
The Symptoms, Causes, and Repairs of bugs inside a
Deep Learning Library

Li Jiaa, Hao Zhonga,∗, Xiaoyin Wangb, Linpeng Huanga, Xuansheng Lua

aShanghai Jiao Tong University, Shanghai 200240, China
bUniversity of Texas at San Antonio, Texas, USA

Abstract

In recent years, deep learning has become a hot research topic. Although it

achieves incredible positive results in some scenarios, bugs inside deep learning

software can introduce disastrous consequences, especially when the software

is used in safety-critical applications. To understand the bug characteristic of

deep learning software, researchers have conducted several empirical studies on

deep learning bugs. Although these studies present useful findings, we notice

that none of them analyze the bug characteristic inside a deep learning library

like TensorFlow. We argue that some fundamental questions of bugs in deep

learning libraries are still open. For example, what are the symptoms and the

root causes of bugs inside TensorFlow, and where are they? As the underly-

ing library of many deep learning projects, the answers to these questions are

useful and important, since its bugs can have impacts on many deep learning

projects. In this paper, we conduct the first empirical study to analyze the bugs

inside a typical deep learning library, i.e., TensorFlow. Based on our results,

we summarize 8 findings, and present our answers to 4 research questions. For

example, we find that the symptoms and root causes of TensorFlow bugs are

more like ordinary projects (e.g., Mozilla) than other machine learning libraries

(e.g., Lucene). As another example, we find that most TensorFlow bugs reside

∗Corresponding author
Email address: zhonghao@sjtu.edu.cn (Hao Zhong)
This manuscript is an extended version of a paper [1] that is presented in the 25th Inter-

national Conference on Database Systems for Advanced Applications (DASFAA), 2020.

Preprint submitted to Journal of System and Software March 6, 2021

in its interfaces (26.24%), learning algorithms (11.79%), and how to compile

(8.02%), deploy (7.55%), and install (4.72%) TensorFlow across platforms.

Keywords: Deep learning, Bug analysis, TensorFlow, Empirical Study

1. Introduction

In recent years, deep learning has been a hot research topic, and researchers

have used deep learning techniques to solve the problems in various research

fields (e.g., computer vision [2] and software analysis [3]). When implementing

deep learning applications, instead of reinventing wheels, programmers often5

build their applications on mature libraries. Among these libraries, Tensor-

Flow [4] is the most popular, and a recent study [5] shows that more than

36,000 applications of GitHub are built upon TensorFlow. As they are popular,

one bug inside deep learning libraries can lead to bugs in many applications,

and such bugs can lead to disastrous consequences. For example, Pei et al. [6]10

report that a Google self-driving car and a Tesla sedan crash, due to bugs in

their deep learning software.

To better understand bugs of deep learning programs, researchers have con-

ducted empirical studies on such bugs. In particular, Zhang et al. [5] conduct

an empirical study to understand the bugs of TensorFlow applications. Here,15

an application of TensorFlow is a program that calls the APIs of TensorFlow.

While Zhang et al. [5] analyze only TensorFlow applications, Islam et al. [7] an-

alyze the applications of more deep learning libraries such as Caffe [8], Keras [9],

Theano [10], and Torch [11].

Although their results are useful to improve the quality of a specific applica-20

tion, to the best of our knowledge, no prior studies have ever explored the bugs

inside popular deep learning libraries. Although the bugs inside TensorFlow

influence thousands of its applications, many questions on such bugs are still

open. For example, what are the symptoms and the root causes of such bugs,

and where are they? A better understanding on such bugs will improve the25

quality of many applications, but it is challenging to conduct the desirable em-

2

pirical study, since TensorFlow implements many complicated algorithms and is

written in multiple programming languages. In our prior work [1], we conducted

the first empirical study to analyze the bugs inside TensorFlow. Compared with

this work [1], our extended version has two additional contributions:30

1. Our prior work [1] analyzed only symptoms and causes of bugs, but in

this extended version, we analyzed bug fixes and multiple language bugs.

2. We compared our identified symptoms, causes, and repair patterns with

those that were reported by the prior studies [7, 5, 12, 13, 14, 15, 16, 17]

(see Section 5 for details). Based on the comparison, we find that Ten-35

sorFlow has type confusions, which are not reported by the prior studies.

In addition, we find that like deep learning applications, TensorFlow also

has dimension mismatches.

Our research questions and their answers are as follows:

• RQ1. What are the symptoms and causes of bugs?40

Motivation. The symptom and the cause of a bug are important to un-

derstand and to fix the bug. For deep learning bugs, the results of the

prior studies [5, 7] are incomplete, because they analyze only deep learning

applications. As the prior studies do not analyze bugs inside a deep learn-

ing library, the answers to the above research question are still unknown.45

Major results. In total, we identify six symptoms and eleven root causes.

We find that root causes are more determinative than symptoms, since

several root causes have dominated symptoms (Finding 1). In addition,

we find that the symptoms and the root causes of TensorFlow bugs are

more like those of ordinary projects (e.g., Mozilla) than other machine50

learning libraries (Finding 2). For the symptoms, build failures have cor-

relations with inconsistencies, configurations and referenced type errors,

and warning-style bugs have correlation with inconsistencies, processing,

and type confusions. For the root causes, dimension mismatches lead to

3

functional errors, and type confusions have correlation with functional55

errors, crashes, and warning-style errors (Finding 3).

• RQ2. How do the bugs spread across different components?

Motivation. From the perspective of TensorFlow developers, the loca-

tions of its bugs are important to improve the quality of TensorFlow. From

the perspectives of the programmers of TensorFlow applications, they can60

be more careful to call TensorFlow, if they know such locations. From the

perspective of researchers, they can design better detection techniques for

our identified bugs, after the locations of target bugs are known. The prior

studies [5, 7] do not explore this research question. To explore the bug

characteristics in different library components, we analyze the impacts of65

TensorFlow bugs by their components.

Major results. We find that major reported bugs reside in deep learning

algorithms (kernel, 11.79%) and their interfaces (API, 26.42%). The two

categories of bugs are followed by bugs in the deployment such as compil-

ing (lib, 8.02%), deploying (platform, 7.55%), and installing (tools, 4.72%).70

The other components such as runtime (3.77%), framework (0.94%) and

computation graph (0.94%) have fewer bugs.

• RQ3. What are the common repair patterns inside TensorFlow?

Motivation. Researchers have conducted empirical studies to explore

the repairing patterns of bugs (see Section 7 for details), but none of them75

have analyzed the repair patterns of deep libraries bugs. In this research

question, we analyze such repair patterns. The results can be useful to

determine to what degree can the prior tools repair deep learning bugs.

Major results. From TensorFlow bugs, we identify ten repair templates.

Compared with the prior studies [15, 16, 17], besides confirming known80

templates, we find two new templates. Although it needs different ex-

pertise to fix TensorFlow bugs, from the viewpoint of modifying code, we

find that fixing deep learning bugs requires largely the same repair actions

4

with fixing bugs in other types of projects (Finding 6). The correlation of

common repair patterns and their causes are also displayed (Finding 7).85

• RQ4. Which bugs involve multiple programming languages?

Motivation. The implementation of TensorFlow concerns several types

of programming languages. The prior study [18] shows that multiple lan-

guages in software can introduce more bugs. In our study, we also explore

the interaction of different languages in TensorFlow.90

Major results. We find that only 5% TensorFlow bugs involve multi-

ple programming languages, and we classify them into two categories: (1)

source files and configuration files can have related bugs, and (2) the core

and its applications/test cases can have related bugs (Finding 8).

Instead of analyzing deep learning applications as the prior studies [5, 7]95

did, for the first time, our study explores the bugs and their fixes inside deep

learning libraries. Our findings are useful to improve the quality of deep learning

libraries, and further have positive impacts on downstream applications. We

further discuss this issue in Section 6.

2. Preliminary100

2.1. The Implementation of TensorFlow

TensorFlow uses dataflow graphs to define the computations and states of

a machine learning algorithm. In a dataflow graph, each node represents an

individual mathematical operator (e.g., matrix multiplication), and each edge

represents a data dependency. In each edge, a tensor (n-dimensional arrays)105

defines the data format of the information transferred between two nodes.

