or solved by external contributors.

C3. Problems in programming environments (47/200, 23.5%). The prob-
lem of a bug report occurs in the programming environments of a project. Although
modifying the programming environments of a project can avoid the problems, the
modifications must be applied wherever the project is deployed. As their repairs
are imperfect, their bug reports are marked as workarounds.

C3.1 Problems in operating systems (13/200, 6.5%). The problem of
a bug report resides in operating systems. As it is difficult to fully fix such a
bug, its report has to be fixed as a workaround. For example, a bug report [49] of
Mesos complains about a test case failure. Programmers determine that the failure
is caused by a Linux file service called LXCFS. As a workaround, they disable the
service.

C3.2 Incorrect techniques (11/200, 5.5%). This type of problems occurs,
when programmers choose incorrect techniques. For example, a bug report [50] of
Cordova [51] complains about a performance degradation, when the reporter uses
a Javascript framework, jQuery, to set the layout of a mobile application. A pro-
grammer of Cordova explains that Javascript is not a good choice, and recommends
the reporter to use media queries [52].

C3.3 Unavailable resources (10/200, 5%). The problem of a bug report
can be caused by unavailable or missing resources (e.g., broken URLs). For ex-
ample, NetBeans [53] is an integrated development environment. A bug report [54]
describes a build failure, due to a broken Maven dependency.

C3.4 Problems in languages (8/200, 4%). The problem of a bug report
can be caused by the programming languages of its project, so it is fixed as a
workaround. For example, Solr [55] is an open source enterprise search platform.
A bug report [56] of Solr complains about a build failure, when the wildcards
such as “*” and “**” are used to load classes. Programmers determine that Java
9 changes its way to scan class paths, and the modification causes the failure.

C3.5 Problems in the network (5/200, 2.5%). The problem of a bug
report resides in the underlying network. For example, JCLOUDS [11] is a cloud
toolkit. A bug report [57] complains that an unexpected error message is received,
when it works with Amazon Web Service. Programmers determine that it is caused
by an unidentified problem in the underlying network. As they cannot solve the
problem, they have to recover their service when it happens.

The above causes lead to the following finding:

Finding 3 The problems of over half of workarounds are in external projects
(40%) or reside in programming environments (23.5%).

16 Aoyang Yan et al.

5.3 RQ3. Repairs in Workarounds

5.3.1 Protocol

In this research question, we analyze how the problem of a workaround is repaired.
For a given bug report, we analyze its pull requests and commit histories, if they
are available. For the example in Section 2.2, the problem resides in Flink, a library
of Beam. As shown in Figure 3, to fix the problem, programmers bypass the API
method with the problem. When it throws exceptions, they implement code to
handle the problem. As a result, we classify its repair to R1.8 Bypassing APIs with
bugs. If we cannot find corresponding pull requests or commit histories, we read
the comments to understand how the programmers repair the problems. Indeed,
different from other bug reports, the problem of a workaround is often in external
projects. To fully understand the repair of a workaround, we even read the bug
reports and modifications of other projects. In this example, after we read the bug
report of Flink [7] and its modifications, we confirm that this problem resides in
Flink.

5.3.2 Result

The repairs of workarounds are as follows:

R1. Repairs on interfaces (82/200, 41%). The problem of a bug report lies in
a library. Before the problem is fixed in that library, as workarounds, programmers
change their ways to call APIs. The category has two scenarios. First, a bug is
reported by the client programmers of a library, but the programmers of the library
do not fix the bug. In this scenario, the client programmers have to repair their
client code. For example, ActiveMQ Artemis [58] is a messaging framework. A bug
report [59] complains about a connection failure. A programmer identifies that the
problem is recurring [60]. To resolve this problem, he recommends downgrading
the library of clients from 2.6.2 to 2.6.1. Second, a bug is report to a project, but
the problem lies in a library of the project. If the library does not fix the problem,
the programmers of this project have to repair their own code. We next present
such an example.

R1.1 Modifying API calls (18/200, 9%). Client code can produce un-
expected results because it wrongly calls APIs. After programmers identify the
problem, they will update their client code to call correct APIs, and these modi-
fications are considered as workarounds. For example, Synapse [61] is a framework
for service management and integration. A programmer named amit complains
that the HTTP header is not as expected [62]. Later, amit leaves the correct API
calls in a comment of the bug report.

R1.2 Modifying the settings of libraries (17/200, 8.5%). The problem
of a bug report can be relieved by modifying settings. For example, in a bug
report [63], Solr hangs when JDBC is stuck in the middle of a read, and increasing
oracle.jdbc.ReadTimeout can relieve the problem.

R1.3 Switching to other libraries (11/200, 5.5%). A library has prob-
lems, but there are other libraries as replacements. If a report describes such
problems, programmers can recommend the alternative libraries, and mark the
bug report as a workaround. For example, NiFi Registry [64] is a project to store

How do Programmers Fix Bugs as Workarounds? 17

and manage shared resources. A bug report [65] of NiFi Registry complains about
a crash with JRE. A programmer of NiFi Registry explains that NiFi Registry must
call JDK rather than JRE, and resolves this problem.

