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Abstract

It has long been a hot research topic to fix bugs. As a common practice, researchers propose approaches for specific bugs, and
their approaches typically are limited in handling the variety among bugs. Recently, researchers start to explore automatic program
repair. With predefined repair operators and test cases, test-based repair approaches use search algorithms to generate patches
for a bug, until a patch passes all the test cases. To improve the effectiveness to generate patches, Martinez and Monperrus [43]
proposed an approach that mines repair models from past fixes. Although their approach produces positive results, we argue that
it can be feasible to further improve their approach, if we mine repair models for bug categories, instead of all bugs. However,
the benefits are still unclear, since existing benchmarks do not classify bug into categories and existing approaches cannot mine
repair models for bug categories. In this paper, we implement a tool, called EXFI, that classifies bugs into categories based on their
related exceptions. With its support, we construct a benchmark, in which bug categories are marked. Furthermore, we propose an
approach, called MIMO, that mines a repair model for each exception. We compare the general repair model with our mined repair
models. Our results show that our mined models are all significantly different from the general model. Outside of the projects
where our models are mined, we selected 59 real bugs. For each bug, we used our models and the general model to generate correct
repair shapes for these bugs. The results show that for 43 out of 59 bugs, our models found faster a correct shape than the general
repair model [43], and for 5 bugs, our models were able to find correct shapes that were not found by the compared model.
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1. Introduction

It has long been a hot research topic to detect and fix bugs automatically, since it is time-consuming and error-prone
to fix bugs. As a common practice, researchers analyze the nature of their target bugs, and then propose corresponding
treating techniques. The research in this line has difficulty in handling the variety in bugs, and fails to detect bugs if
they are different from analyzed bugs. Instead, another research line is to explore automatic approaches that fix all
bugs, referred to as automatic program repair. In this research line, under the guidance of search algorithms, a typical
approach (e.g., [77]) mutates the faulty code with predefined repair operators, until a mutation passes all the test cases.
This research line produces promising results (e.g., [28]), and a recent study [93] shows that at least twenty percents
of bugs can be fixed in this way. However, the positive results also attract criticisms (e.g., [58, 48]), partially due to
the overfitting problem when validating correct patches with test cases.

Martinez and Monperrus [43] propose an approach that mines repair models from past bug fixes. When mining
repair models, they first use ChangeDistiller [15] to extract a set of repair actions for each bug fix, and then calculate
the probability distribution of repair actions. From 62,179 commits of 14 projects, they mined two repair models such
as the CT (Change Type) and the CTET (Change Type Entity Type) models, with different granularity. For example,
a part of the CTET model is as follows:

inserting method invocations 6.9%

1



/ The Journal of Systems and Software 00 (2018) 1–21 2

inserting if statements 6.6%
updating method invocations 6.4%
...

According to the above model, the probability of inserting method invocations is 6.9%. Martinez and Monper-
rus [43] use repair models to guide generating repair shapes. A repair shape is an unordered tuple of repair actions,
and is a similar concept of repair hints that are mined by Kaleeswaran et al. [23].

Martinez and Monperrus [43] shows that their mined repair models are useful to reduce the effort of generating
repair shapes. Despite of their positive results, we argue that it can be more promising to mine a repair model for
each category of bugs, due to the following three considerations. First, it is easier to repair a specific type of bugs
than to repair general bugs. Second, Liang et al. [31] show that different programming rules can exist in the same
repository. Mining repair models for bug categories can reduce the interference of violating different programming
rules. Finally, it is easier to build the connection between the symptoms of bugs and their fixes. With such connections,
researchers may design more effective guidance algorithms for fixing bugs. However, to compare such models, we
have to overcome the following challenges:
Challenge 1. It is challenging to collect bug categories for analysis. Although researchers [22, 30, 69] have proposed
several benchmarks, these benchmarks do not present bug categories. It can take much effort, if we manually identify
bug categories from benchmarks.
Challenge 2. It is challenging to compare the general repair model with repair models for bug categories. Martinez
and Monperrus [43] admit that their generation algorithm is a guided random search. As a random-based approach
can produce different results in executions, it is not conclusive to compare two models with only several executions.

Our contributions. In this paper, we implement EXFI that automatically classifies more than one thousand bug
fixes into categories (Section 2), and implement MIMO that mines repair models for each category (Section 4). As
we resolved the above challenges, we conduct the first empirical study that compares the general repair model with
repair models that are mined for bug categories. This paper makes the following contributions:

• The first benchmark for bug categories. Researchers [22, 30, 69] have proposed several benchmarks for auto-
matic program repair, which are widely used in the research community (e.g., [41]). We implement EXFI that
builds mappings between bugs and their related exceptions. With its support, we construct the first benchmark,
in which bugs are classified into categories. Comparing with existing benchmarks, our benchmark is marked
with bug categories, and it is large scale, since it contains more than one thousand bug fixes.

• A tool, called MIMO (Mining repair Models for exception-related bugs), that mines a repair model for each
category of bugs, i.e., bugs whose reports mention the same exception. MIMO first builds the links between
exceptions and their modifications, and then mines repair models for each exception. In total, MIMO mines 21
repair models from our benchmark.

• Two comparisons between the existing general repair model and the top eight mined repair models. The result of
the first comparison shows that the action probabilities of all our mined repair models are significantly different
from the action probabilities of the general repair model. The result of the second comparison shows that our
repair models are more effective in generating correct repair shapes than the baseline general repair model, and
our models spend less time, for 43 out of 59 real bugs.

