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Abstract—In recent years, with the flourish of deep learning
techniques, deep learning libraries have been used by many
smart applications. As smart applications are used in critical
scenarios, their bugs become a concern, and bugs in deep learning
libraries have far-reaching impacts on their built-on applications.
Although programmers write many test cases for deep learning
libraries, to the best of our knowledge, no prior study has ever
explored to what degree such test cases are sufficient. As a result,
some fundamental questions about these test cases are still open.
For example, to what degree can existing test cases detect bugs
in deep libraries? How to improve such test cases? To help
programmers improve their test cases and to shed light on the
detection techniques of deep learning bugs, there is a strong need
for a study on the test quality of deep learning libraries.

To meet the strong need, in this paper, we conduct the first
empirical study on this issue. Our basic idea is to inject bugs into
deep learning libraries, and to check to what degree existing test
cases can detect our injected bugs. With a mutation tool, we
constructed 1,545 buggy versions (i.e., mutants). By comparing
the testing results between clean and buggy versions, our study
leads to 11 findings, and we summarize them into the answers
to three research questions. For example, we find that although
existing test cases detected 60% of our injected bugs, only 30%
of such bugs were detected by the assertions of these test cases.
As another example, we find that some exceptions were thrown
only in specific learning phases. Furthermore, we interpret our
results from the perspectives of researchers, library developers,
and application programmers.

I. INTRODUCTION

In recent years, deep learning techniques have already been
applied in many fields [14], [20], [30], [43]. To reduce the
development effort, various libraries (e.g., TensorFlow [11])
are widely used [19], [47]. As a result, bugs inside libraries can
have far-reaching impacts on many deep learning applications.
Like many other machine learning systems, deep learning
software inherently has variance in its results [40]. To check
outputs with variance, Nejadgholi and Yang [34] report that
5% to 24% test cases in deep learning libraries check outputs
against specific ranges. As it is challenging to determine the
proper range of a test case, they [34] found that programmers
frequently modify assertions: using a different assertion (23%),
tightening or loosening thresholds (18%), and switching code
under test/test oracles (58%).

The variance of deep learning systems and their frequently
changed test units leave some open and fundamental questions.
For example, How are deep learning libraries tested? Which
test cases are more effective? To shed lights on the related

research, there is a strong and timely need for an empirical
study on this issue.

In this paper, we conduct the first empirical study to analyze
the unit test quality of deep learning libraries. Our study is
built on mutation testing, an intensively studied technique
to assess the quality of a test suite [25]. Given a program
with a test suite, mutation testing mutates the program with
predefined mutation operators, and generates many mutants,
i.e., buggy versions. If a test case detects a mutant, this mutant
is considered as killed. In mutation testing, a test suite is
considered to be better, if it kills more mutants than others. In
this study, we selected three popular deep libraries including
TensorFlow [11], Keras [3], and Theano [15], since the three
libraries are among the top ten of the most popular deep
learning libraries [19], [47]. With a mutation testing tool [4],
we constructed 1,545 mutants; recorded their execution results
with test cases; and compared them with those of clean
versions. Based on our results, we summarize 11 findings, and
present our answers to the following three research questions.

• RQ1. To what degree can mutants be killed, if they
are injected to the system under test (SUT)?
Motivation. The answers are useful to estimate the unit
test quality of deep learning libraries. Besides the overall
results and symptoms, we classify mutants by their types
to explore the impact of bug types.
Answer. Table III shows that around 60% mutants in
SUTs are killed. Existing test cases are more effective
to detect bugs caused by wrong logic flows than those
caused by wrong values (Finding 1), but they fail to detect
mutants on decorator sentences (Finding 2). Among the
killed mutants, more than 60% mutants were not detected
by assertions in test cases, but were revealed by excep-
tions (Finding 3).

• RQ2. To what degree can mutants be killed, if they
are injected to dependent-on components (DOC)?
Motivation. For a test case, its DOC includes the files
that are not directly tested but called by its SUT. Sec-
tion II-B presents an example of SUT and DOC. As unit
test cases are limited, many source files of deep learning
libraries are DOCs. The answers are useful to estimate
how such files are tested.
Answer. Finding 4 shows that survived mutants increases
from around 30% of SUTs to more than 50% of DOCs.



TABLE I: Our subject deep libraries
Library Ver. LoC File Method Assertion Unit
Theano 1.05 49,844 147 2,170 5,488 unittest

TensorFlow 1.15 309,942 986 4,611 37,648 unittest
Keras 2.31 12,170 45 748 1,608 pytest

• RQ3. Which test cases are effective to kill mutants?
Motivation. The answers are useful to improve unit test
cases. To achieve this research goal, we classify test cases
by their assertions, thrown exceptions, and their learning
phases. After that, we analyze which types of test cases
are more effective to kill mutants.
Answer. Finding 5 shows that Theano may not fully use
the assertions of unit frameworks. Assertions in test cases
are more effective to kill mutants than those in other
files (Finding 6). When mutants are revealed by thrown
exceptions, most of them throw TypeError, ValueError,
and IndexError (Finding 7). Compared to the exceptions
defined by Python, customized exceptions are rarely used,
and mutants are seldom revealed by customized excep-
tions (Finding 8). For Theano and TensorFlow, mutants
in the preprocessing phase are more challenging to be
killed than the other phases (Finding 10), and several
customized exceptions are associated with specific deep
learning phases (Finding 11).

II. PRELIMINARIES

In this section, we introduce mutation testing (Section II-A)
and the test cases of deep learning libraries (Section II-B).

A. Mutation Testing

Mutation testing [25] is an intensively studied technique to
assess the quality of test cases. To achieve this goal, mutation
testing defines mutation operators (see Table II for examples),
and applies operators to produce faulty versions of a software
project. In mutation testing, each produced faulty version is
called a mutant. After mutants are generated, test cases are
executed on all mutants. If a test case fails on a mutant, the
mutant is marked as “killed”, which means that the test case
has the capability of revealing the mutant. If no test case fails
on a mutant, the mutant is marked as “survived”, which means
that no test case has the capability of revealing the mutant.
Given two test suites, if a test suite kills more mutants, the
test suite shall have better quality than the other one. Facebook
reported that a mutation testing tool successfully improved its
test suites [13].

Motivated by mutation testing, some recent approaches [21],
[33] mutate trained deep learning models to produce buggy
models. These approaches are unable to support our research
purpose, because no unit test in deep learning libraries is
designed to test trained models. As our subjected deep libraries
in Section III-A all provide Python APIs, we selected a
mutation tool for Python called mutmut [4] to inject bugs. The
injected faults are different from real faults, and we further
discuss this issue in Section IV-D.