R1.4 Switching to older versions (10/200, 5%). The problem of a bug
report is recurring. When a problem occurs in a library of the project, before
the problem is fixed, programmers can recommend switching to older versions of
the library. For example, as we introduced the cause of problems in my libraries,
the problem of a bug report [33] is caused by a buggy version 2.4.0 of library
hspec-core [32]. Programmers avoid the problem by limiting library hspec-core to
a version below 2.4.0.

R1.5 Switching to newer versions (6/200, 3%). The problem of a bug
report is already fixed in a newer version. When such a problem is reported to a
project, programmers can recommend switching to newer versions of the project.
For example, Openmeetings [66] is a video conference application, and Moodle [67]
is a learning management system. OpenMeetings has a module named openmeetings-

moodleplugin [68] to connect to Moodle. Here, the module is developed in a separated
project, and can be considered as a library of Openmeetings. A bug report [69] of
OpenMeetings complains about a connection failure. A programmer of OpenMeetings

recommends using a newer version of openmeetings-moodle-plugin, and thus resolves
this problem.

R1.6 Deep copying (6/200, 3%). If library developers do not fix problems
in a library, programme modify library code directly. For example, Maven [70] calls
jansi [71] as a library to print colorful texts. A bug report [72] complains that Maven
does not print colorful texts when it works with NetBeans. To fix the problem of
maven, a programmer copied the source files of jansi and modified these source files
directly [73].

R1.7 Bypassing APIs with bugs (6/200, 3%). If the problem of a library
is too difficult to solve, programmers can choose to bypass the related APIs of
the library. For example, Nemo [74] is a data processing project, and it calls Guava

as a library. A bug report [75] of Nemo complains about a serialization exception
that is related to Guava. The programmers of Guava are working on this problem,
but the problem is difficult to solve, because it is caused by an unresolved Java
problem [76]. As a workaround, when the exception is caught, programmers print
corresponding class names to warn users, but leave the problem unresolved.

R1.8 Implementing wrappers (4/200, 2%). When a library does not work
as expected, programmers can implement a wrapper of problematic APIs to obtain
their desirable results. For example, zookeeper [77] is a library of Solr [55]. A bug
report [78] complains that Solr fails to store large files. While Solr calls the APIs
of zookeeper to store files, programmers determine that zookeeper is not suitable
to store large data. To fix the problem, programmers implement a wrapper for
zookeeper [79]. The metadata of the file are still stored in zookeeper, but its contents
are stored externally.

R1.9 Modifying input formats (3/200, 1.5%). Some problems are caused
by wrong input formats. As workarounds, such inputs are modified. For example,
WEEX [80] is a framework for building mobile applications. A bug report [81] of WEEX

complains that it does not compile an XML file. A programmer of WEEX explains
that the XML file shall be rewritten in a specific way to avoid the problem.

R1.10 Modifying input values (2/200, 1%). A bug can be caused by incor-
rect values. As workarounds, such values are modified. For example, the problem

18 Aoyang Yan et al.

of a bug report [82] is caused by an illegal name, and its repair is to modify this
illegal name.

R1.11 Overridden APIs (2/200, 1%). If a library does not work as ex-
pected, programmers can override the problematic APIs of the library. For ex-
ample, TinkerPop [83] is a graph computing framework. In a bug report [84] of
TinkerPop, a client programmer suggests that the willAllowId method shall throw
exception when it supports string ids but an id is not a string. However, a program-
mer of TinkerPop disagrees with the suggestion, and asks the client programmer to
override the method in his own implementation.

The above observations lead to a finding:

Finding 4 When libraries cannot be modified to repair problems, as work-arounds,
programmers can switch whole libraries (e.g., with an older version 5%), switch
APIs with problems (e.g., overridden 1%), or switch the way to call APIs (9%).

R2. Repairs on my project (81/200, 40.5%). After a bug is reported to a
project, workarounds modify the files of the project.

R2.1 Modifying my settings (47/200, 23.5%). The problem of a bug
report is caused by wrong settings. As a workaround, the settings are corrected to
resolve the problem. For example, a bug report [38] of Spark [15] complains that
Spark applications are invisible from JSON APIs. A programmer of Spark reminds the
reporter of a related document [39]. As the document says, spark.eventLog.enabled
must be set as true to enable JSON APIs. The reporter changes the setting of the
forked Spark project to resolve this problem.

R2.2 Modifying build files or options (22/200, 11%). A project may
not compile with its default build files and options. As a workaround, the build
files or options are modified according to the new environments. For example, a
bug report [85] of Atlas [86] complains about a build failure in a forked version.
Finally, the reporter changes the build option to solve it.

R2.3 Repairing as technical debt (8/200, 4%). The problem of a bug
report still exists, in that its repairs have flaws. These repairs are considered as
workarounds because they are technical debt. For example, SSHD [87] is a SSH library.
A bug report [88] of SSHD complains about out-of-memory crashes. The reporter
proposes to limit the queue of messages. Although the modification solves his
problem for now, he is not sure whether it is correct. The programmer of SSHD

encourages him to submit the pull request. However, after some discussions, they
agree that the solution is technical debt, and mark the bug report as a workaround.
The discussions show that instead of limiting messages, they are working on a new
mechanism to handle the problem.

R2.4 Modifying documents (6/200, 3%). Instead of modifying code, as
workarounds, programmers can repair documents. For example, a bug report [89]
complains that the default value of a parameter is too small. After some discus-
sions, instead of changing the default value, programmers update the document
to explain what the value is and how to change it.