The rest is organized as follows. Section 2 introduces our benchmark. Section 3 introduces the general model
of Martinez and Monperrus [43]. Section 4 presents MIMO that mines models for exception-related bugs. Section 5
presents the general model and our mined models. Section 6 presents our comparison results. Section 7 discusses
issues of our study. Section 8 presents related work. Section 9 concludes this paper.

2. Benchmark

We consider that a bug is related to an exception, if its bug report mentions the exception, and we consider
bugs that are related to the same exception as a category of bugs. In this paper, we select exception-related bugs
to construct our benchmark, since (1) exception-related bugs cover many bug categories (e.g., IO bugs in IOEx-

ception, memory bugs in NullPointerException, and network bugs in SocketException); (2) the previous
2
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Table 1: Importance of Exception-Related Bugs

Name
Exception-related Bug Bug

%B C Ma Mi T B C Ma Mi T
Aries 2 5 85 8 2 5 18 403 63 8 20.5%

Cassandra 8 25 344 237 35 29 94 1138 1034 232 25.7%
Derby 9 27 463 164 14 27 80 1426 790 110 27.8%

Lucene/Solr 18 18 315 119 15 101 104 1861 911 168 15.4%
Mahout 1 4 54 40 6 5 12 262 139 39 23.0%

Total 38 79 1261 568 72 167 308 5090 2937 557 22.3%

Percentage 1.9% 3.9% 62.5% 28.1% 3.6% 1.8% 3.4% 56.2% 32.4% 6.1%
B: Blocker; C: Critical; Ma: Major; Mi: Minor; T: Trivial.

work has used exceptions for bug clustering [10] and to guide fault localization [65]; and (3) it needs much expertise
to handle the variety in fixing bugs, even if the same exception is thrown. As many factors can lead to a thrown
exception, wrapping methods with try-catch statements is typically insufficient to repair exception-related bugs. In
literature, researchers have proposed many approaches that detect and repair exception-related bugs. For example, to
reduce OutOfMemoryError, Thummalapenta and Xie [71] propose an approach that cleans up resources in catch

statements. Here, we agree that it is feasible to classify bugs into categories based on other criteria, and researchers
can construct their benchmarks based on their own criteria other than exceptions.

2.1. Exception-Related Bug

In this paper, we refer to exception-related bugs as bugs whose reports mention exceptions. To analyze the im-
portance of exception-related bugs, we queried the issue trackers of six popular Apache Java projects in February
2014, and Table 1 shows the results. Column “Exception-related Bug” lists the number of exception-related bugs
with respect to their priorities. We queried the projects with the keywords such as “Exception” and “Error”, since
Java implements three types of exceptions such as unchecked exceptions (e.g., NumberFormatException), checked
exceptions (e.g., ClassNotFoundException), and errors (e.g., OutOfMemoryError) [8]. Here, we required the
first capitalized letters to reduce irrelevant bug reports, and counted only fixed bugs to reduce superficial bugs, since
a bug (e.g., CASSANDRA-82961) can be resolved as not a problem. Column “Bug” lists the number of total fixed
bugs with respect to their priorities. Column “%” lists percentage of exception-related bugs among all the fixed bugs.
The result shows that exception-related bugs are many, and account for more than 20% of the fixed bugs in total. As
a comparison, although concurrency bugs are important, Lin et al. [33] show that only about five percents of bugs are
related to concurrency issues. Row “Percentage” lists percentage of the corresponding bugs over the total bugs. In
total, exception-related bugs are important, since more exception-related bugs are marked as blocker (1.9% vs 1.8%),
critical (3.9% vs 3.4%), or major (62.5% vs 56.2%) than all the bugs.

Exception-related bugs can be difficult to be repaired. First, programming languages may define many exceptions.
For example, as shown in the J2SE’s document2, Exception has more than seventy direct subclasses. Second,
programming languages may allow customized exceptions. Finally, the symptoms of exceptions can be quite different.

In the same category of bugs, the symptom is straightforward, and we can infer corresponding fixes. For example,
as shown in its document3, NullPointerException is thrown when a program attempts to use a null object.
Based on this domain knowledge, it is feasible to fix related bugs by checking whether objects are null. In particular,
Figures 1a and 1b show two fixes from Lucene4 and Cassandra5. Although the two bugs are from different projects
and are fixed by different programmers, programmers use the same pattern to fix the two bugs, i.e., adding an if

statement to check a value, and a return statement to exit the method, if such a value is null. Their repair shapes
are similar, and they share two repair actions, i.e., inserting an if statement and inserting a return statement. Here,

1https://issues.apache.org/jira/browse/CASSANDRA-8296
2http://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html
3http://docs.oracle.com/javase/7/docs/api/java/lang/NullPointerException.html
4https://issues.apache.org/jira/browse/LUCENE-1510
5https://issues.apache.org/jira/browse/CASSANDRA-2377
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1 + i f ( norms == n u l l ) {
2 + r e t u r n new b y t e [ 0 ] ; / / t o do . . .
3 +}

(a) A patch in Lucene

1 + i f ( s e s s i o n == n u l l ) {
2 + l o g g e r . warn ( . . . ) ;
3 + r e t u r n ;
4 +}

(b) A patch in Cassandra

1 −} e l s e i f ( ! c l a u s e . g e t F i e l d ( ) . e q u a l s ( f i e l d ) ) {
2 +} e l s e i f ( c l a u s e . g e t F i e l d ( ) != n u l l &&
3 ! c l a u s e . g e t F i e l d ( ) . e q u a l s ( f i e l d ) ) {

(c) The other way to fix bugs

Figure 1: The different ways to fix bugs that throw NullPointerException

Martinez and Monperrus [43] define a repair action as a modification on a code element. Still, due the complexity of
fixing bugs, a pattern is insufficient to describe all bug fixes. For example, Figure 1c shows the other way to fix buggy
code that throws the same exception6. The condition of an if statement is modified to avoid the exception. Its repair
shape is updating an if statement. Furthermore, different from above two patterns, Cornu et al. [7] propose another
fix pattern that catches unanticipated exceptions. The observations show that it needs different strategies to fix even a
simple exception, which highlights the importance of automatic program repair.

