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Abstract—To improve software quality, researchers and prac-
titioners have proposed static analysis tools for various purposes
(e.g., detecting bugs, anomalies, and vulnerabilities). Although
many such tools are powerful, they typically need complete
programs where all the code names (e.g., class names, method
names) are resolved. In many scenarios, researchers have to
analyze partial programs in bug fixes (the revised source files
can be viewed as a partial program), tutorials, and code search
results. As a partial program is a subset of a complete program,
many code names in partial programs are unknown. As a result,
despite their syntactical correctness, existing complete-code tools
cannot analyze partial programs, and existing partial-code tools
are limited in both their number and analysis capability. Instead
of proposing another tool for analyzing partial programs, we
propose a general approach, called GRAPA, that boosts existing
tools for complete programs to analyze partial programs. Our
major insight is that after unknown code names are resolved,
tools for complete programs can analyze partial programs with
minor modifications. In particular, GRAPA locates Java archive
files to resolve unknown code names, and resolves the remaining
unknown code names from resolved code names. To illustrate
GRAPA, we implement a tool that leverages the state-of-the-
art tool, WALA, to analyze Java partial programs. We thus
implemented the first tool that is able to build system dependency
graphs for partial programs, complementing existing tools. We
conduct an evaluation on 8,198 partial-code commits from four
popular open source projects. Our results show that GRAPA
fully resolved unknown code names for 98.5% bug fixes, with
an accuracy of 96.1% in total. Furthermore, our results show
the significance of GRAPA’s internal techniques, which provides
insights on how to integrate with more complete-code tools to
analyze partial programs.

Index Terms—Partial program, program analysis, boosting
complete-code tool

I. INTRODUCTION

A partial program is a subset of a complete program. Partial-
code analysis [8] is necessary in many scenarios where only
partial programs are available, such as mining bug fixes for
automatic patching [16] and defect prediction [14], analyzing
forum threads and software documents for code recommenda-
tion [44], and ranking code-search results [4]. In our paper, we
follow the definition in Dagenais and Hendren [8]’s as below,
which requires partial programs to be free of syntax errors.

Definition 1 (Partial Program): Given a complete program
< Src,Dep >, in which Src is the set of compilable source
files, and Dep is the set of compiled dependency files, a partial
program par is a subset of Src.

This definition is consistent with the majority of application
scenarios such as analyzing bug fixes, code search results, and

samples in documents, where source files are incomplete but
unlikely to have syntax errors.

Although the syntax of partial programs is often correct, it is
infeasible to compile a partial program, since the code decla-
rations it refers to may not be available. For various purposes,
researchers (e.g., [40], [30], [3]) have proposed approaches
that analyze partial programs. However, these approaches have
three limitations. First, most partial-code tools are not general.
For example, Zhong et al. [43] propose MAPO that mines
specifications for recommending code samples. Mishne et
al. [25] criticize that MAPO cannot mine specifications for
partial programs. To handle the problem, Mishne et al. [25]
propose PRIME that compares unknown method calls with
known method calls in other call sequences, when it mines
specifications. Although PRIME thus is able to mine speci-
fications for partial programs, its techniques cannot support
partial-code analysis for other purposes (e.g., [40]). Second,
due to the difficulties of analyzing partial programs, partial-
code analysis is typically imprecise. For example, Mishne et
al. [25] admit that their approach is only relatively precise.
Finally, existing partial-code tools cannot support complicated
analyses. For example, although graphs are informative to
compare code, Kim and Notkin [17] complain that CFG-based
approaches (e.g., [2]) cannot analyze partial programs.

Our insight. We notice that many complete-code tools (e.g.,
WALA1) are built on mature compilers (e.g., Eclipse JDT).
As a partial program is incomplete, a compiler typically fails
to resolve unknown code names. When complete-code tools
encounters unknown code names, they will fail to produce
meaningful results. If we fully resolve such unknown code
names, it is feasible to boost some complete-code tools to
analyze partial programs.

Definition 2 (Code Name): For a given partial program P ,
we define code names of P , denoted as Names(P ) as iden-
tifiers of code elements at all granularities (e.g., classes/types,
fields, methods, and variables) appearing in P . Also, we define
resolving code name N as determining the variable type and
the full name of N if N is a variable/field; determining the
full name of N if N is a type; and determining the signature
of N if N is a method.

The benefits and challenges. Our insight leads to a novel
approach with the following benefits:

1http://wala.sourceforge.net
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TABLE I: The inference strategies of PPA.
Strategy Example

Assignment B.field=‘‘Hello World’’;→{field,unknown, m java.lang.String}
Return int m(){ return method()};→{method,unknown, l int}
Method f1=m1(f2); D m1(E p);→{f1,unknown, m D} and {f2,unknown, l E}

Condition if(f){...};→{f,unknown, boolean}
Binary and unary operators int i = f-10;→{f,unknown, l int}

Array f1 = f2[f3];→{f3,unknown, l int} and {f8,unknown,unknown[]}
Switch switch(f){...};→{f,unknown, l int}

Conditional int i=f1?1:f2;→{f1,unknown,boolean} and {f2,unknown, l int}

Benefit 1. This is a general approach that enables many
complete-code tools for partial-code analysis. Unknown code
names of partial programs have different impacts on these
tools. Instead of proposing a solutions for specific purposes
(e.g., API specification mining), our approach works on all
the complete-code tools that are built on mature compilers.
Benefit 2. This is a practical way to improve the precision of
partial-code analysis. As partial programs contains unknown
code elements, partial-code tools are typically imprecise. Our
strategy obtains precise tools for partial-code analysis, since
it preserves the preciseness of complete-code tools.

Despite the above benefits, to fulfill this strategy, we shall
overcome the following challenges:
Challenge 1. It is challenging to resolve unknown code names
for partial programs. PPA [8] is the state-of-the-art tool that
resolves code names for unknown code elements, but our study
shows that PPA fully resolves all code names for only 28.7%
of partial-code snippets (Section IV-C).
Challenge 2. It is challenging to determine whether unknown
code names are sufficiently resolved. Some complete-code
tools (e.g., [43]) do not implement complicated code analyses.
As they never touch some code names, boosting such tools is
insufficient to determine whether unknown code names are
fully resolved. In contrast, although we can feed resolved
partial programs to a compiler, it is a too strict criterion,
since it is feasible to conduct many complicated analyses even
without producing bytecode from partial programs.