The above observations lead to a finding:

Finding 5 When repairs happen in a project where a bug is reported, they often
modify settings (23.5%), build files (11%), and documents (3%). Meanwhile, the
repairs on source files are technical debt (4%).

How do Programmers Fix Bugs as Workarounds? 19

R3. Repairs on the programming environments (27/200, 13.5%). Pro-
grammers can recommend changing the programming environments to repair bugs.

R3.1 Switching to other techniques (15/200, 7.5%). A framework or
library may be not designed to work with specific techniques. When this happens,
programmers can recommend the correct techniques as a workaround. For example,
a bug report [50] of Cordova [51] complains about a performance degradation, when
clients use jQuery to set the layout of a mobile application. A programmer of Cordova
explains that Cordova supports media queries [52], instead of jQuery.

R3.2 Modifying operating systems (9/200, 4.5%). Operating systems
can be modified to fix the problem of a bug report as workarounds. For example,
as we introduced the cause of problems in operating systems, the problem of a bug
report [49] is caused by a Linux file service called LXCFS, and the problem is fixed
by disabling it.

R3.3 Deleting temporary files (3/200, 1.5%). A bug can be caused by
cache and temporary files. As workarounds, deleting such files can resolve the
problem. For example, a bug report [90] of NetBeans [53] complains that its code
templates do not work. Later, the reporter realizes that deleting cache files resolves
the problem.

Finding 6 As workarounds on programming environments, programmers can
recommend switching to other techniques (7.5%), modifying their own operation
systems (4.5%), or deleting temporary files (1.5%).

Comparing with the results in Section 5.2, we find more problems on pro-
gramming environments than repairs on programming environments. It can be
repaired at other locations (e.g., source files), and thus a repair is more general
than modifying programming environments.

R4. No repairs (16/200, 8%). Programmers do not repair source files to resolve
these workarounds.

R4.1 No need to fix (9/200, 4.5%). The problems of these workarounds
are unnecessary to fix, and no further modifications are required. For example,
Impala [45] is an SQL query engine. A bug report [46] of Impala complains about
a hang in its build process. However, programmers cannot reproduce it, and the
problem disappears after restarting the build task. As a result, no repairs are
applied.

R4.2 Unfixed problems (7/200, 3.5%). Programmers can choose to live
with a problem of a bug report, in that it is difficult to fix it. For example, a bug
report [91] of PDFBox [92] claims an out-of-memory crash. Programmers identify
that the garbage collector of JVM does not collect caches in time, and causes this
crash. They open a new task [93], but it is still unassigned.

Finding 7 A workaround can have no repairs due to two reasons: (1) some bugs
are unnecessary to be fixed (4.5%) and (2) some cannot be repaired at present
(3.5%).

20 Aoyang Yan et al.

5.4 RQ4. Associations

5.4.1 Protocol

In this research question, we analyze the associations of symptoms, causes and
repairs, and we use the lift function [112] to measure the associations:

lift(A,B) =
P (A ∩B)

P (A) ∗ P (B)
(2)

where P (A), P (B), P (A∩B) denote the probabilities that a workaround belongs to
category A, category B, and their intersection. Typically, only when the lift value is
greater than one, category A and B are associated. To ensure the reliability of our
found associations, we identify an association, only when the lift value is greater
than 1.5 and the intersection of A and B contains at least 5 workarounds. In this
research question, we explore symptom(A)-to-cause(B) and cause(A)-to-repair(B)
associations.

5.4.2 Result

Figure 5 shows the associations of symptoms, causes, and repairs. In this Figure,
each column denotes one of the above three dimensions, and a node of a dimension
denotes a category of the dimension. An edge between two nodes denotes an as-
sociation between the two corresponding categories, and a thicker edge denotes a
larger lift value. The thickness of an edge is in proportion to its lift value calculated
by Equation 2. The observation leads to a finding:

Finding 8 Crashes are fixed as workarounds, often because their problems reside
in programming environments. Unexpected behaviors are fixed as workarounds,
often because their repairs have flaws or the cause is incompatible issues.

We find that most associations between causes and repairs are straightforward.
For example, if the operating system causes a bug, a typical workaround is to select
alternative operating systems.

Lamothe and Shang [120] define four patterns to detect API workarounds.
Their first pattern, functionality extensions, corresponds to our R1.11 Overridden
APIs. Their second pattern, deep copies, corresponds to our R1.7 Deep copying.
We do not find the correspondences for their other two patterns such as multi-
versions and unnecessary workarounds. The overlapped categories are both rare in
our inspected workarounds (0.90% for functionality extensions and 2.71% for deep
copies). From the perspective of causes, their workarounds are caused by problems
in my libraries. To fix such problems as workarounds, we find that programmers
tend more to switch to other versions of libraries or change their settings. We find
that the patterns of the prior study [120] are less common in real projects, because
they can introduce incompatible issues. For example, if programmers modify the
code [101] or deep copy the code [120] of a library, their client code becomes
incompatible with the library. This type of resolutions can cause many problems.

How do Programmers Fix Bugs as Workarounds? 21

5.5 Threats to Validity

The threats to validity are as follows:
The threats to internal validity include the possible errors in our manual clas-

sification. To reduce the threat, we split our manual analysis into two phases,
and ask different authors to inspect the results in each phase. In addition, to re-
solve our disagreements, we contact the reporters and programmers who handle
the workarounds. Furthermore, we release our inspection results on our project
website, so other researchers can recheck the results.