B. Deep Learning Libraries and their Unit Test Cases

Their unit test cases are built upon Python test frameworks
(e.g., pytest [6]). In pytest, the name of a test method must
start with “test ” or end with “ test”. For example, in Keras,
a test file, losses_test.py is implemented to test the loss
funtions, and a test function is as follows:

1 def t e s t u n w e i g h t e d ( s e l f ) :
2 mse obj = l o s s e s . MeanSquaredError ( )
3 y t r u e = K. c o n s t a n t ( [ 1 , 9 , 2 , −5 , −2 , 6 ] , shape = (2 , 3 ) )
4 y pred = K. c o n s t a n t ( [ 4 , 8 , 12 , 8 , 1 , 3 ] , shape = (2 , 3 ) )
5 l o s s = mse obj ( y t r u e , y pred )
6 a s s e r t np . i s c l o s e (K. e v a l ( l o s s ) , 4 9 . 5 , a t o l =1e −3)

In this function, y_true and y_pred (defined in Line 3 and
4) are prepared as the input of the loss function, mse_obj.
As this loss function is implemented in the losses.py file,
we consider this file as the SUT of this test method. Be-
side this SUT, the mse_obj method calls the functions of
tensorflow_backend.py and generic_utils.py, and we con-
sider the two files as the DOCs of test_unweighted.

The links between a test file and its SUT can be identified
by the matching their file names. For example, under many
directories of TensorFlow source code, we can find files named
by x_test, where x denotes the SUT of a test file. For
example, the SUT of the file session_test.py is session.py.
Like other test frameworks, pytest has assert to check test
outputs. In Line 6 of this example, the assertion compares the
output value of K.eval(loss) with an expected value 49.5. If
the difference is within an acceptable range (1e-3), the test
method is passing.

We record traces with a coverage tool, and a file is consid-
ered as touched, if it appear in the traces (see Section III-B
for details). Both SUT and DOC must appear in traces, and
we injected bugs only to the executed lines of SUT and DOC.

Unit test cases are designed to test individual modules and
functionalities, and integration test cases are designed to test
software as a whole system [18]. However, when we conducted
our study, the three libraries provide very few integration test
cases with assertions. Without assertions, test cases serve as
confidence testing [16], but it is difficult to determine whether
a mutant can be killed. As a result, we ignore such test code.
We notice that programmers start to release the problem. For
example, Keras have gradually added integration test cases to
its repository [10].

TensorFlow is implemented in multiple languages, its kernel
is implemented by C++. Jia et al. [24] report that modifications
in C++ files can affect in test cases in Python. If another
tool injects mutants to a source file in C++ files, it is more
difficult to detect this bug, since all unit test cases are written in
Python and are typically not designed to detect cross-language
bugs. As we inject only Python code, we can overestimate the
quality of test cases. Meanwhile, mutants can be semantically
equivalent to a clean program [29]. As it is infeasible to
kill equivalent mutants, we can underestimate the quality
of test cases. As equivalent mutants shall be rare, we can
still overestimate the test quality. Additionally, TensorFlow
provides testcases in different languages, but we only consider



TABLE II: Mutation operators
Operator Description

ArOR op1↔ op2 ∈ {+↔ −, ∗ ↔ /,%↔ /, //↔ /}
BitOR op1↔ op2 ∈ {&↔ |,∧ ↔ &, <<↔>>}

ComOR op1↔ op2 ∈ {>↔>=, <↔<=,==↔!=, is↔ is not}
LogOR op1↔ op2 ∈ {and↔ or, not↔}
AsOR op1 ↔ op2 ∈ {+=↔−=,+=↔=,−=↔=, ∗=↔/=

, ∗=↔=, /=↔=}
MemOR op1↔ op2 ∈ {in↔ not in}

BVR b1↔ b2 ∈ {True↔ False}
NVR original value↔ original value+ 1
SVR original string ↔ XX + orinial string +XX
KVR break ↔ continue; copy ↔ deepcopy

DecSR remove decorator sentence
LmER remove lambda expression
AsVR original assignment↔ none

ArOR: arithmetic operator replacement; BitOR: bitwise operator replace-
ment; ComOR: comparison operator replacement; LogOR: logical operator
replacement; AsOR: assignment operator replacement; MemOR: member
operator replacement; BVR: boolean value replacement; NVR: numeric
value replacement; SVR: string value replacement; KVR: keyword value
replacement; DecSR: decorator sentence removal; LmER: lambda expres-
sion removal; AsVR: assignment value replacement;

test cases written in Python. As a result, the assessment of
TensorFlow test case quality can be partial.

III. METHODOLOGY

In this section, we introduce our dataset (Section III-A) and
our general protocol for RQs 1, 2, and 3 (Section III-B).

A. Dataset

To ensure the representativeness of our study, we select
three popular deep learning libraries such as TensorFlow [11],
Theano [15] and Keras [3]. We select these libraries, since
they are among the top ten of the most popular deep learning
libraries [19], [47]. Column “Ver.” lists the versions of selected
libraries. Column “LoC” lists the lines of test code. Column
“File” shows the number of test files. Column “Method” shows
the number of test methods. A test file typically has more
than one test method, and a bug can affect one or more test
methods. Column “Assertion” shows the number of assertions
in their test files. Each test method can have one or more
assertions, and an assertion checks whether a return result is
as expected. Column “Unit” shows the unit test frameworks
upon which they build the test cases. Here, unittest [7] is
the official unit test framework of Python.

B. General Protocol

To determine whether a mutant is killed, our general proto-
col has the following three steps:

Step 1. Collecting execution results of original test cases.
First, we executed the original test cases of each clean version
for 20 times. We introduce this step for three purposes: (1)
we recorded the numbers of passing, failing and skipped test
methods, and use them as the baseline to determine killed
mutants; (2) based on the executions, we located the SUTs of
all test files; and (3) we used a coverage analysis tool [2] to
collect executed files and code lines. Based on the results, we
inject bugs to only executed lines, so that our injected bugs are
all tested. To ensure the reliability of our results, we execute
the test files for multiple times.

Step 2. Generating mutants of deep learning libraries.
We classified the mutation operators of mutmut [4] into the
13 categories in Table II. For example, the first row lists
an operator named arithmetic operator replacement. Here,
the original arithmetic operator is denoted by op1, its target
operator is denoted by op2, and the relation between the
two operators is denoted by the mapping constructed by
them. In such operators, buggy versions are generated by
the replacement of original operators and their alternatives.
A sample code snippet is shown as below:

1 i m s h p l o g i c a l = ( imshp [ 0 ] , ) + i m s h p l o g i c a l [ 1 : ]

When the arithmetic operator replacement is applied to it, the
original operation “+” will be replaced by the target operation
“-”, as a result, the mutated code becomes as follow, which
may introduce a bug:

1 i m s h p l o g i c a l = ( imshp [ 0 ] , ) − i m s h p l o g i c a l [ 1 : ]

This mutation tool uses a Python parser called parso [5] to
build Abstract Syntax Trees (ASTs) from source files. For each
covered line of a source file, we checked whether our mutation
tool can mutate its AST nodes. If it does, we used the mutation
tool to mutate this line, and generated a buggy version library.
For files containing more than one mutable node, we generated
multiple buggy versions. To make the relationship between bug
symptom and cause of in a buggy version clearer, we modified
only one node in each objective file. As several files are much
larger than others, if we mutate all nodes, our analysis are
limited to the several files, and our results can be biased. To
reduce the bias, from each file, we mutated no more than 50
nodes.