Our Contributions. In this paper, we propose a novel
approach, called Graphs for Partial programs (GRAPA), that
boosts complete-code tools to analyze partial programs. As it
can take huge effort to analyse whole projects, researchers [7],
[22], [10], [21] have explored analyzing only a subset of a
whole program. Their basic idea is to extract an abstraction
of other parts of a program. Even if the abstraction is not
fully correct, it speeds up the analysis on the subset of a
program significantly. Following their idea, GRAPA enables
partial-code analysis by constructing the context code of a
partial program. In particular, to handle the first challenge, we
identify a compiled release of the complete program whose
version is closest to the partial program to be analyzed, and
extract information from the compiled release to fully resolve
unknown code names. To handle the second challenge, we
build System Dependency Graphs [12] (SDGs) for partial
programs, which is a general abstraction of all code elements
and relations, compared with lighter weight analyses in task-
specific tools. It should be noted that a lot of useful analyses,

such as change impact analysis [31], information flow analy-
sis [37], and static slicing [15], can be simply performed on
the SDG of the program to be analyzed.

This paper makes the following major contributions:
• A novel research idea for generally improving partial-

code tools. Instead of another approach for specific
partial-code analysis, our research idea has the potential
to boost many existing complete-code tools for partial-
code analysis, if such tools are built on compilers.

• A novel approach, called GRAPA, that boosts complete-
code tools for partial-code analysis. It (1) includes a
technique to locate context versions for a partial program;
and (2) extends PPA with additional inference strategies.

• A tool that boosts WALA for partial-code analyses. The
tool has enabled more in-depth empirical studies, and
more advanced bug detection approaches.

• An evaluation of our tool on 8,198 partial-code bug fixes
that are collected from four popular open source projects.
Our results of the first evaluation show that GRAPA fully
resolved unknown code names and thus built SDGs for
98.5% of the total bug fixes. Our results of the second
evaluation show that in 96.1% of bug fixes, its code-
name resolution results are identical with those generated
by a Java compiler on their corresponding manually
built complete programs. In summary, different from
existing imprecise partial-code tools, our tool preserves
the preciseness of WALA.

II. MOTIVATIONS

In this section, we use an example to illustrate the ap-
plication scenarios of partial-code analysis and the limita-
tion of existing tools. The example is from the committed
files of ARIES-2412. Specifically, programmers modified the
TradeJdbc.java, and added Line 4 as follow:

public TradeJdbc{ ...
1. private ... String getTSIAQuotesOrderByChangeSQL =...
2. public MarketSummaryDataBean getMarketSummary() ... {
3. Connection conn = null;
4.+ PreparedStatement stmt = getStatement(conn,

getTSIAQuotesOrderByChangeSQL, ...);}

This bug fix may need to be analyzed for various reasons
such as bug prediction and mining bug/repair patterns, and typ-
ically both the old and new version TradeJdbc.java needs
to be fed into a static analysis tool. According to our definition
in Section I, these two versions of TradeJdbc.java are two
partial programs. PPA is the state-of-the-art tool to analyze

2https://issues.apache.org/jira/browse/ARIES-241
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Fig. 1: The overview of GRAPA.
partial programs. It is built on existing compilers such as the
Eclipse JDT and Polyglot, and uses its underlying compiler
to resolve known code names, and iteratively infers unknown
types based on known types. Table I shows the eight inference
strategies of PPA. In this table, t1 l t2 denotes that t1 is a
subtype of t2, and t1 m t2 denotes that t1 is a super type of
t2. The method strategy infers variable types based on known
method signatures, and can reversely infer method signatures
based known types, although it is not explicitly defined

As the types of the getTSIAQuotesOrderByChangeSQL

and conn variables are known in Lines 1 and 3, it shall
be feasible for PPA to infer the parameter types of the
getStatement method in Line 4. However, PPA fails to re-
solve the parameter types as it depends on the underlying com-
piler (Eclipse JDT) to acquire the initial resolved code names,
and Eclipse JDT (and most other compilers) stops compilation
encountering the unknown type MarketSummaryDataBean.
Although possible, revising existing compilers to bypass com-
pilation stops raises extra burden and limitation. Furthermore,
as getStatement is inherited, it is impossible for PPA to
fully resolve the method signature as it does not know which
super type of TradeJdbc defines the method.

As the above scenario is frequent, in Section IV-C, we find
that PPA fully resolves only 28.7% bug fixes. In GRAPA, we
acquire initial resolved code names from compiled releases
and propose additional variable and field inference strategies
(Section III-C). In this example, Aries release several version-
s3. GRAPA refers to the closest version for resolving more code
names. As the closest version is introduced, it also reduces
the crashing probability of the underlying compiler for other
reasons (e.g., incompatibility). As a result, in total, GRAPA
fully resolves 96.1% bug fixes.

III. APPROACH

A. Approach Overview

Figure 1 shows the overview of GRAPA. The basic idea
behind GRAPA is to extract context code of a given partial
program, and to enable complete-code analysis on the partial
programs with the information from the context code.

Definition 3 (Context Code): Given a partial program (i.e.,
a set of source files) p which uses a set of code names
Names(p) as defined in Definition 2, the code context of
p with depth 1 is defined as Context1(p) = p ∪ {v|∃n ∈
Name(p), v declares n}, where v is a binary or source file.
The full code context of p is then defined as Context∗(p),

3http://aries.apache.org/downloads/archived-releases.html

indicating applying Context1 function recursively on p until
the result set no longer change (i.e., the fixed point is reached).

With the definition of partial programs, and code context,
we can see that for a partial program p, our goal is to find
Context∗(p) and feed it to a complete-code analysis tool (e.g.,
WALA). The ideal source of context code would be the whole
source code set, and all dependency jar files at the version
the partial program is from. However, a recent study [36]
shows that even if checking out whole set of source files,
most commits are not compilable.

In GRAPA, for a partial program, we use the released
versions of the software project it belongs to as its context
code. As a released version is already successfully compiled,
we do not need to fix compilation errors. A partial can refer
to code names that do not appear in any released versions.
For example, a code name may be added after a version is
released, and deleted before the next version is released. In
addition, a partial program can be from a code base after its
latest release, so all the released versions are outdated. As a
result, locating context code alone is insufficient, so we further
propose inference strategies to resolve unknown code names.