2.2. EXFI

Many projects provide source code repositories that record all the commits (e.g., bug fixes, improvements, and
new features), and a commit consists of a message and a set of modified files. The message of a commit often includes
an issue key for tracking issues. For example, in the code repository of Aries, the message of a commit is “ARIES-
1269 Add blueprint maven plugin”. In this message, the issue key is “ARIES-1269”. In some projects, the practice
is strictly complied. Existing studies [80, 3] show that most commits in Apache projects follow the practice, so their
approach achieves similar precisions and recalls with the issue key heuristic, when they rebuild the links between bug
reports and commits for Apache projects. For each exception-related bug report, EXFI uses its issue key to retrieve
related commits. It is a simple heuristic, but it works well when the practice is followed. For those projects that do not
follow this practice, Tian et al. [72] and Wu et al. [80] propose approaches that uses various features (e.g., the number
of added if statements) to identify bug fixes from commits. It is feasible to collect more bug fixes for analysis with
the support of their approaches.

It is difficult to identify specific bug fixes (e.g., exception-related bugs). Tufano et al. [73] analyzed commits of
100 Apache projects, and they found that only 38% of the total commits are compilable. Tufona et al. [73] released
their analysis results on their website7. In particular, 58% of such cases are caused by the resolution of dependencies.
Without such dependencies, commits are not compilable, even if their code does not have syntax errors. As bug
fixes are commits that repair bugs, many bug fixes are not compilable. Although researchers (e.g., [76, 56]) proposed
approaches that can determine whether a bug is caused by exceptions, it is expensive to adapt such techniques to
analyze bug fixes, since many bug fixes are not compilable. Although a recent approach [94] enables static analysis
on partial programs, it needs dynamic analysis to determine related exceptions. Hassan et al. [18] repair configuration
files to fix complication errors in commits, but can fix only half of commits.

Instead of commit source code, EXFI analyzes bug reports to identify bug categories. A bug report can be superfi-
cial, since programmers can resolve the report as other types of issues (e.g., “Improvement”). To filter superficial bug
reports, EXFI selects only fixed bugs. EXFI then queries fixed bug reports with the keywords such as “Error” and “Ex-
ception”. We notice that bug reports can mention exceptions or errors, but do not describe their names. It is difficult to

6https://issues.apache.org/jira/browse/LUCENE-5450
7http://www.cs.wm.edu/semeru/data/breaking-changes
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Table 2: Exception-related Bugs.

Name Identified bug Exception-related bug Percent Exception Unique exception Average file
Aries 102 102 100.0% 159 62 1.45

Cassandra 282 649 43.5% 461 84 1.55
Derby 662 677 97.8% 1,004 115 1.45

Lucene/Solr 343 485 70.7% 465 81 1.92
Mahout 94 105 89.5% 125 39 1.26

Total 1,483 2,018 73.5% 2,214 257 1.57
C: exception-related bugs whose commits are identified; E: exception-related bugs; Ex.: mentioned exceptions; U.Ex: unique mentioned

exceptions.

link such bug reports to specific exceptions or errors. To filter these bug reports, EXFI requires that the first letters of
mentioned exceptions/errors shall be capitalized. For example, if a bug report mentions OutOfMemoryError, EXFI
considers this bug report, since it mentions an exception name whose first letter is capitalized. Furthermore, EXFI
links this bug report to OutOfMemoryError.

2.3. Dataset
Table 2 lists our dataset. Column “Name” lists names of projects. Aries is an OSGi application programming tool.

Cassandra is a distributed database management system. Derby is a relational database. Lucene is an information
retrieval library, and Solr is an enterprise search platform that is built on Lucene. Lucene and Solr share the same
source code repository, so we have to put their results into a row. Mahout is a machine learning library. All the six
projects are from Apache and in Java. We collected their bug reports and fixes in February 2014. Column “Identified
bug” lists the number of exception-related bugs whose commits are identified by EXFI. Column “Exception-related
bug” lists the total number of the exception-related bugs. Column “Percent” lists the percents of identified bugs. The
result shows that EXFI identified bug fixes for most exception-related bugs. The remaining bug fixes are not identified,
since their issue number is not found in commit messages. Here, Cassandra changed its source code repository from
SVN8 to Git9 in December 2011. EXFI retrieved commits from only SVN repositories, so the commits after December
2011 are not extracted. If a bug report is reported after December 2011, it is infeasible to identify its corresponding
bug fix from our extracted commits. As a result, the ratio of Cassandra is low. Column “Exception” lists the number
of mentioned exceptions. Among them, column “Unique exception” lists the number of unique ones. Its total number
is smaller than its sum, since some exceptions are mentioned in multiple projects. Column “Average file” lists the
averages of modified source files per bug. More details of the benchmark are presented in its website10.