Step 3. Collecting killed mutants. For each buggy version,
we executed all the test files under the identical settings of Step
1. As there were many buggy versions, due to time limit, we
executed each buggy version only once. For executed buggy
versions, we recorded the number of passing and failing tests,
and compared them with the baselines on clean versions. For
failing tests, we further recorded their error messages. If an
execution hanged, we manually stopped it and recorded its
error message. We then classified the results by their outputs.

Step 4. Identifying test cases that kill mutants. If a test
method failed on a mutant but it passed on the clean version,
we consider that this mutant is killed. Here, a mutant can be
killed for three reasons: (1) an assertion is violated; (2) a test
method crashes; and (3) a test method hangs. We collected
both the test cases that killed mutants and the test that did not
kill mutants for our latter analysis.

IV. EMPIRICAL RESULT

This section presents the results of our study. More details
are listed on our project website:
https://github.com/fordataupload/testcase

A. RQ1. Killed SUT Mutants

1) Protocol: We followed the protocol presented in Sec-
tion III-B, but in this research question, we inject bugs to only

https://github.com/fordataupload/testcase


TABLE III: The killed SUT mutants
Theano TensorFlow Keras

Operator killed survived total killed survived total killed survived total
ArOR 21 (95.5%) (%) 1 (4.5%) 22 19 (95.0%) 1 (5.0%) 20 15 (60.0%) 10 (40.0%) 25
BitOR 0 1 (100%) 1 4 (57.1%) 3 (42.9%) 7 0 0 0

ComOR 66 (72.5%) 25 (27.5%) 91 46 (83.6%) 9 (16.4%) 55 69 (71.1%) 28 (28.9%) 97
LogOR 85 (73.3%) 31 (26.7%) 116 69 (87.3%) 10 (12.7%) 79 54 (88.5%) 7 (11.5%) 61
AsOR 2 (50%) 2 (50%) 4 5 (83.3%) 1 (16.7%) 6 0 0 0

MemOR 10 (90.9%) 1 (9.1%) 11 11 (91.7%) 1 (8.3%) 12 17 (89.5%) 2 (10.5%) 19
BVR 18 (32.1%) 38 (67.9%) 56 9 (40.9%) 13 (59.1%) 22 6 (30.0%) 14 (70.0%) 20
NVR 39 (62.9%) 23 (37.1%) 62 27 (77.1%) 8 (22.9%) 35 42 (41.2%) 60 (58.5%) 102
SVR 26 (43.3%) 34 (56.7%) 60 24 (35.3%) 44 (64.7%) 68 33 (62.3%) 20 (37.7%) 53
KVR 0 0 0 1 (50%) 1 (50%) 2 0 1 (100%) 1

DecSR 0 (%) 0 (%) 0 5 (6.8%) 68 (93.2%) 73 1 (3.0%) 32 (97.0%) 33
LmER 9 (100%) 0 (%) 9 1 (100%) 0 1 0 0 0
AsVR 64 (64.6%) 35 (35.4%) 99 125 (86.2%) 20 (13.8%) 145 117 (78.5%) 32 (21.5%) 149
Total 340 (64.0%) 191 (36.0%) 531 346 (65.9%) 179 (34.1%) 525 354 (63.2%) 206 (36.8%) 560

1 def so f tmax ( x , a x i s = −1) :
2 ndim = K. ndim ( x )
3 − i f ndim == 2 :
4 + i f ndim != 2 :
5 re turn K. so f tmax ( x )
6 e l i f ndim > 2 :
7 e = K. exp ( x−K. max ( x , a x i s = a x i s , keepdims =True ) )
8 s = K. sum ( e , a x i s = a x i s , keepdims =True )
9 re turn e / s

10 e l s e : . . .

Fig. 1: A mutation on the softmax method

SUTs. In this way, we analyze to what degree can mutants be
killed, if their buggy lines appear in SUTs.

2) Result: Table III shows the results. Column “Operator”
lists the mutation operators that are used to generate mutants.
Subcolumn “killed”, “survived” and “total” list the numbers
of killed, survived and total mutants, respectively. Due to the
different of code structures, the numbers of the mutants vary
across operators. For example, as we do not find bits in the
SUTs of Keras, we cannot use BitOR to generate its mutants.

In Table III, for an operator, if its mutants of two libraries
have more killed ones than survived ones, we highlight it in
italic. ArOR, ComOR, LogOR, MemOR, AsVR, NVR, and
LmER fall into this category. Except AsVR and NVR, all
the other operators change the logic flows of clean versions.
We notice that if logic flows are changed, a bug is likely to
introduce visible impacts. For example, a mutant changed the
softmax method as shown in Figure 1. In particular, ComOR
changed “==” in Line 3 to “!=”. A test case prepares a two-
dimension tensor as its input. For this test case, the changed
Line 3 leads to a wrong branch to handle the tensor, and
produces a result that is quite different from the expect one.

In Table III, for an operator, if its mutants of two libraries
have more survived ones than killed ones, we highlight it in
bold. BVR, SVR, and DecSR belong to this category. Except
DecSR, all the other operators change the values. We notice
that these operators may introduce minor or local impacts. For
example, a boolean variable is mutated as follows:

1 def b i l i n e a r k e r n e l 1 D ( r a t i o , n o r m a l i z e =True ) : . . .

BVR replaced the default value of normalize in Line 1
with False. In test methods, the default value is never used.
For example, the following test method assign it to True:

1 k e r n e l t e n n o r m = b i l i n e a r k e r n e l 1 D ( r a t i o = r a t ,
n o r m a l i z e =True )

As an exception, NVR often generates mutants that are
easier to be killed. For example, another mutant is generated
from the softmax in Figure 1: an NVR replaced the number
2 in Line 3 with 3. As the dimension of test tensor is 3,
the mutant went into the first condition branch instead of the
second, and the mutant was killed. The above observations
lead to our finding:

Finding 1. Existing unit test cases are more effective to
detect bugs that are caused by wrong logic flows than
those caused by wrong values.

Although the decorator is a widely used Python feature [37],
as shown in the DecSR row of in Table III, most mutants
(more than 90%) generated by removing decorator sentences
survived. The main reason is that such sentences are used for
wrapping functions without changing theirs contents. As most
of the test methods manipulate original functions but do not
use wrappers, removing decorator sentences does not affect
the result of tests. A sample is shown as follow,

1 @ c o n t e x t l i b . c o n t e x t m a n a g e r
2 @ t f e x p o r t ( ” x l a . e x p e r i m e n t a l . j i t s c o p e ” )
3 def e x p e r i m e n t a l j i t s c o p e ( compi l e ops =True ,

s e p a r a t e c o m p i l e d g r a d i e n t s = F a l s e ) :
4 . . .