TensorFlow provides official APIs in different programming languages such

as Python, C++, Java, JavaScript and Go. The Python interface is the most

popular [19]. As unofficial APIs, open source communities also provide APIs in

other programming languages such as C#, Julia, Ruby, Rust, and Scala [19].110

TensorFlow is released under the Apache 2.0 license, and its documents are

5

presented in its website [19]. TensorFlow supports multiple client languages

(e.g., Python and C++) and they all need to use the corresponding foreign

function interface (FFI) [20] to call into a C API provided by TensorFlow to

implement computational functionalities [21].115

2.2. The Repair Process of TensorFlow Bugs

The source code of TensorFlow is maintained on GitHub [22], where its

issues are reported, and commits are recorded since November 2015. Typically,

if a user encounters a problem (e.g., a bug), she will submit an issue, which

we call a bug report in this article. Such a report presents information to120

diagnose the problem. The bug report includes basic information such as the

OS platform, buggy TensorFlow version, and the code snippets to reproduce

the buggy behavior. Besides such information, the bug report also presents

a description, which introduces bug briefly. Furthermore, the reporter may

suggest a feasible way to repair the bug. After receiving the bug report, the125

developers of TensorFlow discuss the possible causes of the bug and how to repair

it. Moreover, for a more complicated bug, developers can refer to related bug

reports and pull requests in their discussion. Other open source communities

have more advanced issue trackers (e.g., Jira), where bug reports are marked as

“resolved” or “fixed”. However, GitHub provides a much simpler issue tracker,130

and its status is often not reliable. Meanwhile, programmers often submit pull

requests without reporting their found bugs. When submitting a pull request,

the submitter typically introduces the bug briefly, presents the corresponding

bug report, the buggy behavior (a wrong error is thrown), submit commits to

change the source code and explains the changes (fixing the bug and adding a135

test case). After that, reviewers need to assess the fix and communicate with

the submitter about the modification. Finally, if the modification is confirmed

correct, other developers will approve the changes and merge the commit.

Generally, the status of a bug is not tagged by labels on bug reports, while

a pull request marked as “ready to pull” indicates that the bug is solved and140

ready to be merged. The label helps us to filter pull requests with fixed bug

6

simply. Some pull requests contain references to their bug reports, which is

straightforward to help us identify bugs. However, some pull requests are not

submitted by users, and have no corresponding bug reports. We use keywords

(e.g., bug) searching to identify bug fixes from such pull requests (Section 3.1).145

3. Methodology

3.1. Dataset

We select TensorFlow as the subject of our study, since Zhang et al. [5]

report that more than 36,000 GitHub projects call the APIs of TensorFlow. As

a result, the bugs inside TensorFlow influence thousands of its applications. We150

apply the following steps to extract approved pull requests:

Step1. Filtering pull requests by labels. To avoid superficial bugs, we start

with closed pull requests with label “ready to pull”. We notice that finished pull

requests before a specific date are not tagged, so we also collect cases from earlier

closed pull requests by searching keywords as described in Step 2. We manually155

check each collected pull request to ensure that its commit is already approved

by reviewers and is merged into the master branch. In this step, we collected

1,367 pull requests whose labels are “ready to pull” and 700 closed pull requests

without label. These pull requests are submitted between December 2017 and

March 2019,160

Step2. Searching pull requests by keywords. From closed pull requests,

we use the keywords such as “bug”, “fix” and “error” to identify the ones that fix

bugs. From bug fixes, we use the keywords such as “typo” and “doc” to remove

the ones that fix superficial bugs. From the remaining bug fixes, we manually

inspect them to select real ones, by reading their pull requests carefully. In total,165

we removed 1,858 pull requests, and selected 209 bug fixes for latter analysis.

Step3. Extracting bug reports and code changes. For each one of our

selected bug fixes, we extract its bug report and code changes from the posts

and submitted commits. The extracted results and corresponding pull requests

are used to determine their symptoms, root causes (RQ1), and locations (RQ2).170

7

We introduce the details in Section 3.3. In this step, we abandoned 7 pull

requests because we cannot infer their symptoms or causes. The percentage of

such cases is low, and its influence is minor.

In total, we collected 202 TensorFlow bug fixes, and 84 of them have corre-

sponding bugs reports. The number is comparable to other empirical studies.175

For example, Thung et al. [14] analyze 500 bugs from machine learning projects

such as Mahout, Lucene, and OpenNLP. For each project, they analyze no more

than 200 bugs. As another example, Zhang et al. [5] analyze 175 bugs from Ten-

sorFlow applications. Indeed, for deep learning programs, libraries are typically

much larger than applications. As a result, our analyzed bugs are much more180

complicated than the bugs in the prior studies [5, 14]. We did not analyzed bugs

before 2017 because we had collected sufficient bugs for analysis, and those old

bugs may not reflect the recent characteristics of deep learning bugs.

3.2. Pull Request and Commit

Core programmers have the authority to submit commits directly, and we185

call such commits as direct commits. In our study, we did not analyze direct

commits for the following considerations:

1. Pull requests reveal the important bugs from users. While direct

commits are mostly submitted by core programmers, pull requests are submit-

ted by users [23]. Pull requests often fix annoying bug symptoms, and users190

would rather change the code of TensorFlow by themselves. Although they are

considered as users, we notice that bugs in some pull requests are critical. For

example, TensorFlow is built upon Intel MKL [24] to achieve the best perfor-

mance on Intel CPUs. Compared with the core programmers of TensorFlow, the

programmers of Intel MKL (considering as users) have more expertise in detect-195

ing bugs that are related to calling Intel MKL. As it takes much time to train a

real deep learning model, such bugs typically are important to many users. We

notice that the programmers of Intel MKL also submitted bugs through pull

requests. For example, they submitted a pull request [25] to fix a performance

degradation on a wide-used image classification dataset (CIFAR-10) [26].200

8

(a) A core programmer of TensorFlow

(b) A user/outsider of TensorFlow

Figure 1: The mark of pull request submitter

2. Some core programmers would submit bug fixes as pull requests.

Even if they have the privilege to directly commit their changes, to collect the

feedback from others, some core programmers prefer to submit pull requests [27,

28]. As shown in Figure 1, GitHub provides a label, i.e., Member, to denote

the core programmers of a project. By checking the labels of programmers, we205

find that 29.7% pull requests in our collected data are submitted by the core

programmers of TensorFlow.

3. Pull requests are reviewed and approved by core programmers.

According to the guideline of TensorFlow [29], pull requests must be reviewed

by core programmers. Although some pull requests are not submitted by core210

programmers, we can analyze the discussions from core programmers and under-

stand their opinions on bugs from pull requests. For example, in the discussions

of a bug report [30], a core programmer and a user discussed how an unexpected

graph is generated, and they determined that this bug is caused by inconsistent

values of two variables. From such discussions, we can infer that its symptom215

is an unexpected graph and its cause is the inconsistency of two values.

4. Pull requests contain more informational details than direct

commits. An approved pull request contains details (e.g., discussions among

programmers), and some pull requests are linked to their bug reports. Alterna-

tively, the core programmers of deep learning libraries can bypass pull requests,220

9

and submit their changes directly to code repositories. A direct code change

has only a short message, and they seldom describe error messages and bug

symptoms. Indeed, if a code change has no bug reports or pull requests, it is

even difficult to determine whether the code change is a bug fix [31].

To compare code changes in pull requests with those in direct commits, we225

manually identified 104 direct bug fixes. To ensure that the comparison is com-

prehensive, we selected a code metric called the maintainability index [32]. This

metric combines several metrics such as Halstead’s Volume (HV) [33], McCabe’s

cyclomatic complexity (CC) [34], lines of code (LOC), and percentage of com-

ments (COM). We randomly collected 104 direct bug fixes from direct commits.230

To show the differences between these bug fixes and those in our dataset, we

used one-way ANOVA [35] and compared their maintainability index. We find

that all the differences are insignificant. As a result, although we agree that

it can enrich our findings if the core programmers of TensorFlow are invited

to analyze direct commits, as the differences between direct commits and pull235

requests are insignificant, the new findings over our current ones can be minor.

3.3. Manual Analysis

In our study, we invite two graduate students to manually inspect all bugs.

The two students are major in computer science, and both are familiar with deep

learning algorithms. In the past two years, they have developed at least two deep240

learning application projects (e.g., mining on business data) on TensorFlow.

Following our protocols, the two students inspect the bugs independently, and

compare the results. If they cannot reach a consensus on a TensorFlow bug,

they discuss it on our weekly group meetings. Our initial agreement rate is

92.57%. Here, the initial agreement rate is defined as the consistent cases over245

the total cases.

3.3.1. Protocol of RQ1

When they build their own taxonomy of bug symptoms and their root causes,

they refer to the taxonomies of the prior studies [36, 12]. In particular, they

10

add an existing category into their taxonomy, if they find a TensorFlow bug falls250

into this category. If a TensorFlow bug does not belong to an existing category,

they try to modify a similar category of the prior studies [36, 12]. If they fail

to find such a similar category, they add a new one.

For bug classifying, if a pull request has a corresponding bug report, they

first read its report to identify its symptoms and root causes. If a pull request255

does not provide a report, they manually identify its symptom and root cause

from the description, bug-related discussion, code changes and comments of the

pull request. For example, the pull request of #21956 2 without report is titled

“Fix for stringpiece build failure”. Based on the title, they determine that the

symptom of the bug is build failure. They notice that the only code modification260

of this bug fix is:

1 void Append(S t r ingP i e c e s) {

2 − key . append (s . ToString ()) ;

3 + key . append (s t r i n g (s)) ;265

4 key . append (1 , d e l i m i t e r) ; }

The ToString() method that is called to build the key in the buggy version

is removed. In the fixed version, the string(StringPiece) method should be

called to build the correct key, but in the old location, the method call is not270

updated. Considering this, they determine that the root cause of the bug is the

inconsistency introduced by API change.