3. The General Repair Model

Martinez and Monperrus [43] define a repair action as a modification on a code element, and a repair model as
a set of repair actions. For example, the repair model of Weimer et al. [77] has three repair actions such as deleting
a statement, inserting a statement taken from the software, and swapping two statements. The repair model of an
approach determines its repair capability, and it needs much expertise to design effective repair models. Martinez
and Monperrus [43] propose an approach that mines repair models from past manual fixes. From 14 open source
Java projects, they collected 62,179 commits that fix bugs. From each commit, they extracted repair actions with the
support of ChangeDistiller [15], and calculated two repair models such as CT and CTET with different granularity
(see Section 5.1 for details). Here, their mined repair model is the probability distribution of repair actions. The
appendix of Martinez and Monperrus [42] provides the complete distributions of the CT and CTET models. In their
evaluation, they use mined repair models to guide generating repair shapes. Martinez and Monperrus [43] define a
repair shape as an unordered tuple of repair actions, and the shape space as all possible combinations of repair actions.
A generated repair shape is more abstract than a patch and cannot be executed. As a result, it is infeasible to guide the

8https://svn.apache.org/repos/asf/cassandra/
9https://git-wip-us.apache.org/repos/asf?p=cassandra.git

10https://github.com/drzhonghao/exception.bugs
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search with fitness functions. Martinez and Monperrus [43] use weighted random search for repair actions, and the
weights are based on the probabilities of repair actions dictated by their models (see Section 7 for more discussions).
With repair models, automatic program repair can generate fixes more effectively.

4. MIMO

MIMO has two major steps such as identifying exception-method mappings (Section 4.1), and mining a repair
model for each exception (Section 4.2).

4.1. Identifying Exception-method Mapping
The first step of MIMO is to build the mappings between mentioned exceptions and modified methods. Some bug

reports have stack traces [78]. From such bug reports, MIMO extracts stack traces by parsing their contents. Zhong
and Su [92] detect errors in API documents, and their approach includes a component that extracts code samples from
API documents. MIMO reuses the component, and employs a natural language checker [47] to detect language errors
(e.g., spelling errors, grammar errors, style errors, and semantic errors). The error ratio is defined as follows:

error ratio =
|errors|
|words| (1)

As stack traces do not follow the grammars of natural languages, they have much higher error ratios than natural
language sentences. MIMO uses the error ratio to identify stack traces. Here, although code samples can be identified
as stack traces, it is easy to distinguish them, since stack traces follow a different format from code samples. As a
result, we do not need a more advanced technique (e.g., [2]) to identify stack traces. In a stack trace, an exception
is followed by a sequence of methods. For example, a bug report of Cassandra11 mentions three exceptions, and the
reporter presents the stack trace as follows:

Looks related to ...
java.util.concurrent.ExecutionException:...
at ...FutureTask$Sync.innerGet(...)
...
Caused by: java.lang.RuntimeException...
at ...WrappedRunnable.run(...)
...2 more
Caused by: java.lang.AssertionError...
at ...CommitLog.discardCompletedSegmentsInternal(...)
...1 more

MIMO links a thrown exception to its follow-up methods, if such methods are modified. For example, in the
above stack trace, AssertionError has a follow-up method, discardCompletedSegmentsInternal(). This
bug report has an attached patch12. The patch shows that ten methods are modified, and one of the them is the
discardCompletedSegmentsInternal() method. In particular, a line of the method is deleted:
- assert context.position >= context.getSegment();

The fixed code does not throw the exception any more, since in the method, the assert statement is deleted.
As only this method appears after AssertionError, MIMO links the discardCompletedSegmentsInternal()
method to AssertionError. We inspected the other nine modified methods, and we found that all the methods are
related to refactoring. In this paper, we useMst to denote mappings that are identified by stack traces.

Schroter et al. [62] show that in about 40% of bug reports with stack traces, programmers do not modify any
methods that appear in stack traces to fix bugs. For example, we notice that some fixes do not modify any source files
(see Section 5.2 for examples). In this paper, we useMns to denote mappings where no Java source files are modified
to fix bugs. Some remaining mappings are one-to-one, since only an exception is mentioned, and only a method is
modified. For example, a bug report of Aries13 is related to NullPointerException, and programmers modified a
method to fix the thrown exception:

11https://issues.apache.org/jira/browse/CASSANDRA-1330
12https://issues.apache.org/jira/secure/attachment/12456141/1330.txt
13https://issues.apache.org/jira/browse/DERBY-4306
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private synchronized void unregisterMBean(...){
+ //Has this service been shut down?
+ if (registeredMbeans == null)
+ return;

For one-to-one mappings, MIMO links exceptions with their corresponding modified methods. In this paper, we use
M1−1 to denote one-to-one mappings.

From the other bug reports, MIMO extracts two special mappings, i.e., 1-to-n mapping (M1−n) and n-to-1 mapping
(Mn−1). AnM1−n mapping indicates that a bug report mentions an exception, and multiple methods are modified to
fix the bug. MIMO links the exception to all the modified methods. An Mn−1 mapping indicates that a bug report
mentions multiple exceptions, and only a method is modified to fix the bug. MIMO links all the exceptions to the
modified method. The remaining bugs fall into theMn−m category, where a bug report mentions multiple exceptions,
and programmers modify multiple methods to fix the bug. In summary, MIMO identifies six types of mappings such
asMns,Mst,M1−1,M1−n,Mn−1, andMn−m.

4.2. Mining Repair Model for Exception

When they repair a bug, programmers often modify its test code to determine whether the bug is correctly fixed.
As a result, the modifications on test code are more like implementing new features than repairing bugs. As we mine
repair models for fixing bugs, MIMO ignores changes on test code. For the remaining source code, MIMO extracts
a repair shape from each pair of modified methods, with the support of ChangeDistiller [15]. A repair shape (s) is a
pair ⟨n, A⟩, where n is a client code method, and A is the set of repair actions on n. Based on the exception-method
mappings of each exception, MIMO mines a repair model, ⟨e,H ,X⟩, where:

• e is the thrown exception.