As shown in Figure 1, GRAPA has the following major steps.
For a partial program, GRAPA first searches for a compiled
software versions that encloses the given code piece or is
compatible with it (detailed in Section III-B). We refer to this
version as the context version of the given partial program.
After that, GRAPA extracts ASTs from the partial program,
and resolves unknown type bindings of ASTs (detailed in
Section III-C). To integrate with complete-code tools, GRAPA
further resolves ambiguous types between the partial programs
to be analyzed and context code (detailed in Section III-D).

B. Context Version Extraction

To efficiently find the context version of a partial program,
GRAPA uses a two-stage strategy: (1) according to the code
names in the partial program, GRAPA identifies a small set
of context version candidates (detailed in Section III-B1), and
(2) GRAPA tries the context version candidates one by one to
compile the partial program (detailed in Section III-B2).

1) Version Filter: GRAPA first extracts the declared types,
methods, and fields from the binary code (i.e., all .class files)
of all available compiled versions, and constructs three lists of
declared code names: Lt denotes the list of declared types; Lm

denotes the list of declared methods; and Lf denotes the list
of declared fields. In a list L = {l1, . . . , ln}, each item, l, is
in the format of 〈c, V 〉, where c denotes a code name, and
V = {v1, . . . , vn} denotes the set of compiled versions that
declare c. For example, at the granularity of types, it extracts
the following list for the released versions of Apache Derby4:
ClientSavepoint, {10.11.1.1}
QualifierUtil, {10.1.2.1, 10.1.3.1}
...

For a partial program, we determine its context-version
candidates based on the code names it uses. A context-version

4https://db.apache.org/derby/
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candidate should declare most (if not all) code names used
by the partial program, if the code name is not declared in
the partial program itself. For example, if a partial program
declares a local variable whose type is , it uses the code
name ClientSavepoint, and 10.11.1.1 will be considered
a context-version candidate. Given partial program p, to extract
the set of code names p uses (denoted as Names(p)), GRAPA
applies the following rules.

1) For each a.f expression where a is a variable and f is
a field, it adds both a and f to Names(p).

2) For each T.f expression where T is a type and f is a
field, it adds T and f to Names(p).

3) For each a.m(p, ...) expression where a is a variable,
m is a method, and p is a parameter, it adds a, m, and
{p,...} to Names(p).

4) For each T.m(p, ...) expression where T is a type, m
is a method, and p is a parameter, it adds m and {p,...}
to Names(p).

5) For each m(p,...) expression where m is a method and
p is a parameter, it adds m and {p,...} to Names(p).

6) For each (T)a cast expression where T is a type and a

is a variable, it adds both T and a to Names(p).
7) For each T a declaration expression where T is a type

and a is a variable, it adds T to Names(p).
8) For each T m(T1 p1,...) throws E1,... expres-

sion where T is a return type, m is a method, p1 is a
parameter, T1 is the type of p1, and E1 is a thrown excep-
tion, it adds T, {T1,...} and {E1,...} to Names(p).

9) For each class|interface|enum T extends

T1,... implements I1,... expression where T is
a declared class, interface, or enum, T1 is a type, and
I1 is an interface, it adds {T1,...} and {I1,...} to
Names(p).

To determine the set of context-version candidates based
on Names(p) and a list of declared names L (L can be
one of Lt, Lm, and Lf ), we developed Algorithm 1. In the
algorithm, Line 1 initializes V with the versions of li, where
the declared code name of li appears in the list of called code
names (Names(p)). Line 2 iterates used code names, if they
appear at least in one version. For each iterated code name c,
Line 3 compares whether V ∩ lc.V is an empty set. If it is not
an empty set, Line 4 updates V with V ∩ lc.V . If it is, Line

Algorithm 1 Context Version Extraction Algorithm
Input:

L is a list of declared code names
Names(p) is a set of called code names

Output:
V is a set of context versions

1: V ← li.V where li.V 6= ∅ ∧ li.c ∈ Names(p)
2: for all c ∈ Names(p) ∧ lc.V 6= ∅ do
3: if V ∩ lc.V 6= ∅ then
4: V ← V ∩ lc.V
5: else
6: break
7: end if
8: end for

6 leaves the current V as the output. This line guarantees that
V has at least one version.

Given the set of used code names (Names(p)), GRAPA runs
Algorithm 1 on each of the three lists of declared code names
(Lt, Lm, and Lf ) and produces three sets of context-version
candidates as Vt, Vm, and Vf . As Line 6 of the algorithm
guarantees that V has at least one version, Vt, Vm, and Vf

are all nonempty sets. Shi et al. [32] show that types are
more unlikely to change than methods and fields. For a partial
program, GRAPA initiates its context versions V as Vt, and
refines V as Vt ∩ Vm and Vt ∩ Vm ∩ Vf , if such intersection
does not generate an empty set.

2) Version Selector: Our version filter uses an efficient
algorithm to quickly find context version candidates from
potentially many released versions. However, although the
algorithm guarantees that all code names referred in a partial
program are declared in a context version candidate, it cannot
rule out incompatibilities such as type conflicts in transitive
type inference. With fewer versions as context version candi-
dates, we apply a compiler, which is a more heavy weight but
more precise code name resolver, to the partial program and
each of its context-version candidate to select the final context
version. Specifically, as partial programs are syntactically
correct, a compiler’s syntax analysis can build the AST from
a partial program, but as partial programs has unknown code
names, the semantic analysis often fails to add name and
type bindings to ASTs. As a result, a compiler will throw
exceptions, when it encounters unknown or incompatible code
names.

GRAPA uses the Eclipse JDT compiler as its underlying
compiler, since many complete-code tools are built on the
compiler. During parsing, a compiler can search its class
path for code names. GRAPA adds context versions to the
class path of a compiler, since it allows a compiler to search
code names, and thus reduces the possibility of throwing
exceptions. As introduced in Section III-B1, GRAPA can locate
multiple context versions for a partial program. In this step,
GRAPA tries context-version candidates one by one, until no
exceptions are thrown. Although this strategy is simple, our
evaluation results show that it is already sufficient to analyze
real-world partial programs, such as bug fixes.