After the symptoms and root causes of all the bugs are extracted, the two

students further classify them into categories, and use the lift function [37] to

measure the correlations between symptoms and root causes. According to the275

definition, the lift between different categories (A and B) is computed as:

lift(A,B) =
P (A ∩B)

P (A) · P (B)
(1)

2In the following paragraphs, the numbers denote the ids of pull requests. Their urls

can be constructed by adding the url of Tensorflow (e.g., https://github.com/tensorflow/

tensorflow/pull/21956

11

https://github.com/tensorflow/tensorflow/pull/21956
https://github.com/tensorflow/tensorflow/pull/21956

where P (A), P (B), P (A∩B) are the probabilities that a bug belongs to category

A, category B, and both A and B. If a lift value is greater than one, a symptom

is correlated to a root cause; otherwise, it is not.

3.3.2. Protocol of RQ2280

In this research question, the two students analyze the locations of bugs. As

an open source project, TensorFlow does not officially list its components, but

like other projects, TensorFlow puts its source files into different directories,

by their functionalities. When determining their functionalities, they refer to

various sources such as official documents, TensorFlow tutorials, and forum285

discussions. Their identified components are as following:

1. Kernel. The kernel implements core deep learning algorithms (e.g., the

conv2d algorithm), and its source files are located in the core/kernels directory.

2. Computation graph. TensorFlow uses computation graphs to define

and to manage its computation tasks. The graph implements the definition,290

construction, partition, optimization, operation, and execution of computations.

Most source files of this component are located in the core/graph directory; its

data operations are located in the core/ops directory; and its optimization-

related source files are located in the core/grappler directory.

3. API. TensorFlow provides APIs in various programming languages,295

which are located in the python, c, cc and java directories.

4. Runtime. The runtime implements the management of sessions, thread

pools, and executors. TensorFlow has a common runtime (core/common runtime)

and a distribution runtime (core/distributed runtime). Common runtime sup-

ports the executions on a local machine, and distribution runtime allows to300

deploy TensorFlow on distributed ones. We merge them into one component.

5. Framework. The framework implements basic functionalities (e.g.,

logging). Most source files of this component are located in core/framework

directory, and the serialization is located in core/protobuf directory.

6. Tool. The tool implements utilities. For example, tools/git and305

tools/pip package directories implement the utilities to install TensorFlow; the

12

core/debug directory provides a tool to debug TensorFlow applications; and the

core/profile directory provides a tool to profile the execution of TensorFlow

and its applications.

7. Platform. The platform allows to deploy TensorFlow on various plat-310

forms. The core/platform directory contains the source files to handle hard-

ware issues (e.g., CPU and GPU); the core/tpu directory allows executing on

TPU; the lite directory allows executing TensorFlow on mobile devices; and

the compiler directory allows compiling to native code for various architectures.

8. Contribution. The contrib directory contains extensions that are of-315

ten implemented by outside contributors. For example, the contrib/seq2seq

directory contains a sequence-to-sequence model that is widely used in neural

translation. After they become mature, they can be merged into other directo-

ries. In our study, we define a component for this directory.

9. Library. The library includes API libraries. Most libraries are located320

in the third-party directory, and some libraries are located in other directories

(e.g, core/lib, core/util and some files under the root directory of tensorflow).

10. Documentation. The documentation includes samples, which are

located in the examples and core/example directories. It also includes other types

of documents. For example, the security directory stores security guidelines.325

We use the lift metric as defined in Equation 1 to measure the correlation

between a bug location and a symptom or a root cause. Here, if a bug involves

more than one directory, we count them once for each directory to ensure that

each location does not lose a symptom and a root cause.

3.3.3. Protocol of RQ3330

We find that some bug fixes are repetitive, i.e., appearing at least twice, so

we follow next steps to analyze such fixes:

1. Inspecting symptoms and root causes. We inspect the symptom,

root cause and location information obtained from previous sections to outline

the general situation of a bug.335

2. Locating related code modifications. We determine the fix scale of

13

a bug from the code changes including the number of related files, changed lines

and commit frequency. If a commit contains modifications that are irrelevant

to repair bugs (e.g., test case modifications), we ignore such modifications. If a

pull request fixes more than one bug, we consider them as individual bugs, and340

analyze them respectively, but such cases are rare in our observation. Generally,

it is easier to find specific templates in fixes with small scale.

3. Analyzing the characteristics of modifications. We focus on several

characteristics of a bug fix to describe the repair process in detail including scope

of buggy code (in a method, in a constructor or global), modified code elements345

(variables, methods or classes), and modification intention (e.g., changing a

value, and modifying conditions of if-statements).

4. Extracting fix templates. We suppose that bug fixes with similar

characteristics mentioned above are possible to share the same repair template.

We define repair patterns according to these characteristics and extract instances350

appearing multiple times as templates.

When we design our protocol, we refer to the ones used in the prior stud-

ies [15, 16, 17]. When we analyze repair patterns in TensorFlow, if a pattern is

not identified by the prior studies [15, 16, 17], we then create a new category to

define its pattern.355

3.3.4. Protocol of RQ4

For simplicity, we use build script languages to denote the languages of

configuration files, batch files, and build files.

To study the impact of language overlap, we investigate all bugs which con-

cern multiple files belonging to different languages, which can be identified by360

their extensions. For bugs with both programming and build script languages,

we check their symptoms and root causes to make sure whether they contain con-

figuration errors and extra defects. For bugs with only programming languages,

we further inspect relative reports and fixes to determine their fix objectives in

corresponding files to summarize main pattern of these bugs.365

14

4. Empirical Result

This section presents the results of our study. More details are listed on our

project website: https://github.com/fordataupload/tfbugdata/

4.1. RQ1. Symptoms and Root Causes

4.1.1. The categories of symptoms370

Our identified symptoms are as follows:

1. Functional error (35.64%). If a program does not function as

designed, we call it a functional error. For example, we find that the bug report

of #20751 complains the functionality of the tf.Print method:

If you print a tensor of shape [n, 4] with tf.Print, by default (summarize=3 is the default value),375

you get: [[9 21 55]...], which wrongly looks like your tensor is of shape [n, 3]. The correct output

should be: [[9 21 55...]...].

The method is designed to print the details of tensors. The bug report

complains that it prints incorrect output, when the shape is [n, 4]. As the

result is not as expected, it is a functional error.380

2. Crash (26.73%). A crash occurs, when a program exits irregularly.

When it happens, the program often throws an error message. For example,

the bug report of #16100 describes a crash caused by an unsupported operand

type:

Using a TimeFreqLSTMCell in a dynamic rnn without providing optional parameter frequency skip385

results in an exception: TypeError: unsupported operand type(s) for /: ‘int’ and ‘NoneType’.

3. Hang (1.49%). A hang occurs, when a program keeps running without

stopping or responding. The bug report of #11725 is an example:

When running the above commands (Inception V3 synchronized data parallelism training with 2

workers and 1 external ps), the tf cnn benchmarks application hangs forever after some iterations390

(usually in warm up).

4. Performance degradation (1.49%). A performance degradation oc-

curs, when a program does not return results in expected time. For example,

we find a performance degradation in the bug report of #17605:

15

https://github.com/fordataupload/tfbugdata/

There is a performance regression for TF 1.6 comparing to TF 1.5 for cifar 10.395

5. Build failure (23.76%). A build failure occurs in the compiling process.

For example, we find that the bug report of #16262 describes a build failure,

which is caused by a missing header file:

Build failing due to missing header files “tensorflow/contrib/tpu/proto/tpu embedding config.pb.h”.

400

6. Warning-style error (10.89%). Warning-style error means the run-

ning of a program is not disturbed, but modifications are still needed to get rid

of risk or improve code quality, including interfaces to be deprecated, redun-

dant code and bad code style. Most bugs in this category are shown by warning

messages, while a few others do not provide visible messages which are found405

by code review or other events. For example, we find a bug in such category in

the pull request of #18558, since it calls a method with a deprecated argument:

According to tf.argmax, dimension argument was deprecated, it will be removed...

4.1.2. The categories of root causes

Our identified causes are as follows:410

1. Dimension mismatch (3.96%). We put a bug into this category if it

is caused by dimension mismatch in tensor computations and transformations.

The pull request of #22822 describes the cause of a bug in this category as:

Wrongly ”+1” for output shape, that will cause CopyFrom failure in MklToTf op because of tensor

size and shape mismatch.415

The buggy code sets the dimension of an output tensor:

1 output t f shape .AddDim((output pd−>g e t s i z e () / s izeof (T)) + 1) ;

The fixed code sets the correct dimension:420

1 output t f shape .AddDim((output pd−>g e t s i z e () / s izeof (T))) ;

2. Type confusion (12.38%). Type confusions are caused by the mis-

matches of types. The pull request of #21371 is a sample as below:425

CRF decode can fail when default type of ”0” (as viewed by math ops.maximum) does not match

the type of sequence length.