In TensorFlow, the @tf_export exposes a function or a class
with a different name. In the above code, Line 2 exposes
experimental_jit_scope with an alias, xla.experimental.

jit_scope. As this alias is never tested, existing test cases fail
to reveal any differences after removing this decorator, as a
result, the mutant survives.

Besides aliases, DecSR can modify other annotations. In the
above sample, Line 1 introduces contextmanager to manage
resources. To achieve this goal, contextmanager uses a with

statement to call the __enter__ and __exit__ method of a
user defined class [1]. In a test method, a with statement is
used as following (Line 3):



TABLE IV: The symptoms of killed SUT mutants
Theano TensorFlow Keras

Operator assertion crash hang total assertion crash hang total assertion crash hang total
ArOR 0 (%) 21 (100%) 0 21 10 (52.6%) 9 (47.4%) 0 19 13 (86.7%) 2 (13.3%) 0 15
BitOR 0 0 0 0 1 (25.0%) 3 (75.0%) 0 4 0 0 0 0

ComOR 36 (54.5%) 29 (43.9%) 1 (1.5%) 66 28 (60.9%) 17 (37.0%) 1 (2.1%) 46 20 (29.0%) 49 (71.0%) 0 69
LogOR 36 (42.4%) 42 (49.4%) 7 (8.2%) 85 25 (36.2%) 43 (62.3%) 1 (1.5%) 69 7 (13.0%) 47 (87.0%) 0 54
AsOR 0 1 (50.0%) 1 (50.0%) 2 2 (40.0%) 3 (60.0%) 0 5 0 0 0 0

MemOR 5 (50.0%) 5 (50.0%) 0 10 7 (63.6%) 3 (27.3%) 1 (9.1%) 11 4 (23.5%) 12 (70.6%) 1 (5.9%) 17
BVR 6 (33.3%) 10 (55.6%) 2 (11.1%) 18 5 (55.6%) 3 (33.3%) 1 (11.1%) 9 3 (50.0%) 2 (33.3%) 1 (16.7%) 6
NVR 12 (30.8%) 27 (69.2%) 0 39 13 (48.1%) 14 (51.9%) 0 27 21 (50.0%) 21 (50.0%) 0 42
SVR 3 (11.5%) 23 (88.5%) 0 26 7 (29.2%) 17 (70.8%) 0 24 8 (24.2%) 25 (75.8%) 0 33
KVR 0 0 0 0 1 (100%) 0 0 1 0 0 0 0

DecSR 0 0 0 0 0 5 (100%) 0 5 0 1 (100%) 0 1
LmER 1 (11.1%) 8 (88.9) 0 9 0 1 (100%) 0 1 0 0 0 0
AsVR 13 (20.3%) 47 (73.4%) 4 (6.3%) 64 12 (9.6%) 109 (87.2%) 4 (3.2%) 125 12 (10.3%) 103 (88.0%) 2 (1.7%) 117
Total 112 (32.9%) 213 (62.7%) 15 (4.4%) 340 111 (32.1%) 227 (65.6%) 8 (2.3%) 346 88 (24.9%) 262 (74.0%) 4 (1.1%) 354

TABLE V: SUT mutants killed by assertions
Library

Unit Statement Theano TensorFlow Keras
test case other file total test case other file total number test case other file total

Numpy assert allclose 0 0 0 16 (99) 0 16 0 0 0
assertEqual 11 (10) 0 11 56 (981) 0 56 0 0 0

assertNotEqual 0 0 0 0 (7) 0 0 0 0 0
assertListEqual 0 0 0 6 (11) 0 6 0 0 0

assertItemsEqual 0 0 0 0 (41) 0 0 0 0 0
assertMultiLineEqual 0 0 0 1 (40) 0 1 0 0 0

assertTrue 4 (86) 0 4 2 (63) 0 2 0 0 0
unittest assertFalse 0 (16) 0 0 1 (38) 0 1 0 0 0

assertIn 0 0 0 0 (13) 0 0 0 0 0
assertIs 0 0 0 0 (86) 0 0 0 0 0

assertIsNot 0 0 0 0 (0) 0 0 0 0 0
assertIsNone 0 0 0 0 (0) 0 0 0 0 0
assertRaises 0 (42) 0 0 0 (74) 0 0 0 0 0

assertRaisesRegexp 0 0 0 20 (87) 0 20 0 0 0
assertGreater 0 0 0 0 (7) 0 0 0 0 0

assertLess 0 0 0 0 (3) 0 0 0 0 0
nose assert raise 1 (22) 0 1 0 0 0 0 0 0

assert true 0 (3) 0 0 0 0 0 0 0 0
Python assert 56 (397) 19 75 0 (4) 9 9 76 (447) 12 88

raise 4 (109) 17 21 0 (4) 0 0 0 (88) 0 0
Total 76 36 112 102 9 111 76 12 88

1 def compute ( s e l f , u s e j i t , compute fn ) :
2 . . .
3 wi th j i t . e x p e r i m e n t a l j i t s c o p e ( u s e j i t ) :
4 r = compute fn ( )

After the decorator sentence is removed, the test fails, since
the __enter__ method is never called.

Finding 2. Existing unit test cases are ineffective to detect
the bugs on decorator sentences, and in total more than
90% such mutants survived.

We further inspected the killed mutants by their symptoms,
and Table IV shows the results. Column “Operator” lists
the mutation operators. Subcolumn “assertion”, “crashes” and
“hang” list symptoms. In particular, the assertion denotes that
a killed mutant triggers assert errors; and the crash denotes
that a mutant is killed by crashes. Here, if a mutant throws
an exception by raise statement, we count it in crash. If test
cases hang on a mutant, as the program does not respond, we
do not know whether its assertions would be triggered. As a
result, we count them in hangs.

Nejadgholi and Yang [34] report that in the test cases of
classical software, execution results are often compared with

constants, but due to the random nature of deep learning, in test
cases of deep learning applications, execution results are often
compared with ranges. Table V shows mutants killed by asser-
tions. Column “Statement” lists the assertion statements, and
their names indicate a return value is checked. For instance,
assertIn, assertGreater, and assertLess are designed to
check ranges, and programmers can check ranges in other
assert statements (details are introduced in Section IV-C). In
sum, Table IV shows that assertions killed fewer mutants than
crashes. Indeed, the distribution leads to our finding:

Finding 3. Instead of carefully designed assertions in unit
test cases, most mutants (62.7%, 66.1%, and 81.9%) are
killed by crashes.