Algorithm 2 Inference Algorithm
Input:

F is a list of facts
T is a set of known types

Output:
T is a set of inferred types

1: T ← ppa′(F, T )
2: while ∆T 6= ∅ do
3: T ← variable(F, T )
4: T ← field(F, T )
5: T ← ppa′(F, T )
6: end while



C. Context-aware Type Resolver

After the context version is determined, GRAPA further
enhances the inference rules of PPA to take full advantage of
the information from the context code. As shown in Table I,
PPA follows eight strategies to resolve unknown type bindings.
For example, its assignment strategy is as follow:

1 B.field=‘‘Hello World’’;
2 → field,unknown,m java.lang.String

t1 l t2 denotes that t1 is a subtype of t2, and t1 m t2

denotes that t1 is an ancestor of t2. As shown in the above
example, PPA considers only the partial program itself, its in-
ference strategies are localized to statements, and do not fully
reuse inferred results. In contrast, with context code available,
GRAPA can link the definition and all usage locations of a
variable in the code piece, and infer the variable type based on
the global information from all usage locations. In particular,
GRAPA has the following three additional inference strategies:
1. Variable inference strategy. For each method, the strategy
updates bindings of variables until it is safe. Suppose that a
method declares a variable v and uses the variable in locations
v1, . . . , vn. We use dt(v) to denote the type of v, and the
safe order of inferred types follows the definition of PPA,
i.e., unknown < missing < super missing < full. We
consider the v variable to be safe, if dt(v) = dt(v1) = . . . =
dt(vn). For partial programs, a variable can be unsafe, since
a compile can fail to resolve its type at specific locations. For
example, if vi appears in a code line with a serious compilation
error, a compiler can fail in resolving the bindings for vi. As
a result, although the bindings of other locations are resolved,
the binding of vi is still unknown. In addition, a variable
can become unsafe during inference. For example, if a known
variable is assigned to vi, the assignment strategy of PPA can
infer the binding of vi. After the inference, vi can be safer than
its other locations. When this happens, our variable inference
strategy locates the safest type dt(vi), and propagates dt(vi)
to all the locations of the v variable to make it safe.
2. Field inference strategy. The field inference strategy is
similar to the variable inference strategy, but with a different
variable scope. The strategy updates bindings of fields until
they coincide. For each field, the strategy combines solved
types in all its usage locations.
3. Switch inference strategy. For a switch statement
switch(v), PPA defines a switch inference strategy that con-
siders dt(v) as a subtype of the int primitive. The strategy is
not fully correct, since dt(v) can be byte, short, char, int,
String and enum values. GRAPA revises the strategy, and
considers that a switch statement switch(v){case c1:...

case cn:...} is safe, if dt(v) = dt(c1) . . . = dt(cn). If
a switch statement is unsafe, GRAPA locates the safest type
dt(ci) from dt(v) and dt(c1) . . . dt(cn), and propagates dt(ci)
to all the locations to make it safe.

PPA can infer the type for a variable at a location, but leaves
its type unresolved at other locations. As a result, although
the type of the variable can be useful to infer more unknown
bindings, PPA fails to leverage such benefits. Algorithm 2

shows the process to solve the problem. Line 1 infers types
with our modified PPA (ppa′). Here, GRAPA modifies the
original switch inference strategy of PPA. For a variable or
a field, Lines 3 and 4 search for its safest type, and updates
all its locations with the safest type. After that, Line 5 further
infers types with our modified PPA. If more unknown bindings
are resolved, Line 2 repeats the follow-up lines until no
new unknown bindings are thus resolved. Here, ∆T denotes
newly resolved bindings in each iteration. In Algorithm 2, our
variable and field inference strategies unveil the full potential
of PPA, since they combine facts from different locations to
infer the safest types for unknown code names.

We use the following partial program to illustrate the dif-
ference between GRAPA and PPA on type binding resolution.
1 b = A.f(1);
...
2 c = b + "xyz";
3 Object obj = A.f(2);

PPA resolves type facts for each variable location in the
example, so for Line 2, it infers variables b and c as of
type java.lang.String, and for Line 3, it infers obj and
A.f as of type java.lang.Object. Finally, based on the
type of A.f, PPA further resolves b at Line 1 as of type
java.lang.Object. Here, PPA leaves the variable b at Line
1 and Line 2 with different types, because it does not know
whether the two appearances refer to the same variable in
partial-code analysis.

In contrast, GRAPA extracts information from the context
version to confirm that the whole code piece comes from the
same method and the two appearances of b refer to the same
local variable. GRAPA further uses Algorithm 2 to infer the
type of b across all appearances, and finally, the type of b,
and A.f are both updated to java.lang.String.

D. Ambiguity Resolver

If a complete-code tool does not require inter-procedure
analyses, the integration is straightforward. For example, as
MAPO implements only intra-procedure analyses, it is feasible
to boost MAPO for partial programs, after unknown bindings
are resolved. However, if a complete-code tool requires inter-
procedure analyses, involving the context version into partial-
code analysis also results in a new challenge. As the context
version can contain a copy of the partial programs piece, there
may be two duplicate declarations of the same code name (e.g.,
types, variables, and methods). In the partial-code analysis, we
need to make sure that GRAPA analyzes the partial programs
piece, instead of its copy in the context version.

For example, suppose that a partial program implements the
t1, . . . , tn types and t1 uses t2. When a inter-procedure tool
analyzes t1, it needs to locate the declaration of t2. When
locating a type, a compiler typically searches the build path
of a project before they search the source code of the project.
GRAPA builds a temporary project for the partial program, and
adds the context version to the build path of the project. The
context version can include t′2 whose name is identical with
t2. As a result, the t′2 type in the context version is analyzed,
instead of the t2 type in the partial program. As the context



version is only an approximate of the partial program, the
analysis results can be inaccurate.

We envisage that there are at least three techniques to handle
the problem: (1) removing t1, . . . , tn from the build path of
the project, (2) pre-analyzing t1, . . . , tn, and merging their
analysis results, and (3) changing the search sequence. The
first technique is simple, but may not work on some complete-
code tools. For example, if a compiler cannot find a type in
the build path of a project, it may either search the source
files of the project or throw exceptions, depending on its
implementation details. The second technique can introduce
extra analysis effort. The third technique requires modifying
source files of complete-code tools, but it is flexible and
does not introduce extra analysis effort. Therefore, in the
implementation of GRAPA, we follow the third technique
and we introduce how we modify the subject complete-code
analysis tool in Section III-E.