16

After the bug was fixed, programmers modified a test case to ensure that

the method accepts more types of input values:
430

1 np . array (3 , dtype=np . in t32) ,

2 − np . array (1 , dtype=np . in t32)

3 + np . array (1 , dtype=np . in t64)

3. Processing (22.28%). We put a bug into this category, if it is caused435

by wrong assignment or initialization of variables, wrong formats of variables,

or other wrong usages that are related to data processing. For example, we find

a bug in such category reported in the pull request of #17345 as follow:

ConvNDLSTMCell class in tensorflow.contrib.rnn cannot pass the name attribute correctly when

created, because of the missing parameter in constructor.440

The constructor of ConvNDLSTMCell has no parameters to define their names:

1 super (Conv1DLSTMCell , s e l f) . i n i t (conv ndims=1, ∗∗kwargs)

The bug is fixed in a latter version:445

1 super (Conv1DLSTMCell , s e l f) . i n i t (conv ndims=1, name=name , ∗∗

kwargs)

4. Inconsistency (16.83%). We put a bug into this category, if it is450

caused by incompatibility due to API change or version update. For example,

the pull request of #17418 complains that a removed ops is called:

Op type not registered ’KafkaDataset’ in binary. is returned from kafka ops. The issue was that

the inclusion of kafka ops was removed due to the conflict merge from the other PR.

The above compilation error was caused by a conflict merge of two commits.455

One removed kafka ops, but the other added a call to the operator.

5. Algorithm (2.97%). We put a bug into the algorithm category, if it is

caused by wrong logic in algorithms. For example, the pull request of #16433

complains that a method returns wrong values:

Input labels = tf.constant([[0., 0.5, 1.]]), predictions = tf.constant([[1., 1., 1.]]), the result of460

tf.losses.mean pairwise squared error(labels, predictions) should be [(0 − 0.5)2 + (0 − 1)2 + (0.5 −

1)2]/3 = 0.5, but TensorFlow returns different value 0.333333.

17

According to the code document, the mean pairwise squared error is incor-

rectly calculated. In the process of deduction, the denominators of two inter-

mediate variables are wrong. A developer replaces an assignment and changes465

a method with corresponding parameters to fix denominators as below:

1 − num present per batch)

2 + num present per batch −1)

3 . . .470

4 + math ops . square (num present per batch))

5 − math ops . mult ip ly (num present per batch , num present per batch −1)

)

6. Corner case (15.35%). We put a bug into this category, if it is caused475

by erroneous handling of corner cases. A bug of this kind is reported in the pull

request of #21338 as:

When batch size is 0, max pooling operation seems to produce an unhandled cudaError t status.

It may cause subsequent operations fail with odd error message.

As the reporter says, a crash happens when batch size of the input is 0,480

which belongs to corner cases.

7. Logic error (9.90%). We put a bug into this category, if it occurs in

the logic of a program. A logic error indicates an incorrect program flow or a

wrong order of actions. The pull request of #19894 provides the description as:

When a kernel Variable is shared by two Conv2Ds, ... there will be only one Conv2D getting the485

quantized kernel.

TensorFlow implements a mechanism called quantization to shrink tensors.

The reporter complains that when a tensor shares two Conv2D, the second one

cannot obtain the right quantized kernel. The logic of the code is flawed, in

that the program in complex flow does not behave as expected.490

8. Configuration error (7.43%). We put a bug into this category, if it

is caused by a wrong configuration. A pull request #16130 is an example:

Linking of rule ’...toco’ fails because LD LIBRARY PATH is not configured.

To repair the bug, in a configuration file, programmers add the following

statement to initiate LD LIBRARY PATH:495

18

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00%

Hang

Performance degradation

Warning-style error

Build failure

Crash

Functional error

Algorithm

Concurrency

Configuratio
n error
Corner case

Dimension
mismatch
Inconsistency

Logic error

(a) The distribution of symptoms

0.00% 5.00% 10.00% 15.00% 20.00%

Concurrency

Memory

Algorithm

Dimension mismatch

Referenced type error

Configuration error

Logic error

Type confusion

Corner case

Inconsistency

Processing

Hang

Performance degradation

Warning-style error

Build failure

Crash

Functional error

(b) The distribution of root causes

Figure 2: Distribution of bug symptoms and root causes

1 i f ’LD LIBRARY PATH ’ in env i ron cp and env i ron cp . get (’

LD LIBRARY PATH ’) != ’ 1 ’ :

2 w r i t e a c t i o n e n v t o b a z e l r c (’LD LIBRARY PATH ’ , . . .)
500

9. Referenced types error (4.95%). We put a bug into this category, if

it is caused by missing or adding unnecessary include or import statements. A

bug in the pull request of #21017 triggers the following error message:

The compiler couldn’t find std::function, because header file #include <functional> is missing.

Programmers forget to add the include statement, which causes the bug.505

10. Memory (2.97%). We put a bug into the memory category, if it is

caused by incorrect memory usages. For example, the pull request of #21950 de-

scribes a possible memory leak, which can be triggered by an exception, because

of missing deconstruction operation.

11. Concurrency (0.99%). We put a bug into this category, if it is caused510

by synchronization problems. The pull request of #13684 describes a deadlock:

19

notify one was used to notify inserters and removers waiting to insert and remove elements into

Staging Areas. This could result in deadlock when many removers were waiting for different keys.

As the reporter says, when multiple removers wait for keys but notify one

only notifies one of them, a deadlock may occur.515

4.1.3. Distribution

Figure 2a shows the distribution of symptoms. Its horizontal axis shows

symptom categories, and its vertical axis shows the percentage of corresponding

symptom. For each symptom, we refine its bugs by their root causes. Tan et

al. [12] report the distributions of Mozilla, Apache, and the Linux kernel. We520

find that the distribution of TensorFlow is close to their distributions. Figure 2a

shows that functional errors account for 39%, which are the most common bugs

of TensorFlow. Tan et al. [12] show that in Mozilla, Apache, and the Linux

kernel, function errors vary from 50% to 70%. We find that crashes account for

26.5% TensorFlow bugs, which are close to Linux (27.2%), and hangs account525

for 1% bugs, which are close to Mozilla (2.1%).

Figure 2b shows the distribution of root causes. Its horizontal axis shows

cause categories, and its vertical axis shows the percentage of corresponding

causes. For each root cause, we refine its bugs by symptoms. We find that

all the symptoms have multiple and evenly distributed root causes, but the530

distribution of root causes are not so evenly. For example, as shown in Figure 2b,

the bugs in processing mainly cause the symptoms such as warning-style errors,

build failures, crashes and functional errors can be caused by processing, but as

shown in Figure 2a, a symptom typically has more fragmented causes.

Finding 1. Compared to symptoms, root causes are more determinative,

since several root causes have dominated symptoms.
535

Tan et al. [12] show that in Mozilla, Apache, and the Linux kernel, the

dominant root cause is semantic (80%). In our taxonomy, memory, configuration

and referenced types errors belong to semantic bugs (85%). Meanwhile, Tan et

al. Thung et al. [14] show that in machine learning systems, algorithm errors

are the most common bugs (22.6%). The above observations lead to a finding:540

20

Algorithm

Dimension
mismatch

Functional
error

Crash

Type
confusion

Build failure

Processing

Warning-
style error

2.79

2.21

1.82

1.12

0.56

0.84

1.24

Corner
cases

Inconsistency

Memory

Logic error Configuration
error

Referenced
types error

0.63

1.95

0.76

0.49

0.33

1.97

2.15

2.53

1.81

0.76 4.19

3.35

1.10

1.83

Figure 3: Correlation between symptoms and root causes

Finding 2. The symptoms and causes of TensorFlow are more like an

ordinary software system (e.g., Mozilla) than a machine learning system

(e.g., Lucene).

A machine learning system typically provide many algorithms for users to

invoke. For example, although Lucene has 554,036 lines of code, the symptoms

and root causes of its bugs are more different from TensorFlow than ordinary

software systems like Mozilla. We find that Lucene provides numerous APIs545

to handle natural language texts in different ways (e.g., tokenization). In the

contrast, TensorFlow provides much fewer interfaces to invoke, which is more

like a traditional software system.

4.1.4. Correlation of bug categories

Figure 3 shows the correlation of bug categories. The rectangles on the550

left side denote symptoms, the ovals on the right side denote root causes. We

choose different colors to distinguish the correlations, and the root causes of

the same color are not related. We ignore categories whose bugs are fewer than

three, since they are statistically insignificant (e.g., hangs). The lines denote

correlations, and we highlight correlations whose values are greater than one.555

21

Both Tan et al. [12] and we find that crashes have correlations with memory

bugs and corner cases. Tan et al. [12] find that crashes also have correlations

with concurrency, but we do not consider it, since only two of our analyzed bugs

are related to concurrency. Instead, our study shows that crashes of TensorFlow

have correlations with type confusions, which are not identified by Tan et al.560

In addition, Tan et al. [12] and we find that function errors have correlations

with processing and logic errors. Tan et al. [12] find that function errors have

correlations with missing features by defining a missing feature as a feature is

not implemented yet. As we find that TensorFlow programmers seldom write

their unimplemented features in their code, we eliminate this subcategory. We565

find that build failures have correlation with inconsistencies, configurations and

referenced type errors, and warning-style bugs have correlation with inconsis-

tencies, processing, and type confusions. We believe that other open source

projects (e.g., Mozilla) also have the two types of symptoms, but are ignored by

Tan et al. [12]. We identify the correlations of build failures and warning-style570

bugs, complementing the study of Tan et al. [12]. For our identified root causes

and symptoms of TensorFlow, our observations lead to the following finding:

Finding 3. Build failures have correlation with inconsistencies, configura-

tions and referenced type errors. Warning-style bugs have correlation with

inconsistencies, processing, and type confusions. Dimension mismatches

lead to crashes, and type confusions lead to functional errors, crashes and

warning-style errors.