• H = {h1, . . . , hn} is the set of known repair shapes that fix e-related bugs. In our approach,H is extracted from
linked methods of e, and it includes mappings such asM1−1,Mst,Mn−1, andM1−n.

• X = {x1, . . . , xm} is the probability distribution that is built from H , and xi is a pair, ⟨ai, ρi⟩. Here, ai denotes a
type of repair actions, and ρi is calculated as |ai |∑m

1 |ai | where |ai| denotes the frequency of ai.

Zhong and Su [93] show that automatic program repair is less effective to fixM1−n andMn−m bugs. To improve
the state of the art, we focus on the other four types of mappings such asM1−1,Mst,M1−n, andMn−1. We use ⟨E,M⟩
to denote a mapping where E is a set of exceptions, and M is the set of mapped methods. When calculating the repair
model ⟨e,H ,X⟩ for the e exception, if ⟨E,M⟩ is a mapping and e ∈ E, MIMO extracts a repair shape (h) from each
method in M, and adds h toH . In addition, MIMO extracts repair actions A in M, and counts A to X.

5. Repair Models

5.1. The General Model

As introduced in Section 1, we choose the repair models of Martinez and Monperrus [43] as the baseline for com-
parison. Martinez and Monperrus [43] mine two models such as the CT model and the CTET model. The two repair
models define the probability distributions of repair actions. From 14 open source Java projects, they collected 62,179
commits that fix bugs. From each commit, they extracted repair actions with the support of ChangeDistiller [15], and
refined the repair actions on different granularity. In particular, the CT model counts at a coarser granularity, and the
CTET model counts at a finer granularity. For example, when ChangeDistiller identifies an Insert:IF STATEMENT

action and an Insert:FOR STATEMENT action, the CT model counts the two actions as two Insert:STATEMENT

actions. In contrast, when ChangeDistiller identifies an Update:MODIFIER action, the CTET model refines it into
multiple categories (e.g., increasing or decreasing the accessibility of a modifier).

Typically, a finer repair model leads to a larger search space and a lower probability for generating correct repair
shapes. For example, CTET is finer than CT, and Martinez and Monperrus [43] show that it is able to generate longer
correct repair shapes with the CT model than with the CTET model. Despite of a lower capability of generating correct
repair shapes, a finer repair model generates more detailed repair actions, which make it easier to synthesize patches.
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Table 3: Mined Repair Models.

CM NPE AIOOBE IAE IOE
U:MI 8.1% I:IF 13.6% I:IF 11.8% U:VDS 8.1% U:IF 8.5%
I:MI 6.9% I:VD 8.5% I:VD 10.8% I:VD 8.1% I:MI 6.4%
I:IF 6.6% M:MI 7.5% U:VD 8.8% M:AS 8.1% I:IF 6.4%
D:MI 5.5% U:IF 6.7% U:IF 6.9% I:MI 7.5% M:IF 6.4%
D:IF 5.0% I:AS 6.3% M:AS 6.9% I:AS 6.8% U:MI 5.3%
I:VD 4.6% U:MI 5.5% I:MI 5.9% I:IF 5.6% M:MI 5.3%
U:IF 4.4% I:MI 5.3% U:RS 4.9% M:IF 5.0% U:VD 5.3%
U:VD 4.3% U:VD 4.4% U:AS 4.9% M:MI 4.3% U:AS 4.3%
I:AS 4.1% I:RS 4.1% I:AS 4.9% U:AS 4.3% I:CC 4.3%
I:ME 4.1% M:VD 4.1% U:MI 4.9% D:TS 3.7% I:VD 4.3%

FNFE IOOBE CCE NCDFE
U:IF 10.6% I:MI 13.8% I:MI 13.6% M:MI 22.0%
I:MI 10.6% I:VD 8.6% I:IF 12.3% I:IF 11.0%
M:CO 9.1% M:MI 6.9% I:VD 9.3% U:IF 9.3%
D:MI 7.6% I:IF 6.9% U:VD 8.6% I:MI 6.8%
D:VD 6.1% U:VD 5.2% I:AS 5.6% M:VD 5.9%
D:IF 4.5% U:IF 5.2% I:EL 4.3% I:VD 5.9%
M:VD 4.5% M:VD 5.2% I:TR 3.7% M:AS 4.2%
D:CO 3.0% I:TR 5.2% U:TS 3.7% D:MI 4.2%
D:TS 3.0% I:AE 3.4% D:MI 3.7% I:RS 4.2%
D:CC 3.0% U:MI 3.4% U:MI 3.1% U:VD 3.4%

Models. CM: The general repair model that is calculated from CTET; NPE: NullPointerException; AIOOBE: ArrayIndexOutOfBoundsEx-
ception; IAE: IllegalArgumentException; IOE: IOException; FNFE: FileNotFoundException; IOOBE: IndexOutOfBoundsException; CCE:
ClassCastException; NCDFE: NoClassDefFoundError.

Edit action. U: Update; I: Insert; M: Move; D: Delete.

Code element. MI: METHOD INVOCATION; IF: IF STATEMENT; VD: VARIABLE DECLARATION STATEMENT; ME: METHOD; AS:
ASSIGNMENT; RS: RETURN STATEMENT; TS: THROW STATEMENT; CO: CONTINUE STATEMENT; TR: TRY STATEMENT; CC:
CATCH CLAUSE; AE: ASSERT STATEMENT; EL: ELSE BRANCH.