The threats to external validity include our subjects. All workarounds are se-
lected from Apache projects. Programmers in other projects can follow other guide-
lines to handle workarounds, and it can require different repairs to resolve more
recent techniques. Due to the heavy effort of manual analysis, it is infeasible to
analyze many subjects, and our subject size is comparable with those of the prior
ones [120]. Although we cannot guarantee that we have obtained a full picture of
workarounds, we have identified many types of workarounds that are less known
to researchers. This threat can be further reduced if other researchers supplement
more subjects.

The threats to construct validity threat include the slice of time. As our data
are extracted as a snapshot, the findings in our study are valid, only for a limited
period of time. With the rapid improvement of technology, future programmers
could introduce other types of workarounds. This threat is shared by all empir-
ical studies. For those important and interesting research topics, researchers can
replicate empirical studies and explore to what degree their findings still hold.

6 Discussion

To resolve harmful workarounds, we interpret our findings.
Highlighting the significance of reported bugs with workarounds.

Finding 3 shows that 40% of workarounds are caused by bugs in external projects,
and 23.5% of workarounds are caused by programming environments. Finding 4
shows that 41% of workarounds are related to calling APIs. If the problem of a
workaround resides in other projects, its programmers cannot fix it by themselves,
but have to report it to the other projects. However, the programmers of the other
projects often do not understand the relevance of a bug. If a tool can recommend
related workarounds for a given bug report, this tool can be useful to estimate the
significance of a bug report.

Identifying bugs that can be resolved as workarounds. It can be inter-
esting to analyze the associations between workarounds and software metrics (e.g.,
the types of bugs), which can provide actionable advice on handling workarounds.
For example, Finding 1 shows that workarounds resolve more crashes than unex-
pected behaviors. This finding indicates that crashes can be bypassed, if they do
not introduce unexpected behaviors.

Improving bug report statuses in issue trackers. According to Sec-
tion 4.1 and Finding 7, several workarounds can be better marked as a different
type of resolutions. The problem can be mitigated, if issue trackers define clearly
defined resolutions. For example, if the problem of a bug report is fixed in new
versions or related issues, it can be better marked as fixed in other locations. If the

22 Aoyang Yan et al.

problem of a bug report results in no repairs, it can be better marked as won’t fix
or technical debts.

7 Conclusion and Future Work

In issue trackers, workarounds are less known and more ambiguous than other
bug reports. To deepen the knowledge on workarounds, we conducted an empir-
ical study on 200 workarounds that were collected from Apache projects. In this
study, we systematically analyzed the symptoms, causes, repairs of workarounds,
the correlations among them, and the definitions of workarounds. Our study reveals
many patterns to handle bugs as workarounds, and we present various examples to
illustrate workarounds. They are useful for programmers to handle similar bugs.
Furthermore, we summarized our analysis results into eight findings, and for the
first time, we presented the answers to four open questions based on these find-
ings. Based on these findings, researchers can improve the designs of APIs and issue
trackers. In future work, we plan to extend our work from the following perspec-
tives: (1) proposing techniques to detect workarounds; (2) analyzing the evolution
of workarounds (e.g., whether workarounds are finally removed after bugs are fully
fixed); and (3) analyzing the relations between technical debt and workarounds.

Acknowledgements

We appreciate reviewers for their insightful comments. This work is sponsored by
the National Nature Science Foundation of China No. 62232003 and 62272295.

Data Availability

The data of this study have been deposited in the following public repository:
https://github.com/tetradecane/Workaround_journal_website

References

1. https://issues.apache.org/jira (2020)
2. http://www.bugzilla.org/ (2020)
3. https://issues.apache.org/jira/browse/BEAM-6460 (2020)
4. https://beam.apache.org/get-started/beam-overview/ (2020)
5. https://flink.apache.org/ (2020)
6. https://github.com/apache/beam/pull/7552 (2020)
7. https://issues.apache.org/jira/browse/FLINK-10928 (2020)
8. https://github.com/apache/flink/ (2020)
9. https://github.com/tensorflow/ (2020)

10. https://projects.apache.org/projects.html?category (2020)
11. http://jclouds.apache.org (2020)
12. https://issues.apache.org/jira/browse/ODFTOOLKIT-375 (2020)
13. https://issues.apache.org/jira/browse/ZEPPELIN-1966 (2020)
14. https://issues.apache.org/jira/browse/HIVEMALL-30 (2020)
15. https://spark.apache.org/ (2020)
16. https://issues.apache.org/jira/browse/SPOT-26 (2020)
17. https://issues.apache.org/jira/browse/SPOT-238 (2020)

https://github.com/tetradecane/Workaround_journal_website
https://issues.apache.org/jira
http://www.bugzilla.org/
https://issues.apache.org/jira/browse/BEAM-6460
https://beam.apache.org/get-started/beam-overview/
https://flink.apache.org/
https://github.com/apache/beam/pull/7552
https://issues.apache.org/jira/browse/FLINK-10928
https://github.com/apache/flink/
https://github.com/tensorflow/
https://projects.apache.org/projects.html?category
http://jclouds.apache.org
https://issues.apache.org/jira/browse/ODFTOOLKIT-375
https://issues.apache.org/jira/browse/ZEPPELIN-1966
https://issues.apache.org/jira/browse/HIVEMALL-30
https://spark.apache.org/
https://issues.apache.org/jira/browse/SPOT-26
https://issues.apache.org/jira/browse/SPOT-238