E. Implementation

In the current implementation of GRAPA, we select WALA
as the subject tool to illustrate the potential of our approach.
WALA implements various analyses (e.g., type hierarchy
analysis, data flow analysis, slicing, and dependency analysis).
WALA implements its advanced analyses on its unified inter-
mediate representation called IR, whose format is like Java
bytecode. When WALA analyzes Java source files, it uses the
Eclipse JDT compiler to build ASTs from source code, and
then translates ASTs into IRs. When the underlying compiler
parses a partial program p, it is able to build an AST for p,
since the syntax of p is correct. However, the unknown code
names in p cause exceptions when WALA translates p to its
IR. As a result, WALA cannot analyze partial programs.

Like most compilers, WALA searches the build path first
when resolving types. As mentioned in Section III-D, we
modify its code to reverse the search strategy. Here, we modify
the classloader of WALA, instead of the classloader of JVM.
As a result, our tool is not coupled to JVM. It should be
noted that our modifications to WALA is minimal and such
modifications are similar for all analysis tools with a specific
compiler component. For analysis tools that depend on a
compiler already supported by GRAPA (e.g., Eclipse JDT),
GRAPA is able to work with the tools directly.

IV. EVALUATIONS

With the implementation of GRAPA, we conducted evalua-
tions to explore the following research questions:
(RQ1) How effectively does GRAPA resolve unknown code

names of partial programs (Section IV-A)?
(RQ2) What is the accuracy of GRAPA to resolve unknown

code names (Section IV-B)?
(RQ3) What is the effectiveness of GRAPA’s internal tech-

niques (Section IV-C)?
RQ1 concerns the effectiveness of GRAPA. As our primary

research goal is to boost existing complete-code tools, in
Section IV-A, we select the state-of-the-art tool WALA as
the subject tool for the first research question, and use the

TABLE II: Overall Result.

Name V Fix Success
Failure

%U F D
Aries 4 547 533 1 10 0 97.4%

Cassandra 116 3,444 3,405 11 16 12 98.9%
Derby 20 2,560 2,538 8 12 0 99.1%

Mahout 13 560 494 3 51 3 88.2%
Total 7,111 6,970 23 89 15 98.0%

U: unsupported fragment; F: not fully resolved; D: defect.

SDG generation for bug fixes as our application scenario. From
four widely used open source projects, we collected 8,198 bug
fixes. Our results show that WALA built SDGs successfully for
98.5% of the bug fixes after GRAPA resolved their unknown
code names. This is a significantly improvement, since as a
complete-code tool, WALA cannot build any system depen-
dency graphs from such bug fixes. We understand that it is
possible that some code names are wrongly fixed. To explore
this issue, we introduce more evaluations in RQ2.

RQ2 concerns the accuracy of GRAPA. In Section IV-B,
we select 91 bug fixes, and manually build the corresponding
buggy and fixed versions, and fed the complete built programs
to WALA, so that WALA can correctly resolve all the code
names and build SDGs correctly. Collecting these SDGs as
golden standard, we compare with them SDGs generated
by GRAPA for the same buggy and fixed programs (partial
programs). Our results show in 96.1% of bug fixes, GRAPA-
based SDGs are identical to the SDGs in the golden standard.

RQ3 concerns the internal techniques of GRAPA. In Sec-
tion IV-C, we turn off different internal techniques of GRAPA,
and our results show the significance of individual techniques.
The results also reflect how much code-name resolution is
needed to leverage a complete-code tool such as WALA.

A. RQ1: The Effectiveness

1) Subject: As we introduced in Section II, bug fixes can
be viewed as partial programs, and we use bug fixes as the
subjects of our evaluation. We use the following two criteria
to determine a bug fix:
1. Issue number. Open source projects typically have issue
trackers to track various issues (e.g., bugs, improvements, new
features, tasks, and sub-tasks). When programmers commit
their modified files, they often write the corresponding issue
number in the message of the commit. For example, in
Cassandra, a commit’s message says “implement multiple
index expressions. patch by jbellis; reviewed by Nate McCall
for CASSANDRA-1157”. In the issue tracker, the page of
the issue says that CASSANDRA-1157 is a bug. We thus
determine that the corresponding commit is a bug fix.
2. Keyword. Programmers may detour issue trackers, espe-
cially when they believe that a change is trivial. When they
commit such a change, programmers may write a message
to describe the fix. For example, in Aries, the message of a
commit says “Fix broken service registration listener”. We thus
determine the commit as a bug fix, since its message contains
words such as “bug” or “fix”. The heuristic is simple, and a



number of previous studies (e.g., [19]) used the same technique
to extract bug fixes.

In Table II, Column “Name” shows project names. All the
projects are from the Apache software foundation. Column
“Version” lists released versions of the projects. Column “Bug
Fix” lists number of analyzed bug fixes. We select these
projects, since they are under active maintenance and their
bug fixes are already collected and confirmed by previous
studies [41]. Here, we filter bug fixes that do not modify source
files or modify only test code. Typically, a released version
does not include test code, so it becomes infeasible to locate
context versions for test code. As the input of this evaluation,
a bug fix is defined as follow:

Definition 4 (Bug Fix): A bug fix between a buggy version
bV and a fixed version fV is a pair of two partial programs
< bp, fp >, where bp belonging to bV and includes all file
removed or modified, fp belonging to fV and includes all
source files added or modified during the bug fix.

Tufano et al. [36] analyzed 219,395 snapshots from 100
Apache projects. They found that only 38% code commits are
automatically compilable, and 58% are caused by unresolvable
references. Mockus et al. [26] introduce that the Apache
foundation has a strict management over its hosted projects.
Without such a management system, the problem may be
worse in other open source communities (e.g., Github). As a
result, both bV and fV are typically partial programs. Zhong
and Su [41] show that such partial programs typically contain
fewer than three source files.