As introduced in Section 4, when MIMO mines repair models, it does not refine the granularity of ChangeDistiller.
As a result, CT, CTET, and our mined models are at different granularity. The granularity becomes an independent
variable of a controlled experiment. Even if our models achieve better results than CT and CTET, we cannot determine
whether our different repair probabilities or different granularity lead to the better results. To eliminate the impacts
from granularity, we have to recount a repair model at the same granularity of ChangeDistiller. It is infeasible to
recount the model from CT, since the details are missing. In the above example, CT counts two Insert:STATEMENT

actions, but it does not record the two actions are an Insert:IF STATEMENT action and an Insert:FOR STATEMENT

action. However, it is feasible to recount the model from the CTET model. In the above example, we can count all
increasing or decreasing the accessibility of a modifier to Update:MODIFIER actions of ChangeDistiller.

The appendix of Martinez and Monperrus [42] lists all the occurrences of repair actions. Based on their appendix,
we align the repair actions of CTET to the repair actions of ChangeDistiller, and recount a CM model. In Table 3,
column “CM” shows the recounted model. Although the CM model is calculated from the CTET model, the CM
model is different from the original CTET model, since some repair actions of CTET are merged. For example, as
shown in Section 1, the first repair action of the CTET model is inserting method invocations (6.9%), but the first
repair action of the CM model is updating method invocations (8.1%).

5.2. Our Mined Models

Figure 2 shows bugs that are related to exceptions. Its vertical axis lists the number of bugs with regards to
their relations, and its horizontal axis lists exceptions in the descending order of total corresponding bugs. Due to
space limit, we do not show exceptions whose linked bugs are fewer than twenty. Comparing the number of unique
exceptions in Table 2 with the number of bugs in Figure 2, we found that only about ten percents of exceptions have
more than twenty related bugs. Most exceptions are a special type of API classes, and we found that the long tail
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Figure 2: The bugs that are related to each exception.

effect of exceptions is consistent with other API elements. For example, Thummalapenta and Xie [70] found that
even in popular API libraries, some API classes are rarely used. As another example, Parnin et al. [54] found that only
36.9% of J2SE classes are frequently discussed on StackOverflow, and 22.7% of J2SE classes are never mentioned.
The long tail effect of APIs does not indicate that those rarely mentioned exceptions are useless. In contrast, it takes
much more effort to fix a rare exception, since programmers are unfamiliar with the exception, but the effect allows
us to mine repair models for those popular exceptions.

Yin et al. [87] show that programmers may introduce configuration bugs into their code. We found that theMns

category contains configuration bugs, and these bugs are associated with several exceptions (e.g., ClassNotFound-
Exception and AccessControlException). For example, to fix a AccessControlException-related bug14,
programmers modified a configuration file to allow a required permission:

+grant codeBase "${derbyTesting.codejar}/derbynet.jar" {
...
+ permission java.io.FilePermission "${derby...","write";
+};

Besides configuration errors, we notice that some bugs in the Mns category are related to source files in pro-
gramming languages other than Java. For example, to fix a ClassNotFoundException-related bug15, programmers
modified a batch file:

-if NOT DEFINED CASSANDRA_HOME set CASSANDRA_HOME=%CD%
+if NOT DEFINED CASSANDRA_HOME set CASSANDRA_HOME=%˜dp0..

Moreover, we find documentation errors that throw exceptions. For example, a bug report of Lucene16 says that the
online user guide threw SAXParseException, and the modified line is as follows:

-<!DOCTYPE...".../xhtml1/DTD/xhtml1-transitional.dtd">
+<!DOCTYPE...".../html4/loose.dtd">

Figure 2 shows that some exceptions (e.g., SQLException) have more Mn−m relations than others. In other
words, these exceptions are often mentioned with other exceptions, and multiple methods have to be modified to fix
such exceptions.

14https://issues.apache.org/jira/browse/DERBY-1334
15https://issues.apache.org/jira/browse/CASSANDRA-1713
16https://issues.apache.org/jira/browse/LUCENE-4302
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Figure 3: The bugs that are used to mine repair models.

MIMO mines repair models from bug fixes ofM1−1,Mst,M1−n, andMn−1. Figure 3 shows bugs that belong to
the four relations. The vertical axis lists the number of bugs with regards to their relations. The horizontal axis lists
exceptions in the descending order of total bugs. MIMO further builds repair models for all the twenty-one exceptions
in Figure 3. Table 3 shows X of the top nine mined repair models, and the general model (the CM model). For a
column, the first subcolumn lists repair actions (ai), and the second subcolumn lists probability distributions (ρi). In
total, MIMO mined 21 repair models. Due to space limit, Figure 3 ignores exceptions whose related bugs are fewer
than ten, and Table 3 presents only the top ten repair actions of nine repair models. We select the nine models, since
we will use the nine models in the next evaluation. In addition, Table 3 does not present H either, but Section 6.2.2
presents an example. Our results show that MIMO successfully mined repair models for popular exceptions.

6. Empirical Comparison

We conducted two empirical comparisons to address the following two research questions:

(RQ1) To what degree are our mined repair models different from the general repair model (Section 6.1)?

(RQ2) To what degree do our mined repair models improve the general model (Section 6.2)?

RQ1 mainly concerns the differences among repair models, and RQ2 mainly concerns the improvement of our
repair models over the general repair model of Martinez and Monperrus [43]. In Section 6.1, our results show that
our mined repair models are all significantly different from the general repair model of Martinez and Monperrus [43],
and it may be feasible to mine a repair model for several exceptions. The difference does not indicate effectiveness,
which we explored in Section 6.2. In Section 6.2, our results show that in 43 out of 59 real bugs, our repair models
significantly improve the general repair model of Martinez and Monperrus [43].