How do Programmers Fix Bugs as Workarounds? 23

18. https://issues.apache.org/jira/browse/SOLR-11386 (2020)
19. https://issues.apache.org/jira/browse/FOP-1872 (2020)
20. https://github.com/apache/xmlgraphics-fop/commit/72d4de19de6175a92213e3c05e11b71dd1ed2714

(2020)
21. https://issues.apache.org/jira/browse/GEODE-2412 (2020)
22. https://issues.apache.org/jira/browse/XGC-66 (2020)
23. https://github.com/apache/xmlgraphics-commons/commit/

3019cac528aa9de78c3a69c173bbb64642b4292a (2020)
24. https://issues.apache.org/jira/browse/SPARK-13246 (2020)
25. https://issues.apache.org/jira/browse/XERCESJ-242 (2020)
26. https://issues.apache.org/jira/browse/JS1-112 (2020)
27. https://issues.apache.org/jira/browse/RANGER-2149 (2020)
28. https://issues.apache.org/jira/browse/XERCESC-759 (2020)
29. https://issues.apache.org/jira/browse/ASTERIXDB-1767 (2020)
30. https://issues.apache.org/jira/browse/AXIS-26 (2020)
31. http://thrift.apache.org/ (2020)
32. https://hackage.haskell.org/package/hspec-core (2020)
33. https://issues.apache.org/jira/browse/THRIFT-4044 (2020)
34. https://logging.apache.org/log4j/2.x/ (2020)
35. https://issues.apache.org/jira/browse/LOG4J2-2281 (2020)
36. http://www-01.ibm.com/support/docview.wss?uid=swg1PI89708 (2020)
37. https://issues.apache.org/jira/browse/SPARK-13612 (2020)
38. https://issues.apache.org/jira/browse/SPARK-11516 (2020)
39. https://spark.apache.org/docs/latest/monitoring.html (2020)
40. http://mesos.apache.org/ (2020)
41. https://issues.apache.org/jira/browse/MESOS-7216 (2020)
42. http://openjpa.apache.org/ (2020)
43. https://issues.apache.org/jira/browse/OPENJPA-2671 (2020)
44. http://spot.incubator.apache.org/ (2020)
45. http://impala.apache.org/ (2020)
46. https://issues.apache.org/jira/browse/IMPALA-2511 (2020)
47. https://issues.apache.org/jira/browse/CB-11974 (2020)
48. https://github.com/maklesoft/cordova-plugin-migrate-localstorage (2020)
49. https://issues.apache.org/jira/browse/MESOS-5441 (2020)
50. https://issues.apache.org/jira/browse/CB-13038 (2020)
51. http://cordova.apache.org/ (2020)
52. https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_

queries (2020)
53. https://netbeans.apache.org/ (2020)
54. https://issues.apache.org/jira/browse/NETBEANS-2840 (2020)
55. https://lucene.apache.org/solr/ (2020)
56. https://issues.apache.org/jira/browse/SOLR-8876 (2020)
57. https://issues.apache.org/jira/browse/JCLOUDS-1293 (2020)
58. https://activemq.apache.org/components/artemis/ (2020)
59. https://issues.apache.org/jira/browse/ARTEMIS-2132 (2020)
60. https://tinyurl.com/y4zjt352 (2020)
61. http://synapse.apache.org (2020)
62. https://issues.apache.org/jira/browse/SYNAPSE-1098 (2020)
63. https://issues.apache.org/jira/browse/SOLR-6209 (2020)
64. http://nifi.apache.org/registry.html (2020)
65. https://issues.apache.org/jira/browse/NIFIREG-142 (2020)
66. http://openmeetings.apache.org/ (2020)
67. https://moodle.org/ (2020)
68. https://github.com/openmeetings/openmeetings-moodle-plugin (2020)
69. https://issues.apache.org/jira/browse/OPENMEETINGS-1575 (2020)
70. http://maven.apache.org/ (2020)
71. http://fusesource.github.io/jansi (2020)
72. https://issues.apache.org/jira/browse/MNG-6417 (2020)
73. https://tinyurl.com/y3en9f3d (2020)
74. https://nemo.apache.org (2020)
75. https://issues.apache.org/jira/browse/NEMO-416 (2020)