2) Evaluation Scenario: We use the SDG generation for
bug fixes as our evaluation scenario, due to two considerations.
First, analysis of bug fixes is the basis of many downstream
research topics such as bug prediction and mining of bug/repair
patterns. Automating in-depth analysis of bug fixes will allow
all above research to be applied on a much larger data set.
Second, SDGs are general abstractions of all code elements
and relations in the program, and many general code analysis
tools such as WALA and CodeSurfer [1] use SDGs as their
default output. A lot of useful analysis results, such as change
impact analysis [31], information flow analysis [37], static
slicing [15], can be direct extracted from the SDGs of the
program to be analyzed. As the output of GRAPA, an SDG is
defined as follow (the same as its definition in WALA):

Definition 5: A system dependency graph is defined as
g = 〈V,E1, E2〉, where V is a set of nodes corresponding
to variables/expressions, and E1, E2 ⊆ V × V are two sets
of edges. A 〈s1, s2〉 ∈ E1 edge denotes a data dependency
from s1 to s2, and a 〈s1, s2〉 ∈ E2 edge denotes a control
dependency from s1 to s2.

As an example, Figure 2 shows the built system dependency
graph for the buggy code of DERBY-53965, which swallows
an exception.
1: private static void closeStream(...){
2: try{
3: if(stream!=null)
4: stream.close();

5https://issues.apache.org/jira/browse/DERBY-5396.
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Fig. 2: Built graphs for partial programs

5: }catch(IOException e){
6: Util.javaException(e); } }

Under this application scenario, with GRAPA, bug predic-
tion and pattern mining tools can easily acquire SDGs and
other down-stream analysis results (e.g., slicing) from a large
number of bug fixes. While without GRAPA, there must be
a lot of people manually build all the relevant code versions,
and analyzing the whole code base is also much slower than
analyzing only the partial programs involved in the bug fixes.

3) Criterion: As we collected thousands of bug fixes and
each fix can contain thousands of unknown code names, it is
infeasible to manually examine whether GRAPA fully resolved
unknown bindings of a bug fix or not. Instead of a manual ex-
amination, we use the underlying complete-code tool, WALA,
as an automatic measure. A simple tool is insufficient for the
automated measure, since it may not touch many resolved
code bindings. In contrast, WALA is the state-of-the-art tool
for Java analysis, and it implements many advanced analysis
techniques that require various code bindings. Our criterion
illustrates our contributions to the state of the art, since it
complements existing tools.

For each bug fix, we extract its buggy files (revised or
deleted files of the bug-fixing commit in the pre-fix version)
and modified files (revised or added files of the bug-fixing
commit in the post-fix version). Both the set of the buggy
files and modified files are partial program, since we did not
check out their corresponding whole projects. We consider
that bindings in the buggy or modified files are fully resolved,
if WALA is able to build system dependency graphs from
the code. For a bug fix, we consider that it is successfully
resolved, if GRAPA fully resolved all its source files. Here,
we concede that WALA can build a system dependency graph
for a partial program, even if it is incorrectly resolved. We
further investigate this issue in Section IV-B.

4) Result: GRAPA uses only tens of released versions to
approximate contexts of thousands of commits, and thus avoid
effort of (1) analyzing the whole project for each commit, and
(2) building each commit, which often needs nontrivial manual
effort. Our results lead to the following findings:
1. GRAPA fully resolved unknown code names for most bug
fixes. In Table II, Column “Success” lists number of successes,
and Column “%” lists success rates. In total, we find that
GRAPA fully resolves 98.5% bug fixes, since their dependency
graphs can be built.
2. WALA failed to analyze 0.3% fixes, even after GRAPA
fully resolved their bindings. Column “Failure” lists number
of failures. Based on our inspection, we further put them into
three categories. In particular, subcolumn “U” lists fixes that
WALA failed to analyze. For example, the “f0be890” commit

https://issues.apache.org/jira/browse/DERBY-5396


TABLE III: The results of comparing with the golden standard.
Name Version Fix File Method Same %
Aries 1.0 24 38 456 452 99.1%

Cassandra 3.0.0 14 22 585 558 95.4%
Derby 10.11.1.1 37 88 2,088 1,995 95.5%

Mahout 0.10.0 16 25 661 636 96.2%
Total 91 173 3,790 3,641 96.1%

of Cassandra modifies SchemaKeyspace.java, a file with
lambda expressions:

ALL.forEach(table->getSchemaCFS(table).truncateBlocking());

The underlying tool, WALA, cannot analyze lambda expres-
sions. As another example, we notice that GRAPA fails on the
following code:

final StandardMBean standardMBean =
new StandardMBean(bean, beanInterface){...};

We inspect the relevant code of WALA, and find an assertion:

assert superCtor!=null:"couldn’t find constructor for
anonymous class";

Based on the error message, WALA seems to have limitations
on analyzing anonymous classes.
3. GRAPA failed to fully resolve bindings in 1.1% bug
fixes. Subcolumn “F” lists cases where bindings are not fully
resolved. We find that the failed cases fall into three major
categories:
1. Insufficient facts to infer bindings. For example, we find a
code snippet as follows:

ReplicationMessage message = ...;
switch (message.getType()){

case ReplicationMessage.TYPE_LOG:...
case ReplicationMessage.TYPE_FAILOVER:...
case ReplicationMessage.TYPE_STOP:...
default:...

}

In this code snippet, ReplicationMessage is an unknown
code name. Based on the switch statement, GRAPA infers
that TYPE_LOG, TYPE_FAILOVER, TYPE_STOP, and the return
value of the message. getType() method shall be the same.
The type does not appear in any released versions, but between
two versions. As the code snippet does not provide adequate
information, GRAPA fails to determine their types.
2. Insufficient type inference strategies. For example, we find
a code snippet as follows:

public class EditAuthorForm extends FormServlet{
private static final long serialVersionUID = ...;

In the above code, FormServlet is an unknown code name,
but the inference strategies of PPA and our extension cannot
infer the binding for the ancestor type.
3. Conflict facts. For example, we find the following snippet:

public void setup(String aggregateName){
super.setup(aggregateName); ...;

The above code calls the super.setup(...) method, but in
the located version, the signature of the method is as follow:

public void setup(ClassFactory classfactory, String s,
DataTypeDescriptor datatypedescriptor){...;}

The above code and release have different definition on the
signature of the super.setup(...) method. We find that
when this type of conflicts happens, PPA tends to reject
the information from source code. However, as our located
releases are approximate, the information from the build path
shall be rejected, so the strategy of PPA leads to incorrect
binding resolution in this example.
4. The Eclipse JDT compiler failed to parse 0.2% fixes.
Subcolumn “D” lists cases where the JVM machine crashes:
# A fatal error has been detected by the Java Runtime
Environment:...