6.1. RQ1. The Differences

6.1.1. Hypotheses
The motivation of our work is that instead of a general repair model, we need different repair models to fix specific

types of bugs. The motivation can be verified by the differences between the general repair model of Martinez and
Monperrus [43] and our mined repair models. The null hypothesis is as follows:

(H0) The difference between the general repair model of Martinez and Monperrus [43] and our mined repair models
is not statistically significant.
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Table 4: The Differences among Repair Models.

NPE AIOOBE IAE IOE FNFE IOOBE CCE NCDFE
CM 0.0032 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

NPE 0.0002 0.0247 0.0121 0.0003 <0.0001 0.0063 0.0001
AIOOBE 0.261 0.2624 0.9002 0.7915 0.4807 0.7529

IAE 0.8296 0.3319 0.1761 0.5159 0.1868
IOE 0.4679 0.265 0.8164 0.208

FNFE 0.8957 0.5225 0.7958
IOOBE 0.3185 0.9491

CCE 0.3598

1 S t r i n g B u i l d e r b u i l d e r = b u i l d e r s [ c u r r e n t F i e l d ] ;
2 − i f ( b u i l d e r . l e n g t h ( ) >0){
3 + i f ( b u i l d e r . l e n g t h ( )>0&&b u i l d e r . l e n g t h ( )<maxLength ) {
4 b u i l d e r . append ( ) ; / / . . .
5 }
6 i f ( b u i l d e r . l e n g t h ( ) + v a l u e . l e n g t h ( )>maxLength ) {

(a) A patch that fixes an IOOBE-related bug

1 −C o l u m n D e s c r i p t o r cd ;
2 + C o l u m n D e s c r i p t o r cd = n u l l ;
3 i f ( t c l == n u l l ) {
4 cd = t t d . g e t C o l u m n D e s c r i p t o r ( i n d e x + 1) ;
5 }
6 − e l s e
7 + e l s e \ t e x t b f { i f ( i n d e x < t c l . s i z e ( ) ) }
8 {
9 Resul tColumn t r c = ( Resul tColumn ) t c l . e l emen tAt ( i n d e x ) ;

(b) A patch that fixes an AIOOBE-related bug

Figure 4: Similar patch

In addition, it is interesting to investigate whether different repair models are similar. The null hypothesis is as
follows:

(H1) The difference between our mined repair models is not statistically significant.

Although Arcuri and Briand [1] recommend the Mann-Whitney U test to compare random-based approaches, the
test is not limited to only this application. As introduced by McKnight and Najab [44], the Mann-Whitney U test
is more general than many other tests, since it does not require specific distributions. For example, the independent
samples t-test requires that two groups shall be normally distributed. Before we test the hypotheses, we run the
Shapiro-Wilk test [49] on all the repair models, and the results show that the repair models are not normally distributed.
As a result, it is proper to use the Mann-Whitney U test to compare mined repair models. We reject a null hypothesis
only when p is less than 0.05.

6.1.2. Results
Result 1. Our repair models are all significantly different from the general model. The first row of Table 4 shows
the results. In Table 4, the column and the row of a cell denote two compared repair models. The abbreviations are
consistent with the abbreviations in Table 3. For each cell, the grey background indicates that a hypothesis is rejected.
The results show that our repair models are all statistically different from the general repair model, since all the null
hypotheses in this row are rejected. The results confirm our motivation of mining repair models for specific bugs, and
highlight the importance of the divide-and-conquer strategy.
Result 2. H1 does not always hold on our repair models. In Table 4, the rows except the first row show the results.
For NPE, we reject all the hypotheses. When fixing bugs, programmers often simply avoid thrown NPEs by guiding
null pointers. However, other exceptions are more complicated, and need much different repairs to be fixed.
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For the other exceptions, we do not reject any hypotheses. That is to say, we cannot tell whether these repair models
are significantly different. We found that inheritance relations may lead to less difference. For example, IOOBE17 has
only two subclasses, and AIOOBE is a subclass of IOOBE. The description of IOOBE says “Thrown to indicate that
an index of some sort (such as to an array, to a string, or to a vector) is out of range”, and the description of AIOOBE
says “Thrown to indicate that an array has been accessed with an illegal index. The index is either negative or greater
than or equal to the size of the array.” As the similar descriptions indicate, their fixes may be similar. For example,
Figure 4a shows a patch that fixes an IOOBE-related bug18, and Figure 4b shows a patch that fixes an AIOOBE-related
bug19. The above two patches show the same good practice to avoid IOOBE or AIOOBE, i.e., checking whether an
index is smaller than the size of an array before accessing the array. The long tail effect of APIs makes it infeasible
to mine repair models for rarely used exceptions, but our results indicate that it may be feasible to merge similar
exceptions to mine a repair model for multiple exceptions. Still, our results show that the inheritance relation does
not guarantee the similarity between two repair models. For example, FNFE is a direct subclass of IOE, but the p
value between their repair models is relatively low. As shown in the API document of IOE20, IOE has more than
thirty direct subclasses, and its direct subclasses can have even more subclasses. For example, SocketException is
a direct subclass of IOE, and as shown in its API document21, it has four direct subclasses. The similarity between
IOE and FNFE is relatively low, since IOE has many subclasses and FNFE is only one of its subclasses.

In summary, MIMO mined twenty-one repair models, and all our tested repair models are significantly different
from the general model of Martinez and Monperrus [43]. The result highlights the importance of an approach like
MIMO. The long tail effect of APIs places a barrier to mine repair models for rare exceptions, but our results indicate
that we can overcome the barrier, since it may be feasible to merge bugs of similar exceptions to mine a repair model
for multiple exceptions.