https://issues.apache.org/jira/browse/SOLR-11386
https://issues.apache.org/jira/browse/FOP-1872
https://github.com/apache/xmlgraphics-fop/commit/72d4de19de6175a92213e3c05e11b71dd1ed2714
https://issues.apache.org/jira/browse/GEODE-2412
https://issues.apache.org/jira/browse/XGC-66
https://github.com/apache/xmlgraphics-commons/commit/3019cac528aa9de78c3a69c173bbb64642b4292a
https://github.com/apache/xmlgraphics-commons/commit/3019cac528aa9de78c3a69c173bbb64642b4292a
https://issues.apache.org/jira/browse/SPARK-13246
https://issues.apache.org/jira/browse/XERCESJ-242
https://issues.apache.org/jira/browse/JS1-112
https://issues.apache.org/jira/browse/RANGER-2149
https://issues.apache.org/jira/browse/XERCESC-759
https://issues.apache.org/jira/browse/ASTERIXDB-1767
https://issues.apache.org/jira/browse/AXIS-26
http://thrift.apache.org/
https://hackage.haskell.org/package/hspec-core
https://issues.apache.org/jira/browse/THRIFT-4044
https://logging.apache.org/log4j/2.x/
https://issues.apache.org/jira/browse/LOG4J2-2281
http://www-01.ibm.com/support/docview.wss?uid=swg1PI89708
https://issues.apache.org/jira/browse/SPARK-13612
https://issues.apache.org/jira/browse/SPARK-11516
https://spark.apache.org/docs/latest/monitoring.html
http://mesos.apache.org/
https://issues.apache.org/jira/browse/MESOS-7216
http://openjpa.apache.org/
https://issues.apache.org/jira/browse/OPENJPA-2671
http://spot.incubator.apache.org/
http://impala.apache.org/
https://issues.apache.org/jira/browse/IMPALA-2511
https://issues.apache.org/jira/browse/CB-11974
https://github.com/maklesoft/cordova-plugin-migrate-localstorage
https://issues.apache.org/jira/browse/MESOS-5441
https://issues.apache.org/jira/browse/CB-13038
http://cordova.apache.org/
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
https://netbeans.apache.org/
https://issues.apache.org/jira/browse/NETBEANS-2840
https://lucene.apache.org/solr/
https://issues.apache.org/jira/browse/SOLR-8876
https://issues.apache.org/jira/browse/JCLOUDS-1293
https://activemq.apache.org/components/artemis/
https://issues.apache.org/jira/browse/ARTEMIS-2132
https://tinyurl.com/y4zjt352
http://synapse.apache.org
https://issues.apache.org/jira/browse/SYNAPSE-1098
https://issues.apache.org/jira/browse/SOLR-6209
http://nifi.apache.org/registry.html
https://issues.apache.org/jira/browse/NIFIREG-142
http://openmeetings.apache.org/
https://moodle.org/
https://github.com/openmeetings/openmeetings-moodle-plugin
https://issues.apache.org/jira/browse/OPENMEETINGS-1575
http://maven.apache.org/
http://fusesource.github.io/jansi
https://issues.apache.org/jira/browse/MNG-6417
https://tinyurl.com/y3en9f3d
https://nemo.apache.org
https://issues.apache.org/jira/browse/NEMO-416

24 Aoyang Yan et al.

76. https://tinyurl.com/y2v32wmk (2020)
77. https://zookeeper.apache.org/ (2020)
78. https://issues.apache.org/jira/browse/SOLR-11049 (2020)
79. https://issues.apache.org/jira/browse/SOLR-11250 (2020)
80. https://weex.apache.org/ (2020)
81. https://issues.apache.org/jira/browse/WEEX-229 (2020)
82. https://issues.apache.org/jira/browse/ZEPPELIN-4002 (2020)
83. http://tinkerpop.apache.org/ (2020)
84. https://issues.apache.org/jira/browse/TINKERPOP-2286 (2020)
85. https://issues.apache.org/jira/browse/ATLAS-1057 (2020)
86. http://atlas.apache.org/ (2020)
87. https://mina.apache.org/sshd-project/ (2020)
88. https://issues.apache.org/jira/browse/SSHD-754 (2020)
89. https://issues.apache.org/jira/browse/ZEPPELIN-3195 (2020)
90. https://issues.apache.org/jira/browse/NETBEANS-2733 (2020)
91. https://issues.apache.org/jira/browse/PDFBOX-4396 (2020)
92. http://pdfbox.apache.org/ (2020)
93. https://issues.apache.org/jira/browse/PDFBOX-4668 (2020)
94. https://github.com/NixOS/nix/issues/7815 (2023)
95. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proc. ICDE, pp. 3–14 (1995)
96. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. In: Proc. POPL, pp. 4–16

(2002)
97. Anvik, J., Hiew, L., Murphy, G.C.: Who should fix this bug? In: Proc. ICSE, pp. 361–370

(2006)
98. Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., Zimmermann, T.: What

makes a good bug report? In: Proc. ESEC/FSE, pp. 308–318 (2008)
99. Bettenburg, N., Premraj, R., Zimmermann, T., Kim, S.: Duplicate bug reports considered

harmful? really? In: Proc. ICSM, pp. 337–345 (2008)
100. Bhattacharya, P., Ulanova, L., Neamtiu, I., Koduru, S.C.: An empirical analysis of bug

reports and bug fixing in open source android apps. In: Proc. CSMR, pp. 133–143 (2013)
101. Bogart, C., Kästner, C., Herbsleb, J., Thung, F.: How to break an API: cost negotiation

and community values in three software ecosystems. In: Proc. ESEC/FSE, pp. 109–120
(2016)

102. Dallmeier, V., Knopp, N., Mallon, C., Hack, S., Zeller, A.: Generating test cases for
specification mining. In: Proc. ISSTA, pp. 85–96 (2010)

103. Dehaghani, S.M.H., Hajrahimi, N.: Which factors affect software projects maintenance
cost more? Acta Informatica Medica 21(1), 63 (2013)

104. Endrikat, S., Hanenberg, S., Robbes, R., Stefik, A.: How do API documentation and
static typing affect API usability? In: Proc. ICSE, pp. 632–642 (2014)