In summary, for those common symptoms and root causes between Tan et

al. [12] and ours, the correlations are largely consistent. For TensorFlow, we575

discover the correlations between symptoms and root causes, which are not

reported by the prior study.

4.2. RQ2. Bug Locations

4.2.1. Distribution

Figure 4 shows the distribution of bug locations. Some components have580

more bugs because they are larger. To reduce the bias, we define the bug

22

0

0.5

1

1.5

2

2.5

Bug Density

Figure 4: The bug locations

density as the number of bugs per 1,000 lines of code (LoC). The densities of

documentation is much larger than others. As described in Section 3.1, we

have ignored superficial bugs (e.g., textual errors in documents). However, the

documentation module contains illustrative code samples, and their modifica-585

tions appear in Figure 4. When programmers fix bugs, they often modify the

corresponding samples, which can partially explain its high ratio in Figure 4.

Finding 4. The documentation of TensorFlow is the most frequently mod-

ified component.

4.2.2. Correlation of bug categories

Figure 5 shows the correlations among symptoms, root causes, and bug590

locations. In this figure, the rectangles denote root causes; the ovals denote

symptoms; and the cylinders denote bug locations. We ignore bug locations, if

their bugs are fewer than three. The lines denote correlations, and we highlight

correlations whose values are greater than one.

For root causes, we find that inconsistencies are popular, and for symp-595

toms, crashes and build failures are popular among the components. From the

perspective of components, we find that kernel has strong correlation with func-

tional errors and corner cases, which indicates semantic bugs are dominant in

this component. Meanwhile, we find that API has strong correlation with root

causes related to tensor computations such as dimension mismatches and type600

23

Algorithm
Dimension
mismatch

kernel runtime

Type
confusion

API

Processing

contributiontool

11.36

0.76

6.651.07 1.06

Corner case Inconsistency Memory Logic error Configuration
error

Referenced
types error

2.74

1.040.95

1.911.43
2.37 1.72 0.95

1.29
0.55 3.40

platformlibrary

1.04 1.07

1.25

2.65

2.12

1.731.46

0.99

0.98

Functional
error Crash

Build
failure

Warning-
style error

1.19

0.90

1.86 0.861.40
0.90

0.63

1.22

1.40

3.42

0.78

1.66

1.47

1.54

0.85 1.47

1.53

Figure 5: Correlation between locations

confusions. For library and tool, their symptoms have strong correlations with

build failures, and their root causes have strong correlations with inconsistences.

The above observations lead to a finding:

Finding 5. As core components, kernel contains many sematic bugs, and

API bugs are often caused by tensor computation problems such as dimen-

sion mismatches and type confusions. In library and tool, build failures are

popular, and most bugs are caused by inconsistencies.

In summary, most TensorFlow bugs reside in deep learning algorithms, API605

interfaces, and platform-related components. Furthermore, the correlations be-

tween their locations and symptoms or root causes follow specific patterns.

4.3. RQ3. Repair Patterns

4.3.1. The categories of repair patterns

We find several recurring repair templates as following:610

1. Parameter modifier (21.85%). This repair pattern adds, removes, or

replaces a parameter input. The pull request #18674 is an example:

1 − vs . g e t v a r i a b l e (opaque kerne l , . . .)

2 + vs . g e t v a r i a b l e (opaque kerne l , dtype=s e l f . p l a in dtype , . . .)615

For float16 data type, reusing opaque kernel in CudnnLSTM throws a ValueEr-

ror. The issue is fixed by passing the data type.

2. Method replacer (16.81%). This repair pattern replaces a method

with another method whose parameters and return type are compatible. A pull620

request #25427 is an example:

24

1 − return l og (1 + exp(−y wx)) ∗ example weight ;

2 + return log1p (exp(−y wx)) ∗ example weight ;
625

The log(1+x) method is replaced with the log1p(x) method, since the latter is

more precise.

3. Value checker (14.29%). This repair pattern checks the value of a

variable. A sample fix in the pull request of #16051 is as follows:
630

1 + i f (l o g i t s i n . d im s i z e (0)>0) { . . .

This a crash caused by corner cases. According to the fix description, if the first

dimension of logits in is 0, a crash on GPU will be triggered. Adding a value

check fixes this issue.635

4. Type replacer (11.76%). This repair pattern replaces the type of a

variable. A fix in the pull request of #17148 in this pattern is shown below:

1 −on value =0. ,

2 +on value=ops . c o n v e r t t o t e n s o r (0 . , dtype=probs . dtype) ,640

This is a crash caused by a type error. When float16 values are fed into the

method, it crashes, since the data type of on value is inferred from value 0.,

which is float32. As a result, converting “0.” to a tensor fixes this bug.

5. Referenced type modifier (11.76%). This pattern adds, removes, or645

replaces referenced types. The pull request of #21017 shows this pattern:

1 + #inc lude <f unc t i ona l>

This is a build failure caused by referenced type errors. As the reporter says,650

the compiler cannot find std::function, and including <functional> fixes it.

6. Initializer modifier (6.72%). This repair pattern modifies the initial

value of a variable. A fix in the pull request of #25909 in this pattern is provided:

1 − i n t64 new s i ze ;655

2 + int64 new s i ze = −1;

This a warning-style error caused by procesing problem. A warning message

complains that the new size variable is not initialized, and adding an initializer

fix this problem.660

25

7. Variable replacer (5.88%). This repair pattern replaces a variable

with a compatible one. For example, to fix a functional error, the pull request

of #16081 is as follows:

1 − . . . concat dim = N + concat dim ;665

2 + . . . concat dim = expected dims + concat dim ;

If concat dim is negative, its value is wrongly updated. To repair the bug, N is

replaced with expected dim.

8. Format checker (5.04%). This repair pattern checks the data format670

of a variable. The pull request of #18481 shows this repair pattern:

1 +i f is instance (type value , (type , np . dtype)) : for key . . .

This is a crash caused by type error. Crash happens when an invalid dtype675

(e.g., [,]) is given, and adding a format checker can fix this.

9. Condition replacer (2.52%). This repair pattern replaces the pred-

icate of a branch with a compatible one. A fix example in the pull request of

#18183 is shown as follows:
680

1 − i f not module or ’ t en so r f l ow . ’ not in module . name :

2 + i f (not module or not hasattr (module , ” name ”) or ’

t en so r f l ow . ’ not in module . name) :

This is a crash caused by corner cases. An object in program does not have685

name attribute and leads to crash, so a hasattr() checker is added to check

whether the attribute is contained.

10. Exception adder (1.68%). This repair pattern handles exceptions

locally. A sample in the pull request of #20479 is as follow:
690

1 +try :

2 . . .

3 o r i g r e s t , r e s t = con t ex t t . BuildCondBranch (t r u e f n)

4 i f o r i g r e s t i s None : raise ValueError (” t r u e f n must have a return

value . ”)695

5 con t ex t t . Exi tResu l t (r e s t)

6 +f ina l ly :

7 + cont ex t t . Exit ()

26

Type confusion Processing Corner case Inconsistency
Referenced
types error

Initializer
modifier

Method
replacer

Parameter
adder/remover/

replacer

Referenced type
adder/remover/

replacer

Type
replacer

Value
checker

Variable
replacer

1.70 3.50

1.49

1.98
0.79

4.85

0.96

2.82

1.34

8.50

Figure 6: Correlation between repair patterns

This is a crash caused by corner case. If an exception occurred in tf.cond(),700

CondContext is left uncleaned, which will be passed to context t, then causes

crash. So a way to fix this bug is adding a try statement to catch exception.

11. Syntax modifier (1.68%). This repair patternremoves syntax errors.

A fix in the pull request of #25962 of this pattern is shown as below:
705

1 −EIGEN STATIC ASSERT((nr==4) , YOU MADE A PROGRAMMING MISTAKE) ;

2 +EIGEN STATIC ASSERT((nr==4) , YOU MADE A PROGRAMMING MISTAKE)

A warning message complains that there is an unnecessary semicolon at the end

of the code, and removing it fixes this issue.710

Our found fix patterns are largely overlapped with the prior ones [15, 16, 17].

This observation lead to a finding:

Finding 6. From the viewpoint of modifying code, fixing TensorFlow bugs

is largely consistent with fixing bugs in other types of projects.

4.3.2. Correlation of bug categories

Figure 6 shows the correlations between root causes and repair patterns. In715

this figure, the rectangles denote root causes, and the rounded rectangle denote

repair patterns. We ignore repair patterns, if their bugs are fewer than three.

The lines denote correlations, and we highlight correlations whose values are

greater than one. Since not all bug fixes can be classified by a repair pattern,

we exclude the isolated fixes. From Figure 6, we find the following correlations:720

27

Finding 7. Parameter modifiers, method replacers, value checkers, type

replacers and referenced type modifiers are common repair patterns in Ten-

sorFlow. They are often introduced to fix bugs caused by inconsistency, type

confusion and corner cases.