Typically, when programmers write test cases, they rely on
assertions to detect bugs. However, we find that most mutants
were killed by crashes other than assertions. Even if a mutant
is killed by a crash, programmers can still take much effort to
locate its faulty locations.

B. RQ2. Killed DOC Mutants
1) Protocol: In this research question, we explore survived

mutants in DOCs. To achieve this goal, for each test case,



TABLE VI: The killed DOC mutants
Theano TensorFlow Keras

Operator killed survived total killed survived total killed survived total
ArOR 6 (100%) 0 6 2 (100%) 0 2 4 (30.8%) 9 (69.2%) 13
BitOR 0 0 0 0 0 0 0 0 0

ComOR 24 (51.1%) 23 (48.9%) 47 17 (73.9%) 6 (26.1%) 23 18 (60.0%) 12 (40.0%) 30
LogOR 30 (55.6%) (%) 24 (44.4%) 54 40 (75.5%) 13 (24.5%) 53 31 (60.8%) 20 (39.2%) 51
AsOR 1 (100%) 0 1 2 (100%) 0 2 2 (33.3%) 4 (66.7%) 6

MemOR 4 (66.7%) 2 (33.3%) 6 4 (100%) 0 4 3 (75.0%) 1 (25.0%) 4
BVR 7 (13.2%) 46 (86.8%) 53 2 (9.5%) 19 (90.5%) 21 5 (41.7%) 7 (58.3%) 12
NVR 7 (18.4%) 31 (81.6%) 38 1 (4.3%) 22 (95.7%) 23 8 (12.1%) 58 (87.9%) 66
SVR 5 (14.7%) 29 (85.3%) 34 6 (15.4%) 33 (84.6%) 39 8 (32.0%) 17 (68.0%) 25
KVR 0 0 0 0 0 0 0 0 0

DecSR 4 (19.0%) 17 (81.0%) 21 0 32 (100%) 32 2 (8.3%) 22 (91.7%) 24
LmER 0 0 0 0 0 0 0 0 0
AsVR 31 (47.7%) 34 (52.3%) 65 36 (64.3%) 20 (35.7%) 56 55 (63.2%) 32 (36.8%) 87
Total 119 (36.6%) 206 (63.4%) 325 110 (43.1%) 145 (56.9%) 255 136 (42.8%) 182 (57.2%) 318

we checked its coverage obtained in III-B to determine its
DOC. After that, we injected bugs to DOCs, and followed the
protocol in Section III-B to analyze survived mutants.

2) Result: Table VI shows the results. Its columns have the
same meanings as Table III. Finding 1 shows that wrong logic
flows are easier to be killed than wrong values, but NVR is
an exception. As a comparison, on DOCs, Table VI shows
that even NVR produces more survived mutants than killed
ones. Besides wrong values, even wrong logic flows are more
difficult to be killed on DOCs. For example, in test_training

of Keras, the losses component is imported to implement loss
function. A code snippet is shown as following:

1 def m e a n s q u a r e d e r r o r ( y t r u e , y pred ) :
2 i f not K. i s t e n s o r ( y pred ) :
3 y pred = K. c o n s t a n t ( y pred )
4 y t r u e = K. c a s t ( y t r u e , y pred . d t y p e )
5 re turn K. mean (K. s q u a r e ( y pred − y t r u e ) , a x i s = −1)

In the above code, a mutant replaced the “-” with “+” in Line
5, and it modified the loss function mean_squared_error. This
mutant is survived, because test methods check only the type
and the shape of an output tensor but do not check their values.
As test cases focus more on SUTs, by comparing Tables III
and VI, we come to another finding:

Finding 4. The mutants on DOCs are more challenging to
be killed than the mutants on SUTs, and survived mutants
in DOCs increase from around 30% to more than 50%.

C. RQ3. Effective Test Case

1) Protocol: In this research question, we explore the
effectiveness of test cases. To achieve this research goal, we
classify test cases by different criteria.

1. Classifying test cases by their assertion statements.
In a test case, typically, programmers write assertions to
check whether return values are as expected. As shown in
Column “Unit” of Table V, assertion statements are imple-
mented by Numpy [9], unittest, nose [8], and Python. Col-
umn “Statement” lists the assertion statements. In particular,
assert_allclose checks whether the differences between two
arrays are fewer than a predefined threshold; assertListEqual
checks whether two lists are equal; assertMultiLineEqual

checks whether two string values are equal when ignoring their

line breaks; assertRaises and assert_raise raise an excep-
tion when a condition is satisfied; and assertRaisesRegex

raises an exception if a string value matches a predefined
regular expression.

Besides the above assertion statements, programmers can
define their own checks. For example, TensorFlow implements
an assertion statement, assertTransformedResult, to check
whether a transformed result is as expected:

1 def a s s e r t T r a n s f o r m e d R e s u l t ( s e l f , t e s t f n , i n p u t s ,
expec t ed , symbols =None ) :

2 . . .
3 wi th s e l f . c o n v e r t e d ( t e s t f n , c o n t r o l f l o w , symbols ,
4 ( c o n s t a n t o p . c o n s t a n t , ) ) a s r e s u l t :
5 s e l f . a s s e r t A l l E q u a l ( s e l f . e v a l u a t e ( r e s u l t . t e s t f n

(* i n p u t s ) ) , e x p e c t e d )

As shown in the above code, the statement is built upon
the assertAllEqual statement of unittest, we classified this
assertion into the category of assertAllEqual. To understand
the test capability of both sources, we classify them separately.

2. Classifying test cases by their exception types. As
shown in Tables III and VI, more than half of mutants are
killed, because they crash test cases. When they crash, they
typically throw exceptions. For these test cases, we classify
them by their thrown exceptions.

3. Classifying test cases by their learning phases. Each
test case has its SUT, and a SUT can implement function-
ality of different deep learning phases such as preprocessing,
constructing, and learning [42]. In particular, the preprocessing
phase transforms raw data (e.g., texts, images, and videos) into
the input formats of deep learning libraries; the constructing
phase builds the structure of a deep model (e.g., CNN and
RNN); and the learning phase trains and tests deep learning
models. We classify test cases according to their phases. If a
SUT is used in more than one phase, we counted its test cases
in each phase. For example, we find that a SUT stores the
neural network parameters and it is used in both constructing
and learning phases, we count its test cases twice in both the
constructing and learning phases.