105. Engler, D.R., Chen, D.Y., Chou, A.: Bugs as inconsistent behavior: A general approach
to inferring errors in systems code. In: Proc. SOSP, pp. 57–72 (2001)

106. Erlikh, L.: Leveraging legacy system dollars for e-business. IT professional 2(3), 17–23
(2000)

107. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao,
C.: The daikon system for dynamic detection of likely invariants. Science of Computer
Programming 69(1-3), 35–45 (2007)

108. Francalanci, C., Merlo, F.: Empirical analysis of the bug fixing process in open source
projects. In: Proc. OSS, pp. 187–196 (2008)

109. Gabel, M., Su, Z.: Javert: fully automatic mining of general temporal properties from
dynamic traces. In: Proc. ESEC/FSE, pp. 339–349 (2008)

110. Guo, P.J., Zimmermann, T., Nagappan, N., Murphy, B.: Characterizing and predicting
which bugs get fixed: an empirical study of microsoft windows. In: Proc. ICSE, pp.
495–504 (2010)

111. Guo, P.J., Zimmermann, T., Nagappan, N., Murphy, B.: Not my bug! and other reasons
for software bug report reassignments. In: Proc. CSCW, pp. 395–404 (2011)

112. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers (2011)

113. Herzig, K., Just, S., Zeller, A.: It’s not a bug, it’s a feature: how misclassification impacts
bug prediction. In: Proc. ICSE, pp. 392–401 (2013)

114. Hora, A.C., Robbes, R., Anquetil, N., Etien, A., Ducasse, S., Valente, M.T.: How do
developers react to API evolution? the pharo ecosystem case. In: Proc. ICSME, pp.
251–260 (2015)

https://tinyurl.com/y2v32wmk
https://zookeeper.apache.org/
https://issues.apache.org/jira/browse/SOLR-11049
https://issues.apache.org/jira/browse/SOLR-11250
https://weex.apache.org/
https://issues.apache.org/jira/browse/WEEX-229
https://issues.apache.org/jira/browse/ZEPPELIN-4002
http://tinkerpop.apache.org/
https://issues.apache.org/jira/browse/TINKERPOP-2286
https://issues.apache.org/jira/browse/ATLAS-1057
http://atlas.apache.org/
https://mina.apache.org/sshd-project/
https://issues.apache.org/jira/browse/SSHD-754
https://issues.apache.org/jira/browse/ZEPPELIN-3195
https://issues.apache.org/jira/browse/NETBEANS-2733
https://issues.apache.org/jira/browse/PDFBOX-4396
http://pdfbox.apache.org/
https://issues.apache.org/jira/browse/PDFBOX-4668
https://github.com/NixOS/nix/issues/7815

How do Programmers Fix Bugs as Workarounds? 25

115. Jeong, G., Kim, S., Zimmermann, T.: Improving bug triage with bug tossing graphs. In:
Proc. ESEC/FSE, p. 111–120 (2009)

116. Jia, L., Zhong, H., Wang, X., Huang, L., Lu, X.: An empirical study on bugs inside
tensorflows. In: Proc. DASFAA, p. to appear (2020)

117. Kazman, R., Cai, Y., Mo, R., Feng, Q., Xiao, L., Haziyev, S., Fedak, V., Shapochka, A.:
A case study in locating the architectural roots of technical debt. In: Proc. ICSE, vol. 2,
pp. 179–188 (2015)

118. Krippendorff, K.: Computing Krippendorff’s alpha-reliability (2011)
119. Lamothe, M., Guéhéneuc, Y.G., Shang, W.: A systematic review of api evolution litera-

ture. ACM Computing Surveys 54(8), 1–36 (2021)
120. Lamothe, M., Shang, W.: When APIs are intentionally bypassed: An exploratory study

of API workarounds. In: Proc. ICSE, p. to appear (2020)
121. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: A generic method for

automatic software repair. IEEE transactions on software engineering 38(1), 54–72 (2011)
122. Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., Zhai, C.: Have things changed now? an

empirical study of bug characteristics in modern open source software. In: Proc. ASID,
pp. 25–33 (2006)

123. Li, Z., Zhong, H.: An empirical study on obsolete issue reports. In: Proc. ASE, p. to
eappear (2021)

124. Li, Z., Zhou, Y.: Pr-miner: automatically extracting implicit programming rules and
detecting violations in large software code. In: Proc. ESEC/FSE, pp. 306–315 (2005)

125. Lin, Z., Shu, F., Yang, Y., Hu, C., Wang, Q.: An empirical study on bug assignment
automation using chinese bug data. In: Proc. ESEM, pp. 451–455 (2009)

126. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral mod-
els. In: Proc. ICSE, pp. 501–510 (2008)

127. Monperrus, M., Eichberg, M., Tekes, E., Mezini, M.: What should developers be aware
of? an empirical study on the directives of API documentation. Empirical Software
Engineering 17(6), 703–737 (2012)

128. Nadi, S., Krüger, S., Mezini, M., Bodden, E.: Jumping through hoops: why do java
developers struggle with cryptography apis? In: Proc. ICSE, pp. 935–946 (2016)

129. Nawaz, A.: A comparison of card-sorting analysis methods. In: APCHI, pp. 28–31 (2012)
130. Nguyen, T.T., Nguyen, H.A., Pham, N.H., Al-Kofahi, J.M., Nguyen, T.N.: Graph-based

mining of multiple object usage patterns. In: Proc. ESEC/FSE, pp. 383–392 (2009)
131. Okur, S., Dig, D.: How do developers use parallel libraries? In: Proc. ESEC/FSE, p. 54

(2012)
132. Pandita, R., Xiao, X., Zhong, H., Xie, T., Oney, S., Paradkar, A.M.: Inferring method

specifications from natural language API descriptions. In: Proc. ICSE, pp. 815–825 (2012)
133. Potdar, A., Shihab, E.: An exploratory study on self-admitted technical debt. In: Proc.