In summary, we find ten repair templates from our collected fixes. Compared

with the prior studies, we find two new templates, but the majority of our found

templates are overlapped with existing ones.

4.4. RQ4. Multi-language Programming725

Figure 7 shows the distribution. In total, we find ten multiple-language bugs,

and we classify them into two categories:

1. In total, six bugs are configuration bugs. For example, a pull

request #17005 says that the Cmake file does not work on MacOS. This file is a

build configuration file. To fix the bug, programmers modified the Cmake file:730

1 −s e t (pywrap t en so r f l ow l i b ”${CMAKE CURRENT BINARY DIR}/

l i b p y w r a p t e n s o r f l o w i n t e r n a l . so ”)

2 +se t (pywrap t en so r f l ow l i b ”${CMAKE CURRENT BINARY DIR}/

l i b p y w r a p t e n s o r f l o w i n t e r n a l $ {CMAKE SHARED LIBRARY SUFFIX}”)735

However, modifying this file alone does not fully repair the bug. Program-

mers also modified a C header file as follows:

1 − #inc lude <malloc . h>740

2 + #inc lude <s t d l i b . h>

2. The other four bugs modify test cases in other languages. For ex-

ample, the pull request of #16168 complains that the Python interface wrongly

converts a unicode string. To fix the bug, programmers modified the py func.cc745

file in C, and a test case in Python.

The above observations lead to a finding:

Finding 8. Only ten out of 202 bugs involve multiple languages, and their

reasons are simple: (1) source files and configuration files can have related

bugs, and (2) the core and its applications/test cases can have related bugs.

28

C++
79

Python
87

Build script
languages

22

Java
2

Go
1

1

3

4 2

Figure 7: The distribution of programming languages

In summary, we find that only ten TensorFlow bugs involve multiple lan-

guages, and their reasons are simple.750

4.5. Threats to validity

The internal threats to validity include the possible errors of our manual

inspection. To reduce the threat, we ask two students to inspect our bugs.

When they encounter controversial cases, they discuss them with others on our

group meeting, until they reach an agreement. The threat can be mitigated755

with more researchers, so we release our inspection results on our website. The

threats to external validity include our subject, since we analyzed the bugs

inside only TensorFlow. Although our analyzed bugs are comparable with the

prior studies and other studies (e.g. [5]) also analyzed only TensorFlow bugs,

they are limited.760

5. The Comparison with Prior Studies

Table 1 summarizes the subjects, protocols, and findings of the prior stud-

ies [12, 5, 14, 7, 15]. We next introduce their details and our new findings.

5.1. Symptoms

Tan et al. [12] classify bugs in open source projects by their symptoms as765

shown in Table 1. Comparing with their taxonomy, we do not find data cor-

ruptions as they did. As shown in their example, data corruptions are related

to databases. As TensorFlow does not use databases, we do not find such

bugs. Meanwhile, we find build failures and warning-style errors, which are

not reported by Tan et al. They did not find build failures, since they focus770

29

T
a
n
et

a
l.

[1
2
]

Subject: 2,060 bugs that were collected from the issue trackers and the NVD of

Mozilla, Apache, and Linux.

Protocol: They read bug reports to identify bugs, and use the existing categories

of NVD as a reference.

Finding: They identified six symptoms and three causes, and they further re-

fined them into more subcategories. They find that incorrect functionality is the

dominant symptom, and semantic bugs are the dominant causes.

T
h
u

n
g
et

a
l.

[1
4
]

Subject: 200 Mahout bugs, 200 Lucene bugs, and 100 OpenNLP bugs that were

collected from issue trackers.

Protocol: They read bug reports to classify bugs, and use the categories proposed

by Seaman et al. [13] as a reference.

Finding: The most bugs are categorized as algorithm/method, followed by non-

functional and assignment/initialization.

Z
h

a
n

g
et

a
l.

[5
]

Subject: 175 TensorFlow application bugs were collected from GitHub commits

and Stack Ovrerflow threads.

Protocol: Then they manually inspect bugs to classify them.

Finding: They find seven causes and four symptoms. Among them, incorrect

model parameters/structures, API breaking changes and API misuses are the

dominant causes, and crashes and exceptions are the dominant symptoms.

Isla
m

et
a
l.

[7
]

Subject: 415 Stack Overflow discussions and 555 bugs from GitHub commits of

Caffe, Keras, Tensorflow, Theano, and Torch applications.

Protocol: They formulate a set of classification criteria, and use Zhang et al. [5]

as a reference.

Finding: They find ten causes and six symptoms. Among them, incorrect model

parameters/structures are the most common root cause, followed by structure

inefficiency and unaligned tensors, and for symptoms, crashes are the most com-

mon, followed by bad performance and incorrect functionality.

K
im

et
a
l.

[1
5
]

Subject: 62,656 human-written patches were collected from Eclipse JDT.

Protocol: They implement a tool to build graphs from patches, but deeper anal-

yses are still manual.

Finding: They derived ten repair patterns, but did not present the percentage of

repair patterns.

Table 1: The comparison to the prior studies

on runtime bugs. They also ignore warning-style errors, possibly because their

symptoms are trivial. In the study of Thung et al. [14], they did not classify

bugs by their symptoms.

30

5.2. Root causes

Zhang et al. [5] and Islam et al. [7] analyze deep learning applications and775

their main findings are shown in Table 1. Some of their found bugs do not exist

or are rare in deep learning libraries. For example, they find incorrect model

parameters and structure inefficiency, but such bugs appear only in TensorFlow

applications. As another example, Islam et al. [7] report that in TensorFlow

applications, 92% bugs are crashes and the other 8% bugs are performance bugs.780

Comparing with the distribution, we find that the bugs inside TensorFlow are

more diverse.

Our taxonomy has some minor differences from Tan et al. [12]. For example,

Tan et al. put exception-handling bugs in one category, but we refine them

into smaller categories by their root causes. As another example, Tan et al.785

classify memory bugs into subcategories, but we do not, since only 3% bugs in

TensorFlow are memory bugs.

Comparing with the taxonomy of Seaman et al. [13], we do not identify

“external interface” (i.e., UI) bugs, since TensorFlow has no UI. We identify

several categories of bugs (e.g., crashes), that are not reported by Seaman et790

al. [13]. Their taxonomy includes an “other” category, and they may not refine

this category as we do.

The taxonomy of Thung et al. [14] is almost identical with that of Seaman

et al., but Thung et al. identify configuration bugs. We refine such bugs into

configuration errors and referenced type errors.795

Seaman et al. [13] proposes a bug categorization scheme in which they stress

algorithm bug to describe bugs caused by incorrect algorithm implementation

in computation. Such bugs are frequently seen in DL systems, so we also import

this factor into our taxology. Besides, they introduce logic error is to describe

bugs caused by incorrect expressions in conditional statements or loop blocks,800

which is similar to subcategory wrong control flow in result of Tan et al.. We

also utilize this concept and by extending its scope. Moreover, bugs caused

by internal interfaces have also been noticed by Seaman et al., which refer to

errors in the connections between different components of a system. To make

31

the definition more precise, we expand and improve this concept and present in-805

consistency category. Other categories such as checking, non-functional defects

and optimization are merged into existing classes.

5.3. Repair Patterns

With their support tool, Kim et al. [15] manually inspected more than 60,000

human-written patches and derived ten repair patterns. Because their patterns810

were derived through an empirical study, we list their work in Table 1. Among

their ten patterns, nine are overlapped with ours. For example, they derived a

parameter replacer that replaces a parameter input with its compatible variable,

and this repair pattern is identical to our parameter modifier. However, we do

not find their null pointer checker. As null pointers lead to crashes and easy to815

be fixed, their fixes appear in commits other than pull requests. We do not list

Le et al. [16] and Liu and Zhong [17] in Table 1, because their repair patterns

were mined from fixes or derived from their programming experiences. Le et

al. [16] list 12 repair patterns. All their repair patterns are overlapped with

ours. For example, they use insert/delete type cast operators to resolve type820

conversion errors, and this repair pattern is identical to our type replacer. Liu

and Zhong [17] list 12 repair patterns. Compare with theirs, 9 of the 12 repair

patterns are overlapped. For example, they use a variable replacer to replace a

variable to another, and this pattern is identical to our variable replacer. We do

not identify their binary operator replacer, because pull requests often resolve825

complicated fixes but such bugs are easy to be fixed. Besides the overlapped

patterns, we find new repair patterns (see Section 5.4 for details).

5.4. Our New Findings

1. TensorFlow has type confusions, and besides deep learning

applications, as a library, TensorFlow also has dimension mismatches.830

We have identified that TensorFlow has type confusions, which is not reported

by the prior studies. The prior studies [5, 38, 7] report that deep learning

applications have unaligned tensors and shape inconsistencies. We find that as

32

a deep learning library, TensorFlow also has similar bugs, and we call such bugs

as dimension mismatches.835

2. In TensorFlow, the main symptoms are functional errors, crashes,

and build failures, and its main causes are processing and inconsis-

tencies. As shown in Figures 2a and 2b, for the first time, we present the dis-

tributions of symptoms and root causes of TensorFlow bugs. For example, we

find that the functional errors (39.5%), crashes (26%) and build failures (24%)840

are the main symptoms, and processing errors (26.5%), inconsistencies (23.5%),

and corner and missing cases (19.5%) are the main causes of TensorFlow bugs.