2) Results: Based on our three criteria, we classify our test
cases, and our results are as follows:

a) Test cases classified by their assertion statements:
Table V shows the results. Subcolumn “test case” denotes



TABLE VII: The exceptions thrown by killed SUT mutants
Source Exception Description Library

Theano TensorFlow Keras
AtrributeError An attribute reference or assignment fails 620 561 176

TypeError The type of an object is not as expected 5,206 1,207 516
ValueError A value is incorrect 3,130 615 196
KeyError A mapping key is not found 35 23 12

Python UnboundlocalError No value has been bound to a local variable in a method 0 34 90
IndexError A sequence subscript is out of range 1,877 41 14

FileExistsError Trying to create a file or directory which already exists 0 0 1
FileNotFoundError A file or directory does not exist 0 0 1

NameError A local or global name is not found 0 23 20
NotImplementError A functionality is unimplemented 29 0 0

RuntimeError Undefined errors 0 9 45
Numpy AxisError The value of parameter axis is out of range 60 0 2

UnusedInputError A symbolic input passed to function is not needed 67 0 0
MissingInputError A symbolic input needed to compute the output is missing 19 0 0

Theano GradientError A gradient is incorrectly calculated 15 0 0
CachedConstantError A graph that has a cached constant is passed to FunctionGraph 2 0 0

InconsistencyError A graph that has invalid state is passed to FunctionGraph 1 0 0
OperatorNotAllowedInGraphError An operator is not allowed in graph execution 0 64 0

TensorFlow InvalidArgumentError An operation receives an invalid argument 0 40 2
StagingError During staging of converted code 0 21 0

InaccessibleTensorError A tensor is not accessible 0 1 0
Total 11,061 2,639 1,073

mutants that are killed by assertions in test cases. The number
in brackets denotes the total numbers of assertions in test
cases, and the number outside brackets denotes the numbers
of assertions that killed mutants. As an assertion can kill
more than one mutant, the outside numbers can be larger than
the inside numbers. Besides test cases, mutants can be killed
by assertions in other files (e.g., deep learning libraries). In
Table V, subcolumn “other file” denotes mutants that are killed
by such assertions. The assertion statements are implemented
by Numpy [9], unittest, nose [8], and Python. The three
libraries use assertion statements in different ways.

1. Theano mainly use two types of assertion statements
such as asserts (assertTrue, assertFalse, assert_true and
assert) and raises (assertRaise, assert_raise and raise).
In Python, assert checks whether a condition is true, and
raise throws an exception. Although Theano uses other unit
testing libraries, its programmers use only the two types of
checks. Indeed, we tried to replace assert_raise with raise,
and the testing results are not changed.

2. TensorFlow use all types of assertion statements. The
programmers of TensorFlow seldom use assert and raise of
Python in test cases. Their test cases are built on unittest, and
they use all types of assertion statements of this unit testing
library. To make it easier to compare two arrays, they even
use assert_allclose of Numpy.

3. Keras uses only the assert and raise statements of
Python. The test cases of Keras are built upon pytest, and
this unit framework does not implement customized assertions.
As a result, the test cases of Keras use only the assert and
raise statements of Python.

Kawrykow and Robillard [28] find that programmers may
not effectively call API libraries. Although unit frameworks
like unittest implement various assertion statements, we find
that programmers may not effectively use them either. Its
impacts on killed mutants are minor, since Table III shows

that the test cases of all the libraries killed around 60%
mutants. However, Table IV shows that the assertions of Keras
killed fewer mutants than others (around 32% vs 24.9%),
while Table V shows that Keras uses fewer types of assertion
statements. The observations lead to a finding:

Finding 5. Leveraging assertion functions provided by
specific testing frameworks can improve the effectiveness
of unit test cases.

Besides test cases, programmers can write assertions in their
code, but only few mutants were killed by such assertions. As
shown in Table V, the assertions in test code killed 67.9%,
91.9%, and 86.4% mutants of Theano, Tensorflow, and Keras.
This observation leads to another finding:

Finding 6. The assertions in test cases are more effective
to kill mutants than the assertions in library code.

b) Test cases classified by their exception types: As
shown in Table VII, Column “Source” shows sources where
the exceptions are implemented. Column “Exception” shows
the types of exceptions. Column “Description” shows the
scenarios when these exceptions are thrown. From the results
in Table VII, we have the following observations:

1. Most killed mutants throw TypeError, ValueError, and
AtrributeError. TypeError indicates that the type of value
is not as expected. Previous studies [24], [49] report that the
type confusion is a common reason of bugs in deep learning
software. We notice that library code has many checks for such
errors. For example, in a test method testRepr of TensorFlow:

1 def t e s t R e p r ( s e l f ) : . . .
2 op = ops . O p e r a t i o n ( ops . NodeDef ( ”None” , ” op1 ” ) , ops .

Graph ( ) , [ ] , [ d t y p e s . f l o a t 3 2 ] )

In the method _update_input of Operation, the input to this
operation is updated, and the type of input tensor should be
checked at first, if it is not a Tensor, a TypeError is raised.



TABLE VIII: The SUT mutants killed by assertions of different phases
Library

Phase Theano TensorFlow Keras
test case other file total test case other file total test case other file total

Preprocessing 3 (188) 3 6 5 (689) 0 5 23 (126) 0 23
Constructing 42 (605) 14 56 53 (1,024) 8 61 24 (214) 3 27

Learning 50 (434) 21 71 44 (1,349) 1 45 27 (334) 26 53

1 def u p d a t e i n p u t ( s e l f , index , t e n s o r ) :
2 i f not i s i n s t a n c e ( t e n s o r , Tensor ) :
3 r a i s e TypeEr ro r ( ” t e n s o r must be a Tensor : %s ” % t e n s o r )

ValueError indicates that the value of a variable is in-
corret. The prior studies [24], [49] report that deep learning
software has dimension mismatches, and such bugs can lead
to ValueError. For example, the test method, test_cce-

_one_hot, of Keras calls the sparse_categorical_cross-

entropy method:

1 def t e s t c c e o n e h o t ( s e l f ) :
2 o b j e c t i v e o u t p u t = l o s s e s .

s p a r s e c a t e g o r i c a l c r o s s e n t r o p y ( y a , y b )

As shown in the above code, this method calls the sparse_-

categorical_crossentropy method:

1 def s p a r s e c a t e g o r i c a l c r o s s e n t r o p y ( y t r u e , y pred ,
f r o m l o g i t s = F a l s e , a x i s = −1) :

2 re turn K. s p a r s e c a t e g o r i c a l c r o s s e n t r o p y (
3 y t r u e , y pred , f r o m l o g i t s = f r o m l o g i t s , a x i s = a x i s )

A mutant changed the default value of axis from -1 to 0,
and the following backend method checked this value:

1 def s p a r s e s o f t m a x c r o s s e n t r o p y w i t h l o g i t s ( . . . ) : . . .
2 i f ( s t a t i c s h a p e s f u l l y d e f i n e d and
3 l a b e l s s t a t i c s h a p e != l o g i t s . g e t s h a p e ( ) [ : − 1 ] ) :
4 r a i s e V a l u e E r r o r ( ” Shape mismatch : . . . ” )

As a result, this mutant was killed.
AttributeError indicates that a class has no required

attributes. As Python supports both class attributes and object
attributes, even if two objects are initiated from the same
class, they can have different attributes. Two objects with
different attributes do not trigger TypeError, if their type is
the same. However, when an object does not have an expected
attribute, AttributeError will be thrown. For example, in a
test method, testNoVariables, is as follows:

1 def t e s t N o V a r i a b l e s ( s e l f ) : . . .
2 sgd op = g r a d i e n t d e s c e n t . G r a d i e n t D e s c e n t O p t i m i z e r ( 3 . 0 )
3 wi th s e l f . a s s e r t R a i s e s R e g e x p ( Va l ueEr r o r , ’ . . . ’ ) :
4 sgd op . min imize ( l o s s )

In Line 4 of the above code, the minimize method calls the
compute_gradients method:

1 def c o m p u t e g r a d i e n t s ( . . . ) :
2 i f v a r l i s t i s None :
3 v a r l i s t = t a p e . w a t c h e d v a r i a b l e s ( ) . . .
4 g r a d s = t a p e . g r a d i e n t ( l o s s v a l u e , v a r l i s t , g r a d l o s s )

In Line 2 of the above code, a mutant replaced is is
replaced with is not. As a result, the attributes of var_list

are not correctly constructed. Line 4 of the above code calls
the tape.gradient method:

1 def g r a d i e n t ( s e l f , t a r g e t . . . ) :
2 f o r t in n e s t . f l a t t e n ( t a r g e t ) :
3 i f not t . d t y p e . i s f l o a t i n g :

Line 3 of the above code checks the type of the attribute.
As the attribute is not defined, it raises AttributeError.

2. Many killed mutants of Theano throw IndexError.
IndexError indicates that the index of a list/array is invalid,
e.g., out of bounds. Theano programmers may not check the
indexes of their lists and arrays sufficiently, so many killed mu-
tants throw IndexError. For example, the test_argtopk_1d

test method of Theano calls the argtopk method:
1 def t e s t a r g t o p k 1 d ( s e l f , s i z e , k , d type , sorted ,

i d x d t y p e ) : . . .
2 y = a r g t o p k ( x , k , s o r t e d = sorted , i d x d t y p e = i d x d t y p e )

The argtopk method calls the _topk_py_impl method:
1 def t opk py impl ( op , x , k , a x i s , i d x d t y p e ) : . . .
2 e l i f k > x . shape [ a x i s ] :

As shown in the above code, Line 2 compares an array without
checking its index. A mutant produced a wrong value of axis,
and it threw IndexError.

Meanwhile, we find that other libraries check the ranges
of indexes more carefully. For example, the _validate_keep-

_input method of TensorFlow is as follows:
1 def v a l i d a t e k e e p i n p u t ( k e e p i n p u t , enqueue many ) :
2 k e e p i n p u t = ops . c o n v e r t t o t e n s o r ( k e e p i n p u t )
3 i f k e e p i n p u t . shape . ndims i s None :
4 r a i s e V a l u e E r r o r (
5 ” k e e p i n p u t d i m e n s i o n s must be known a t g raph

c o n s t r u c t i o n . ” )
6 . . .
7 i f k e e p i n p u t . shape . ndims > 1 :
8 r a i s e V a l u e E r r o r ( ” k e e p i n p u t must be 0 or 1

d i m e n s i o n s . ” )

Line 7 of the above code checks the shape of keep_input.
If an out-of-bound index is passed, the above code avoids
IndexError, and throws ValueError.

Finding 7. In total, 46.9%, 26.7%, and 9.2% of killed
mutants throw TypeError, ValueError, and Atrribute-

Error, respectively. In Theano, IndexError is also com-
mon, and which are thrown from 17.0% of killed mutants.

Compared to the exceptions defined by Python, the excep-
tions defined by Theano and TensorFlow are rarely thrown.
For example, GradientError is thrown only when calculating
gradient descents. This observation leads to a finding:

Finding 8. Compared to the exceptions defined by the
Python language, customized exceptions are not widely
used, and killed mutants seldom throw such exceptions.



TABLE IX: The exceptions thrown in different phases
Source Exception Theano TensorFlow Keras

P C L P C L P C L
AtrributeError 1 334 323 62 219 280 27 15 164

TypeError 76 1,080 4,584 171 567 469 226 352 390
ValueError 0 141 2,989 66 121 428 0 83 113
KeyError 0 32 32 0 0 23 11 12 11

Python UnboundlocalError 0 0 0 0 34 0 0 90 0
IndexError 0 68 1,863 0 11 30 5 5 14

FileExistsError 0 0 0 0 0 0 1 0 0
FileNotFoundError 0 0 0 0 0 0 1 0 0

NameError 0 0 0 0 23 0 0 0 20
NotImplementError 0 17 12 0 0 0 0 0 0

RuntimeError 0 0 0 0 0 0 0 45 0
Numpy AxisError 0 0 60 0 0 0 0 2 0

UnusedInputError 0 0 53 0 0 0 0 0 0
MissingInputError 0 19 16 0 0 0 0 0 0

Theano GradientError 0 0 15 0 0 0 0 0 0
CachedConstantError 0 2 0 0 0 0 0 0 0

InconsistencyError 0 0 1 0 0 0 0 0 0
OperatorNotAllowedInGraphError 0 0 0 0 28 0 0 0 0

TensorFlow InvalidArgumentError 0 0 0 0 0 40 0 0 2
StagingError 0 0 0 0 0 21 0 0 0

InaccessibleTensorError 0 0 0 0 1 0 0 0 0
Total 77 1,693 9,948 299 1,004 1,291 271 604 714

c) Test cases classified by learning phases: Table VIII
shows killed mutants that are classified by the assertions of
different deep learning phases. Column “Phase” shows deep
learning phases. Subcolumn “test case” denotes assertions of
corresponding phases. The numbers in brackets denote the
total assertions, and the numbers outside brackets denote the
assertions that killed mutants. As some SUTs are shared by
different phases, an assertion can be classified to more than one
phase, and we count them in each phase. Subcolumn “other
file” denotes assertions in other files that also killed mutants.

According to the results, for Theano and TensorFlow, al-
though their preprocessing phases have hundreds of assertions,
only several mutants were killed. Although the assertions are
many, they often focus on few behaviors.

Finding 9. Although Theano and TensorFlow have hun-
dreds of assertions in their preprocessing phases, these
assertions killed only several mutants.

Table IX shows the distribution of exceptions in different
deep learning phases. SubColumn “P”, “C”, and “L”denote
the phases such as preprocessing, constructing, and learn-
ing, respectively. According to the results, more mutants
throw ValueError in learning phase than the other phases,
in that the learning phase has more calculations and checks.
For example, the learning process of TensoFlow calls the
_hessian_vector_product method:

1 def h e s s i a n v e c t o r p r o d u c t ( ys , xs , v ) :
2 l e n g t h = l e n ( xs )
3 i f l e n ( v ) != l e n g t h :
4 r a i s e V a l u e E r r o r ( ” . . . must have t h e same l e n g t h . ” )

Line 3 checks the valid range of the index, and if the
dimensions of input tensors are not matched, Line 4 raises
ValueError. Table V shows that Theano checks the valid range
of an index insufficiently. As a result, besides ValueError, in
this phase, its killed mutants throw many IndexErrors.