ICSME, pp. 91–100 (2014)
134. Qiu, D., Li, B., Leung, H.: Understanding the API usage in java. Information and Software

Technology 73, 81–100 (2016)
135. Ramasubbu, N., Kemerer, C.F.: Integrating technical debt management and software

quality management processes: A normative framework and field tests. IEEE Transac-
tions on Software Engineering 45(3), 285–300 (2019)

136. Robbes, R., Lungu, M., Röthlisberger, D.: How do developers react to API deprecation?:
the case of a smalltalk ecosystem. In: Proc. ESEC/FSE, p. 56 (2012)

137. Robillard, M.P., Bodden, E., Kawrykow, D., Mezini, M., Ratchford, T.: Automated API
property inference techniques. IEEE Transactions on Software Engineering 39(5), 613–
637 (2013)

138. Robillard, M.P., DeLine, R.: A field study of API learning obstacles. Empirical Software
Engineering 16(6), 703–732 (2011)

139. Seacord, R.C., Plakosh, D., Lewis, G.A.: Modernizing legacy systems: software technolo-
gies, engineering processes, and business practices. Addison-Wesley Professional (2003)

140. Shi, L., Zhong, H., Xie, T., Li, M.: An empirical study on evolution of API documentation.
In: Proc. ETAPS/FASE, pp. 416–431 (2011)

141. Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y., Zhai, C.: Bug characteristics in open source
software. Empirical Software Engineering 19(6), 1665–1705 (2014)

142. Tang, Y., Khatchadourian, R., Bagherzadeh, M., Singh, R., Stewart, A., Raja, A.: An
empirical study of refactorings and technical debt in machine learning systems. In: Proc.
ICSE, pp. 238–250 (2021)

26 Aoyang Yan et al.

143. Thung, F., Wang, S., Lo, D., Jiang, L.: An empirical study of bugs in machine learning
systems. In: Proc. ISSRE, pp. 271–280 (2012)

144. Tom, E., Aurum, A., Vidgen, R.: An exploration of technical debt. Journal of Systems
and Software 86(6), 1498–1516 (2013)

145. Vásquez, M.L., Bavota, G., Bernal-Cárdenas, C., Penta, M.D., Oliveto, R., Poshyvanyk,
D.: API change and fault proneness: a threat to the success of android apps. In: Proc.
ESEC/FSE, pp. 477–487 (2013)

146. Vásquez, M.L., Bavota, G., Penta, M.D., Oliveto, R., Poshyvanyk, D.: How do API
changes trigger stack overflow discussions? a study on the android SDK. In: Proc. ICPC,
pp. 83–94 (2014)

147. Vetrò, A.: Using automatic static analysis to identify technical debt. In: Proc. ICSE, pp.
1613–1615 (2012). DOI 10.1109/ICSE.2012.6227226

148. Xia, X., Lo, D., Wen, M., Shihab, E., Zhou, B.: An empirical study of bug report field
reassignment. In: Proc. CSMR-WCRE, pp. 174–183 (2014)

149. Yan, A., Zhong, H., Song, D., Jia, L.: The symptoms, causes, and repairs of workarounds
in apache issue trackers. In: Proc. ICSE (2022)

150. Yan, M., Xia, X., Shihab, E., Lo, D., Yin, J., Yang, X.: Automating change-level self-
admitted technical debt determination. IEEE Transactions on Software Engineering
45(12), 1211–1229 (2018)

151. Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging. Elsevier (2006)
152. Zhang, F., Khomh, F., Zou, Y., Hassan, A.E.: An empirical study on factors impacting

bug fixing time. In: Proc. WCRE, pp. 225–234 (2012)
153. Zhang, H., Gong, L., Versteeg, S.: Predicting bug-fixing time: an empirical study of

commercial software projects. In: Proc. ICSE, pp. 1042–1051 (2013)
154. Zhang, Y., Chen, Y., Cheung, S., Xiong, Y., Zhang, L.: An empirical study on TensorFlow

program bugs. In: Proc. ISSTA, pp. 129–140 (2018)
155. Zhong, H.: Enriching compiler testing with real program from bug report. In: Proc. ASE,

pp. 1–12 (2022)
156. Zhong, H., Mei, H.: An empirical study on API usages. IEEE Transaction on software

engineering 45, 319–334 (2018)
157. Zimmermann, T., Premraj, R., Bettenburg, N., Just, S., Schroter, A., Weiss, C.: What

makes a good bug report? IEEE Transactions on Software Engineering 36(5), 618–643
(2010)

	Introduction
	Preliminary
	Related Work
	Methodology
	Empirical Result
	Discussion
	Conclusion and Future Work