3. Referenced type modifiers and syntax modifiers can be useful to

repair bugs inside TensorFlow. Compared with the prior studies [15, 16, 17],

we find two additional templates such as referenced type modifier and syntax845

modifier. We notice that Martinez and Monperrus [39] implement a tool that is

able to automatically build import statements for Java code. It shall be feasible

to extend their tool, so it can repair reference type errors. In addition, we find

that TensorFlow programmers take effort to repair warnings, which are ignored

by previous repair tools. Although they are trivial, it can be interesting to850

implement a tool to automate this type of repairs.

6. The Significance of Our Findings

Developing high-quality deep learning libraries. For every root cause

of TensorFlow bug, we find several major symptoms occupy a large proportion

(Finding 1), and the correlations between root cause and symptom can also855

suggest possible links (Finding 3), which can help developers to diagnose the

cause of a bug according to its symptom. Since TensorFlow bug characteristics

show strong similarity to traditional software (Finding 2), the experience and

tools of bug repairing in other software can also be transferred to TensorFlow.

Since the proportion of bugs in different components varies obviously (Finding860

4), developers should pay more attention to safety check and test case design,

when adding new features or making modifications to bug-prone components.

33

Moreover, as the integration of libraries is common in deep learning software, the

connection of different libraries should obtain higher priority in development.

To overcome this problem, developing unified APIs can be helpful.865

Combining the results of the prior studies. From two different perspec-

tives of deep learning software, the prior studies [5, 7] analyze the bugs of deep

learning applications, but our study analyzes the bugs of deep learning libraries.

The bugs inside deep learning libraries can have impacts on the bugs of their

applications. For example, Islam et al. [7] find that 11% percentage of Ten-870

sorFlow application bugs are caused by incorrect usages of deep learning APIs.

From the perspective of deep learning libraries, such bugs can be caused by the

inconsistency bugs in our study. As another example, the prior studies [5, 7]

show that unaligned tensors and the absences of type checking are common

causes of deep learning application bugs. We suspect that such bugs are related875

to dimension mismatches and type confusions, which are found in our study. In

future work, we plan to combine the results of the prior studies and ours and

explore more advanced techniques to detect deep learning bugs.

Detecting deep learning bugs. We notice that some bugs in deep learning

libraries also reside in other software projects such as database systems (e.g.,880

memory bugs 2.97% and concurrency bugs 0.99%), and detecting such bugs

has been a hot research topic [40, 41, 42]. As advocated by Wang et al. [43],

the prior detection techniques can be tailored to handle similar bugs in deep

learning libraries [43]. Meanwhile, as deep learning techniques and frameworks

are applied to solve many software problems [44, 45], our revealed bugs in side885

such libraries and more advanced detection techniques are also critical for users

of deep learning libraries.

7. Related Work

Empirical studies on bug characteristics. There has been a number

of recent studies studying bugs from open source repositories. Tan et al. [12]890

analyze the bug characteristics of open source projects such as the Linux kernel

34

and Mozilla. Thung et al. [14] analyze the bugs of machine learning systems

such as Mahout, Lucene, and OpenNLP. Zhang et al. [5] analyze the application

code that calls TensorFlow. Islam et al. [7] analyze the applications of more deep

learning bugs. Humbatova et al. [46] introduce a taxonomy of faults in deep895

learning systems. Compared with all existing works, we analyze bugs inside a

representative deep-learning library i.e., TensorFlow, which is a different angle.

Detecting deep learning bugs. Pei et al. [6] propose a whitebox framework

to test deep learning systems. Ma et al. [47] propose a set of multi-granularity

criteria to measure the quality of test cases prepared for deep learning systems.900

Tian et al. [48] and Pham et al. [49] introduce differential testing to discover

bugs in deep learning software. Our empirical study reveals new types of bugs,

which cannot be effectively detected by the above approaches. Our findings are

useful for researchers, when they design detection approaches for such bugs.

Mining repair histories. Kim et al. [15] mine repair templates by analyzing905

thousands of existing human-written patches. Le et al. [16] utilize historical bug

fixes and mines bug fix patterns in previous works [50, 51] to develop program

repair techniques. Liu and Zhong [17] mine thirteen repair patterns from code

samples of Stack Overflow. Zhong and Mei [52] mine a classification model

to predict buggy locations of a source file. In this work, we investigate the910

fixes of bugs inside TensorFlow and summarize several repair templates to make

comparison with other templates. We found new templates that are not reported

by the prior studies, and our findings may improve fixing deep learning bugs.

Empirical studies on multi-language programming. Our study shows

that several bugs in TensorFlow are about multi-language programming, so our915

work is also related to existing studies in this area. Mayer et al. [53] analyze

the distribution and association of multiple languages. Kochhar et al. [18] an-

alyze the regression relations between multiple languages and software quality,

and their results show that multiple languages can lead to more bugs. Lin et

al. [54] present a benchmark suite for evaluating automated multi-language pro-920

gram repair tools. In our work, our focus is on the bug distribution within the

TensorFlow library. Also, we analyze the causes of TensorFlow bugs involving

35

multiple programming languages, complementing the prior studies.

8. Conclusion and Future Work

Although researchers have conducted empirical studies to understand deep925

learning bugs, these studies focus on bugs of its applications, and the nature of

bugs inside a deep library is still largely unknown. To deepen the understanding

of such bugs, we analyze 202 bugs inside TensorFlow. Our results show that

(1) its root causes are more determinative than its symptoms; (2) bugs in tradi-

tional software and TensorFlow share various common characteristics; and (3)930

inappropriate data formatting (dimension and type) is bug prone and popular in

API implements while inconsistent bugs are common in other supporting com-

ponents. In future work, we will analyze bugs from more deep-learning libraries

to obtain a more comprehensive understanding of bugs in deep learning frame-

works, and we plan to design automatic tools to detect bugs in deep-learning935

libraries. In addition, when analyzing repair patterns, we focus on source files,

and ignore configuration files. Hassan and Wang [55] show that the repairs on

such files also follow specific patterns, and we leave the analysis to our future

work. As the prior studies [5, 7] did, we also read bug reports and their repairs

to understand deep learning bugs. Some runtime behaviors of bugs may not940

be hidden, and are difficult to be discovered through static analysis. In future

work, we will introduce dynamic analysis to explore the runtime behaviors of

deep learning bugs.

Acknowledgement

We appreciate the reviewers for their insightful comments. This work is945

sponsored by the National Key R&D Program of China No. 2018YFC083050.

References

[1] L. Jia, H. Zhong, X. Wang, L. Huang, X. Lu, An empirical study on bugs

inside tensorflow, Proc. DASFAA, 2020, pp. 604–620.

36

[2] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep950

convolutional neural networks, Proc. NIPS, 2012, pp. 1106–1114.

[3] S. Wang, T. Liu, J. Nam, L. Tan, Deep semantic feature learning for soft-

ware defect prediction, IEEE Transactions on Software Engineering.

[4] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,955

S. Moore, D. G. Murray, B. Steiner, P. A. Tucker, V. Vasudevan, P. Warden,

M. Wicke, Y. Yu, X. Zheng, TensorFlow: A system for large-scale machine

learning, Proc. OSDI, 2016, pp. 265–283.

[5] Y. Zhang, Y. Chen, S. Cheung, Y. Xiong, L. Zhang, An empirical study on

TensorFlow program bugs, Proc. ISSTA, 2018, pp. 129–140.960

[6] K. Pei, Y. Cao, J. Yang, S. Jana, Deepxplore: Automated whitebox testing

of deep learning systems, Proc. SOSP, 2017, pp. 1–18.

[7] M. J. Islam, G. Nguyen, R. Pan, H. Rajan, A comprehensive study on deep

learning bug characteristics, Pro. ESEC/FSE, 2019, pp. 510–520.

[8] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick,965

S. Guadarrama, T. Darrell, Caffe: Convolutional architecture for fast fea-

ture embedding, Proc. MM, 2014, pp. 675–678.

[9] Keras, https://keras.io. (2019).

[10] J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O. Delalleau,

G. Desjardins, D. Wardefarley, I. Goodfellow, A. Bergeron, Theano: Deep970

learning on gpus with python, Proc. Nips, BigLearning Workshop, 2011.

[11] R. Collobert, S. Bengio, J. Marithoz, Torch: A modular machine learning

software library (2002).

[12] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, C. Zhai, Bug characteristics in

open source software, Empirical Software Engineering 19 (6) (2014) 1665–975

1705.

37

https://keras.io.

[13] C. B. Seaman, F. Shull, M. Regardie, D. Elbert, R. L. Feldmann, Y. Guo,

S. Godfrey, Defect categorization: making use of a decade of widely varying

historical data, Proc. ESEM, 2008, pp. 149–157.

[14] F. Thung, S. Wang, D. Lo, L. Jiang, An empirical study of bugs in machine980

learning systems, Proc. ISSRE, 2012, pp. 271–280.