We notice that the following method calls appear in crash logs:
ciMethod org/eclipse/jdt/core/compiler/CharOperation...
.../jdt/internal/compiler/ast/TypeReference<init>...
.../jdt/internal/compiler/ast/Expression<init>...

We suspect that the underlying compiler, Eclipse JDT, is not
designed for parsing partial program, so it reports the above
problem when parsing partial program.

In summary, our results show that GRAPA effectively re-
solved bindings for more than 90% of bug fixes. Only 1.1%
of bug fixes are not fully resolved, which may be resolved in
our future work.

B. RQ2: The Accuracy
1) Subject: Table III shows our subjects. We choose the lat-

est version, since it is easier to fix possible compilation errors.
For example, an old version may require a third-party library
that is no longer available. Column “Bug fix” lists selected bug
fixes. Tufano et al. [36] show that recent snapshots are almost
3.76 times more likely to compile than early snapshots. To
reduce the manual effort to prepare the golden standard, we
select bug fixes whose detected version is exactly the latest
version. We filter out bug fixes whose graphs are not built,
and bug fixes that do not have compilation problems. Column
“File” and Column “Method” list total source files and total
methods of selected bug fixes, respectively.

2) Criterion: For each bug fix, we checked out its buggy
and fixed versions, and repaired all compilation errors. After
that, we used WALA to build SDGs (GWALA) for the buggy
files of the bug fix as our golden standard. Meanwhile, we
use GRAPA to build SDGs (GGRAPA) from the buggy files
as a partial program. We implemented a tool to compare
GWALA with GGRAPA for their differences. The tool uses
the Hungarian algorithm [20] to match nodes, and we define
the distance between two nodes (m and n) as follows:

dis(m,n) =
|i(m)− i(n)|
i(m) + i(n)

+
|o(m)− o(n)|
o(m) + o(n)

+ d(l(m), l(n))

(1)
i(m) denotes the indegree of m; o(m) denotes the outdegree
of m; l(m) returns the label of m; and d(l1, l2) returns the
Levenshtein edit distance between the l1 label and the l2 label.

3) Result: 1. GRAPA correctly resolved bindings in most
fixes. Table III shows the overall results. Column “Same” lists
methods whose built graphs are identical. Column “%” lists
corresponding percents. In total, 96.1% bindings resolved by
GRAPA are identical with the golden standard.



TABLE IV: The significance of internal techniques.

Name
No Version No PPA No Extension

Suc. % Suc. % Suc. %
Aries 339 61.9% 353 64.6% 435 79.6%

Cassandra 899 26.1% 1,546 44.9% 2,332 67.7%
Derby 637 24.9% 1,088 42.5% 1,882 73.5%

Mahout 189 33.8% 351 62.6% 442 79.0%
Total 2,041 28.7% 3,307 46.5% 5,113 71.9%

2. GRAPA failed to correctly resolve bindings in only 3.9%
fixes. After manual inspection, we identified two types of
wrong resolutions:
1. Not fully resolved bindings. For example, CASSANDRA-
6181 includes the following code:
public void serialize(DataOutput out...)...{
ByteBufferUtil.

writeWithShortLength(tombstones.starts[i], out);...}

In this code, the writeWithShortLength method is un-
known. PPA infers its signature based on its parameters:
writeWithShortLength(Ljava/nio/ByteBuffer;

Ljava/io/DataOutput;)V

When we manually recover the code, we find that the decla-
ration of the method is as follow:
public static void writeWithShortLength

(ByteBuffer buffer, DataOutputPlus out)...{...}

The above code has no compilation errors, since DataOut-

putPlus is a subtype of DataOutput. Our tool detects the
following difference:

2. Wrong static and instance code names. For example,
CASSANDRA-8413 modifies the following code:
bf = FilterFactory.getFilter(...);

Here, the FilterFactory.getFilter(...) method is un-
known. PPA wrongly resolves the static method to an instance
method, although it correctly resolves all the parameters and
the return value. We identify the wrong resolution, since our
tool detects the following difference:

In the above two situations, WALA can still build graphs
based on incorrect binding resolutions. In Table II, the results
on these methods are counted as successes according to the
criterion in Section IV-A. Our tool detected the incorrect
resolutions, but as shown in Table III, 96.1% of the total
bindings are correctly resolved.

C. RQ3: Internal Techniques

1) Setup: Our approach has two major techniques to resolve
unknown bindings: (1) it detects the context versions for a
partial program (Section III-B1), and (2) it extends PPA with
additional inference strategies (Section III-C). In this section,
we use GRAPA to analyze the bug fixes in Table II, without
the above techniques to show their significance.

2) Result: In Table IV, Column “No Version” shows the
results when GRAPA does not detect context versions. Column
“No PPA” shows the results when GRAPA does not resolve
unknown bindings with PPA. Column “No Extension” shows
the results when GRAPA uses the standard PPA, instead of our
extended PPA as described in Section III-C. Subcolumn “Suc.”
lists number of successes. Subcolumn “%” lists success rate.
The results lead to our findings:
1. The technique of locating context versions is the most
effective internal technique. Without locating context ver-
sions, only 28.7% of the total fixes are fully resolved. Without
the standard PPA and our extended PPA, 46.5% and 71.9%
of the total fixes are fully resolved, respectively. The results
highlight the importance of locating context versions, and the
improvement over PPA.
2. Our extended PPA shows its significance when partial
programs have critical compilation errors. Comparing Col-
umn “No PPA” with Column “No Extension”, we find that
our extension of PPA improves the success rates. We notice
that like other compilers, the Eclipse JDT compiler can stop
resolving bindings after it encounters a critical compilation
error. For example, in ARIES-241, a method is as follows:
private ... String getTSIAQuotesOrderByChangeSQL =...
public MarketSummaryDataBean getMarketSummary() ... {
PreparedStatement stmt = getStatement(
getTSIAQuotesOrderByChangeSQL, ...);...}

In the method, the code name MarketSummaryDataBean

is unknown, and causes a critical compilation error. The un-
derlying compiler, Eclipse JDT, does not resolve any bindings
inside the method, after encountering the error. For example,
although getTSIAQuotesOrderByChangeSQL is declared in
the same type, its type is resolved as null. Consequently, PPA
fails to resolve the signature of the getStatement method.
Our variable and field strategies links resolved bindings before
the error line and those unresolved bindings after the error
line. In this example, our field strategy links the declaration
of getTSIAQuotesOrderByChangeSQL to the parameter of
the getStatement method. As a result, it becomes feasible to
resolve the signature of the method. In this way, our additional
inference strategies make the improvements in Table IV.