Finding 10. In the learning phase, most mutants throw
ValueErrors. Beside this exception, in this phase, the
mutants of Theano throw many IndexErrors.

Additionally, we notice that customized exceptions are
mainly used in the constructing and learning phases. For
example, in Theano, the bugs of only the learning phase throw
GradientErrors, and in TensorFlow, the bugs of only the con-
structing phase throw OperatorNotAllowedInGraphErrors.

Finding 11. Several customized exceptions are associated
with specific learning phases (e.g., UnusedInputError and
InvalidArgumentError) and the constructing phase (e.g.,
OperatorNotAllowedInGraphError).

Meanwhile, none of customized exceptions is thrown from
the preprocessing phase.

D. Threats to Validity

The internal threats include the manual classification of deep
learning phases, since we might misclassify some components.
We carefully read source files and their test cases to reduce this
threat. The internal threats also include the controversial cor-
relation between the number of killed mutants and the ability
of a test suite to detect real faults. For this issue, researchers
provide both positive [27] and negative [35] evidences. Please
note that although Papadakis et al. [35] criticize that the
correlation is weaker than those reported in other studies, their
results show that the correlation is still significant. The external
threats to validity include the limited subjects. Although we
selected 3 popular deep learning libraries, our selected subjects
were limited. Analyzing more deep learning libraries (e.g.,
PyTorch) and mutation tools can reduce this threat.

V. INTERPRETATION

In this section, we interpret our findings.
1. The research opportunities on testing deep learning

software. Existing test cases are less effective to detect bugs



caused by wrong values (Finding 1) and bugs in specific
statements (e.g., decorators, Finding 2). It is worth exploring
how to detect such bugs. Finding 3 shows that even if mutants
are killed, around 60% of them were not killed by designed
assertions of test cases, but were somewhat accidentally re-
vealed by exceptions as introduced in Findings 9 and 10.
Researchers can start from such exceptions to generate more
effective test cases. Finding 2 shows that existing test cases
are less effective to detect bugs in specific statements (e.g.,
decorators). Meanwhile, as 100% coverage is unnecessary,
Petrovic et al. [38] find that test cases do not have to kill
all mutants. It is worth analyzing how many mutants in deep
learning applications are unnecessary to be killed.

2. The inspirations for the programmers of deep learn-
ing libraries. Finding 1 shows that the existing test cases
killed only around 60% of our injected bugs. In addition,
Finding 3 shows that more than 60% bugs are revealed by
crashes, instead of designed assertions in test cases. Finding
5 shows that using appropriate assertions provided by unit
testing frameworks can improve the testing quality. When
their libraries throw exceptions, Findings 10 and 11 show that
some customized exceptions are associated with specific deep
learning phases. If a bug throws such exceptions, programmers
can inspect corresponding learning phases to locate faults.
Findings 4 and 6 shows that in assertions in test case are
more effective and bugs in SUT are easier to be detected
than those of DOC. Findings 7, 9 and 10 have contents that
are specific to libraries. For these findings, programmers can
learn from other libraries. For example, according to Finding 7,
programmers of TensorFlow and Keras can consider throwing
more IndexError when the corresponding problems occur.

3. The inspirations for the programmers of deep learn-
ing applications. Although deep learning libraries are quite
useful, programmers shall be aware of that such libraries are
imperfect and their test cases detected only around 60% of
our injected bugs as shown in Table III. Finding 1 shows
that some specific patterns of bug are easier to be detected
by test cases, but programmers shall be careful that their
wrong values are less likely to be detected than wrong flow
logics. Finding 11 suggests that the location of bugs can be
inferred from specific assertion and exception messages. For
example, GradientError may be raised in files related to
gradient descent algorithm in learning phase. Such information
is useful to locate related bugs.

VI. RELATED WORK

Empirical study on deep learning development. Researchers
analyzed bug characteristics in deep learning software. Zhang
et al. [49] analyzed the bugs of TensorFlow applications. Islam
et al. [22] analyzed bugs in the applications of Caffe [26],
Keras, Theano, and Torch. Jia et al. [24] explored the bugs
inside TensorFlow. Jahangirova and Tonella [23] presented an
empirical study on the evaluation of mutation operators for
deep learning systems. While the previous studies analyze
the static characteristics of deep learning bugs, we analyze
the runtime behavior of deep learning bugs. Besides its bugs,

researchers conducted empirical studies to understand the
other perspectives of the deep learning development. Zhang
et al. [48] conducted a study on the challenges developers
commonly face when building deep learning applications.
Guo et al. [17] provided an overview of the frameworks and
platforms influence on deep learning performance. Nejadgholi
and Yang [34] conducted an empirical study on oracle ap-
proximation assertions in deep learning libraries. We analyze
whether test cases of deep learning libraries are sufficient,
which is not touched by the above studies.
Empirical studies on software testing. Researchers have
conducted empirical studies to understand software testing.
Vahabzadeh et al. [46] explored the characteristics of test bugs.
Pinto et al. [41] investigated the evolution patterns of test
suites. Barr et al. [12] surveyed test oracle problem. Luo et
al. [31] studied flaky test in open-source projects and Thorve
et al. [44] conducted study on flaky test in Android Apps.
Nejadgholi and Yang [34] conducted an empirical study on
oracle approximation assertions in deep learning libraries. In
this study, from a different perspective, we analyze the test
quality of deep learning libraries, and our results can be useful
to improve the testing of deep learning software.
Testing deep learning applications. To improve the testing
of deep learning model, researchers have introduced several
methods and techniques. Pei et al. [36] proposed a white-box
framework to test real-world deep learning systems. Ma et
al. [32] proposed a set of multi-granularity criteria to measure
the quality of test cases prepared for deep learning systems.
Tian et al. [45] and Pham et al. [39] introduced differential
testing to discover bugs in deep learning software. Our study
shows that the existing test cases of deep learning libraries are
insufficient to kill many mutants, which leaves adequate space
for the improvement of the above approaches.

VII. CONCLUSION

To understand the test quality of deep learning libraries,
with a mutation tool, we generated 1,514 buggy versions of
three popular deep learning libraries. After that, we execute
the unit test cases of the three libraries to analyze how many
buggy versions can be detected. In this way, we explore the
quality of their unit test cases. Based on the execution results,
we summarized the testing statistics, and also explored the
pattern of effective test cases. Our analysis lead to 11 findings.
For example, we find that bugs caused by wrong values are
more challenging to be detected. As another example, although
existing test cases detected around 60% of our injected bugs,
we find that only 30% of them were detected by the assertions
of these test cases. Furthermore, we interpret these findings
from the perspectives of researchers, library developers, and
application programmers.
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