[15] D. Kim, J. Nam, J. Song, S. Kim, Automatic patch generation learned

from human-written patches, Proc. ICSE, 2013, pp. 802–811.

[16] X. D. Le, D. Lo, C. Le Goues, History driven program repair, Proc. SANER,

2016, pp. 213–224.985

[17] X. Liu, H. Zhong, Mining stackoverflow for program repair, Proc. SANER,

2018, pp. 118–129.

[18] P. S. Kochhar, D. Wijedasa, D. Lo, A large scale study of multiple pro-

gramming languages and code quality, Proc. SANER, 2016, pp. 563–573.

[19] TensorFlow API documentation, https://tensorflow.google.cn/api_990

docs/ (2019).

[20] Foreign function interface, https://en.wikipedia.org/wiki/Foreign_

function_interface (2019).

[21] TensorFlow in other languages, https://tensorflow.google.cn/guide/

extend/bindings (2019).995

[22] TensorFlow repo on Github, https://github.com/tensorflow/ (2019).

[23] M. V. Bertoncello, G. Pinto, I. S. Wiese, I. Steinmacher, Pull requests or

commits? which method should we use to study contributors’ behavior?,

in: Proc. SANER, 2020, pp. 592–601.

[24] Intel R© oneapi math kernel library, https://software.intel.com/1000

content/www/us/en/develop/tools/oneapi/components/onemkl.html

(2021).

38

https://tensorflow.google.cn/api_docs/
https://tensorflow.google.cn/api_docs/
https://tensorflow.google.cn/api_docs/
https://en.wikipedia.org/wiki/Foreign_function_interface
https://en.wikipedia.org/wiki/Foreign_function_interface
https://en.wikipedia.org/wiki/Foreign_function_interface
https://tensorflow.google.cn/guide/extend/bindings
https://tensorflow.google.cn/guide/extend/bindings
https://tensorflow.google.cn/guide/extend/bindings
https://github.com/tensorflow/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html

[25] Mkl dnn: fix the tf1.6 speed issue by fixing mkl dnn lrn taking the op-

timum path, https://github.com/tensorflow/tensorflow/pull/17605

(2017).1005

[26] The cifar-10 dataset, https://www.cs.toronto.edu/~kriz/cifar.html

(2017).

[27] Make unused variable warning an error during tf builds, https://github.

com/tensorflow/tensorflow/pull/15762 (2018).

[28] Fix the performance regression for model.predict for non-tpu strategy,1010

https://github.com/tensorflow/tensorflow/pull/34325 (2019).

[29] How the TensorFlow team handles open source

support, https://www.oreilly.com/content/

how-the-tensorflow-team-handles-open-source-support/ (2017).

[30] Name/variable scopes of tensorflow.python.layers.base.layer, https://1015

github.com/tensorflow/tensorflow/issues/13429 (2017).

[31] Y. Tian, J. Lawall, D. Lo, Identifying linux bug fixing patches, Proc. ICSE,

2012, pp. 386–396.

[32] D. M. Coleman, D. Ash, B. Lowther, P. W. Oman, Using metrics to eval-

uate software system maintainability, Computer 27 (8) (1994) 44–49.1020

[33] V. Y. Shen, S. D. Conte, H. E. Dunsmore, Software science revisited: A

critical analysis of the theory and its empirical support, IEEE Trans. Soft-

ware Eng. 9 (2) (1983) 155–165.

[34] A. H. Watson, T. J. Mccabe, D. R. Wallace, Structured testing: A soft-

ware testing methodology using the cyclomatic complexity metric, in: U.S.1025

Department of Commerce/National Institute of Standards and Technology,

1996.

[35] R. Lowry, Concepts and applications of inferential statistics, http://

vassarstats.net/textbook/ (2014).

39

https://github.com/tensorflow/tensorflow/pull/17605
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/tensorflow/tensorflow/pull/15762
https://github.com/tensorflow/tensorflow/pull/15762
https://github.com/tensorflow/tensorflow/pull/15762
https://github.com/tensorflow/tensorflow/pull/34325
https://www.oreilly.com/content/how-the-tensorflow-team-handles-open-source-support/
https://www.oreilly.com/content/how-the-tensorflow-team-handles-open-source-support/
https://www.oreilly.com/content/how-the-tensorflow-team-handles-open-source-support/
https://github.com/tensorflow/tensorflow/issues/13429
https://github.com/tensorflow/tensorflow/issues/13429
https://github.com/tensorflow/tensorflow/issues/13429
http://vassarstats.net/textbook/
http://vassarstats.net/textbook/
http://vassarstats.net/textbook/

[36] A. Avizienis, J. Laprie, B. Randell, C. E. Landwehr, Basic concepts and1030

taxonomy of dependable and secure computing, IEEE Trans. Dependable

Sec. Comput. 1 (1) (2004) 11–33.

[37] J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques, Mor-

gan Kaufmann Publishers, 2011.

[38] T. Zhang, C. Gao, L. Ma, M. R. Lyu, M. Kim, An empirical study of1035

common challenges in developing deep learning applications, in: ISSRE,

2019, pp. 104–115.

[39] M. Martinez, M. Monperrus, Astor: A program repair library for Java,

Pro. ISSTA, 2016, pp. 441–444.

[40] Q. Lin, G. Chen, M. Zhang, On the design of adaptive and speculative1040

concurrency control in distributed databases, Proc. ICDE, 2018, pp. 1376–

1379.

[41] K. Ren, A. Thomson, D. J. Abadi, VLL: a lock manager redesign for main

memory database systems, VLDB J. 24 (5) (2015) 681–705.

[42] A. van Renen, V. Leis, A. Kemper, T. Neumann, T. Hashida, K. Oe, Y. Doi,1045

L. Harada, M. Sato, Managing non-volatile memory in database systems,

Proc. SIGMOD, 2018, pp. 1541–1555.

[43] W. Wang, M. Zhang, G. Chen, H. V. Jagadish, B. C. Ooi, K. Tan, Database

meets deep learning: Challenges and opportunities, SIGMOD Record 45 (2)

(2016) 17–22.1050

[44] G. Li, X. Zhou, S. Li, B. Gao, Qtune: A query-aware database tuning

system with deep reinforcement learning, PVLDB 12 (12) (2019) 2118–

2130.

[45] B. Xu, R. Cai, Z. Zhang, X. Yang, Z. Hao, Z. Li, Z. Liang, NADAQ: natural

language database querying based on deep learning, IEEE Access 7.1055

40

[46] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco, P. Tonella,

Taxonomy of real faults in deep learning systems, Proc. ICSE, 2020, p. to

appear.

[47] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su, L. Li,

Y. Liu, J. Zhao, Y. Wang, Deepgauge: Multi-granularity testing criteria for1060

deep learning systems, Proc. ASE, 2018, pp. 120–131.

[48] Y. Tian, K. Pei, S. Jana, B. Ray, Deeptest: Automated testing of deep-

neural-network-driven autonomous cars, Proc. ICSE, 2018, pp. 303–314.

[49] H. V. Pham, T. Lutellier, W. Qi, L. Tan, CRADLE: cross-backend vali-

dation to detect and localize bugs in deep learning libraries, Proc. ICSE,1065

2019, pp. 1027–1038.

[50] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, C. Zapf, An experimen-

tal determination of sufficient mutant operators, ACM Trans. Softw. Eng.

Methodol. 5 (2) (1996) 99–118.

[51] C. Le Goues, T. Nguyen, S. Forrest, W. Weimer, Genprog: A generic1070

method for automatic software repair, IEEE Trans. Software Eng. 38 (1)

(2012) 54–72.

[52] H. Zhong, H. Mei, Learning a graph-based classifier for fault localization,

SCIENCE CHINA Information Sciences (2019) 1–22.

[53] P. Mayer, A. Bauer, An empirical analysis of the utilization of multiple1075

programming languages in open source projects, Proc. EASE, 2015, pp.

4:1–4:10.

[54] D. Lin, J. Koppel, A. Chen, A. Solar-Lezama, Quixbugs: a multi-

lingual program repair benchmark set based on the quixey challenge, Proc.

SPLASH, 2017, pp. 55–56.1080

[55] F. Hassan, X. Wang, Hirebuild: an automatic approach to history-driven

repair of build scripts, Proc. ICSE, 2018, pp. 1078–1089.

41

	Introduction
	Preliminary
	The Implementation of TensorFlow
	The Repair Process of TensorFlow Bugs

	Methodology
	Dataset
	Pull Request and Commit
	Manual Analysis
	Protocol of RQ1
	Protocol of RQ2
	Protocol of RQ3
	Protocol of RQ4

	Empirical Result
	RQ1. Symptoms and Root Causes
	The categories of symptoms
	The categories of root causes
	Distribution
	Correlation of bug categories

	RQ2. Bug Locations
	Distribution
	Correlation of bug categories

	RQ3. Repair Patterns
	The categories of repair patterns
	Correlation of bug categories

	RQ4. Multi-language Programming
	Threats to validity

	The Comparison with Prior Studies
	Symptoms
	Root causes
	Repair Patterns
	Our New Findings

	The Significance of Our Findings
	Related Work
	Conclusion and Future Work