D. Threats to Validity

The threats to internal validity include our criterion to
determine incorrect resolutions in RQ2. To reduce the bias,
we implement a tool to compare dependency graphs, but even
a tool can introduce errors. The threat could be reduced by
introducing more manual inspections. The threats to external
validity include that we focus on only a type of partial pro-
grams from only Apache and a single tool, so our effectiveness
may vary on other subjects. To reduce the threat, we select
thousands of commits and the state-of-the-art tool. The threat
could be reduced by analyzing more subject tools.

V. APPLICATIONS OF GRAPA

As a support tool, the benefits of GRAPA are indirect, and
our evaluations did not show its applications. However, we



believe that GRAPA can be useful in many real applications,
since it enables more accurate analysis on partial programs.
1. More in-depth empirical studies. Researchers have con-
ducted various empirical studies to explore open questions
that involve partial programs (e.g., bug fixes [38], [41]). As
their underlying partial-code tools are limited and imprecise,
their results can be superficial or even biased. GRAPA enables
more in-depth analysis on partial programs. Indeed, Zhong and
Meng [39] have conducted an empirical study on using past
fixes to construct new patches. As they compare SDGs of bug
fixes, their study is infeasible without GRAPA,
2. More advanced bug detection/repair approaches. Many
researchers believe that it is feasible to propose more advanced
bug detection/repair approaches, based on the knowledge that
is extracted from past fixes. However, as existing partial-
code tools are limited, it is quite challenging to automate the
extraction. For example, although Kim et al. [16] implemented
tools to reduce their inspection effort, their analysis is largely
manual, which is tedious and error-prone. GRAPA enables
more in-depth empirical studies on bug fixes [39] and more
advanced bug detection/repair techniques. Indeed, Zhong and
Wang [42] have detected previously unknown bugs for all the
four projects, and their tool is built on GRAPA.
3. Analyzing partial programs in more scenarios. The
applications of GRAPA are not limited to analyzing bug fixes.
Besides this scenario, GRAPA can be applied to many other
scenarios where partial programs and some compiled releases
are available. Typical scenarios include code samples in API
documents [40], development emails [30], and code search
engines [24]. It is feasible to extend GRAPA for the above
scenarios after minor changes. For example, although many
code samples in API documents do not have method/class
bodies, Zhong and Su [40] show that it is feasible to construct
fake bodies, which enables follow-up analysis. As another
example, Terragni et al. [34] propose an approach that extracts
code samples from forums. From such samples, it is feasible
to locate context versions by querying such types on existing
code search engines (e.g., GrepCode or Github). Despite of
that Algorithm 1 is suboptimal, it achieves more than 90%
accuracy, leaving adequate space for further improvements.

VI. RELATED WORK

Partial-code analysis. Mishne et al. [25] propose PRIME that
mines specifications from partial programs. Zhong and Su [40]
detect errors in code samples of API documentations, and such
samples are partial programs. Subramanian and Holmes [33]
extract API calls from code samples in StackOverflow. Our
approach presents a general way to leverage tools for complete
code, so they can analyze partial programs, complementing ex-
isting approaches. Dagenais and Hendren [8] propose PPA that
fixes unknown bindings for partial programs. We are the first to
provide the insight that extending PPA can potentially leverage
complete-code tools to analyze partial programs. Ossher et
al. [28] resolve missing dependencies for complete programs,
but most partial programs are not compilable, even if their
dependencies are resolved. Carvalho Gomes et al. [9] analyze

incomplete Java bytecode. During compilation, complete code
information is encoded into bytecode, so JVM can execute it
correctly. When analyzing partial code, we do not have such
information, so the problem we target is more challenging.
Code comparison. Fluri et al. [13] compare ASTs of source
files for their differences. Maletic and Collard [23] translates
files into srcML and compare the translated format for differ-
ences. Kim and David [18] denote code with a set of predicates
and compare these predicates for their differences. Buse and
Weimer [5] generate documents to describe code changes.
Apiwattanapong et al. [2] compare CFGs for their delta.
Although graphs are more informative, Kim and Notkin [17]
complain that CFG-based approaches cannot analyze partial
programs, which is complemented by our approach.
Empirical study on bug fixes. Researchers have conducted
various empirical studies to understand the nature of bug fixes.
Yin et al. [38] show that bug fixes can introduce new bugs.
Nguyen et al. [27] show that repetitiveness is common in small
size bug fixes. Eyolfson et al. [11] show that the bugginess
of a commit is correlated with the commit time. Thung et
al. [35] show that faults are not localized. Zhong and Su [41]
analyze the nature of fixing bugs. Canfora et al. [6] analyze the
relations between fixed code elements and the time to fix bugs.
With our approach, researchers can integrate more advanced
tools for analyzing bug fixes, reducing the analysis effort.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose an approach that locates ap-
proximate Java archive files and resolves remaining unknown
bindings. After integration, we can boost existing complete-
code tools to analyze partial programs. Based on our approach,
we implement GRAPA, and conduct evaluations on thousands
of partial-code bug fixes. Our results show that our tool
correctly fully resolved unknown bindings for 98.5% of bug
fixes, and for 96.1% of bug fixes, our binding resolutions are
identical with our golden standard.

In future work, we plan to explore two directions as follows.
First, applying GRAPA to different application scenarios may
require more advanced technical adaptations. For example,
symbolic analysis often needs a driver function to initiate
objects of partial programs. Person et al. [29] propose differ-
ential symbolic execution that reuses analysis results between
program versions, and test code can provide hints on initiating
objects. Analyses of forum threads calls for more advanced
searching techniques for context versions. Second, although
our tool works on Java, our approach is general and can be
adapted for other programming languages.
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