6.2. RQ2: Generating Repair Shape
6.2.1. Setup

In this section, we select another project called FLEX22, since the project is large and actively maintained. Table 5
shows the selected bugs. We use the names of the exceptions to query the issue tracker of FLEX. From the returned
bugs, we selectedM1−1,Mst, andMn−1 ones. Column “Issue key” lists issue keys of all the selected bugs. The size is
comparable to the sizes in existing studies (e.g., [57]). In Table 5, Column “Exception” lists the names of exceptions.
Column “Priority” lists the priorities of the bugs. Column “Size” lists the size of golden repair shapes.

6.2.2. Comparison Criteria
Martinez and Monperrus [43] use generated correct repair shapes to evaluate the effectiveness of their approach,

since generating correct repair shapes is an essential step in automatic repairs and researchers (e.g., [23]) believe such
shapes are even useful for manual repairs. As a generated repair shape is more abstract than a patch and cannot be
executed, it is infeasible to guide the search, since its fitness function requires execution results but generated repair
shapes cannot be executed. As a result, for each bug, we also use our corresponding repair model and the general
model (the CM model in Table 3) to guide the random search for correct repair shapes.

Martinez and Monperrus [43] use repair shapes of manual fixes as the golden standard. To compare with their
approach, we use the same golden standard when we explore this research question. In particular, for each selected
fix, we use ChangeDistiller to compare its buggy code and fixed code, and use the extracted repair shape as the oracle.
Based on the golden standard, we define two criteria:
1. Success rate. For each bug, we execute with the two compared models for 1,000 times. In each execution, we
stop the search when the correct repair shape is generated, or the number of attempts reaches the maximum value of
1,000,000. If the correct repair shape is generated in an execution, we consider the execution as a success. In addition,
before using our model (⟨e,H ,X⟩) to generate repair shapes, we compare the oracle repair shape withH . In Columns

17http://docs.oracle.com/javase/8/docs/api/java/lang/IndexOutOfBoundsException.html
18https://issues.apache.org/jira/browse/LUCENE-5032
19https://issues.apache.org/jira/browse/DERBY-4449
20http://docs.oracle.com/javase/8/docs/api/java/io/IOException.html
21http://docs.oracle.com/javase/8/docs/api/java/net/SocketException.html
22http://flex.apache.org
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“Mean” and “Median”, h denotes that the oracle is found inH . When this happens, we consider that the MiMo model
achieves better results than the CM model for two considerations. First, the size ofH is small as shown in Figure 3.

Table 5: The Results of Generating Repair Shapes.

Issue key Exception Priority Size Model Mean Median Rate Result

FELIX-143 NPE Major 1
MiMo h h 100.0%

XCM 12 9 100.0%

FELIX-1195 NPE Major 10
MiMo 794,454 1,000,001 38.8%

XCM 1,000,001 1,000,001 0.0%

FELIX-1238 NPE Minor 3
MiMo 1,763 1,235 100.0%

XCM 32,971 22,778 100.0%

FELIX-1496 NPE Major 10
MiMo 979,650 1,000,001 4.1%

XCM 1,000,001 1,000,001 0.0%

FELIX-1566 NPE Major 6
MiMo 4,723 3,417 100.0%

XCM 989,759 1,000,001 2.0%

FELIX-1629 NPE Minor 2
MiMo h h 100.0%

XCM 63 44 100.0%

FELIX-1846 NPE Blocker 4
MiMo 1,603 1,151 100.0%

XCM 2,206 1,608 100.0%

FELIX-1867 NPE Major 2
MiMo h h 100.0%

XCM 701 515 100.0%

FELIX-1872 NPE Major 2
MiMo h h 100.0%

XCM 187 131 100.0%

FELIX-1961 NPE Major 1
MiMo h h 100.0%

XCM 44 29 100.0%

FELIX-2143 NPE Minor 1
MiMo h h 100.0%

XCM 43 29 100.0%

FELIX-2159 NPE Minor 1
MiMo h h 100.0%

XCM 39 29 100.0%

FELIX-2213 NPE Major 7
MiMo 708,241 918,791 53.4%

XCM 1,000,001 1,000,001 0.0%

FELIX-2230 NPE Minor 7
MiMo 174,687 125,250 99.7%

XCM 723,187 1,000,001 48.8%

FELIX-2326 NPE Minor 7
MiMo 998,119 1,000,001 0.4%

—CM 997,940 1,000,001 0.3%

FELIX-2432 NPE Major 1
MiMo h h 100.0%

XCM 44 30 100.0%

FELIX-2574 NPE Minor 2
MiMo h h 100.0%

XCM 752 507 100.0%

FELIX-2596 NPE Minor 2
MiMo h h 100.0%

XCM 702 465 100.0%

FELIX-2796 NPE Minor 2
MiMo h h 100.0%

XCM 758 552 100.0%

FELIX-3117 NPE Major 5
MiMo 46,001 33,041 100.0%

XCM 997,109 1,000,001 0.7%

FELIX-780 AIOOBE Major 1
MiMo h h 100.0%

XCM 39 27 100.0%

FELIX-1164 AIOOBE Major 1
MiMo h h 100.0%

XCM 38 25 100.0%

FELIX-1580 AIOOBE Critical 3
MiMo 4,494 3,034 100.0%

XCM 11,258 8,022 100.0%

FELIX-2922 AIOOBE Minor 15
MiMo 1,000,001 1,000,001 0.0%

—CM 1,000,001 1,000,001 0.0%

FELIX-3463 AIOOBE Major 3
MiMo 1,207 854 100.0%

X
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Table 5 – continued from previous page

Issue key Exception Priority Size Model Mean Median Rate Result
CM 6,535 4,587 100.0%

FELIX-3548 AIOOBE Major 6
MiMo 1,000,001 1,000,001 0.0%

×CM 988,283 1,000,001 2.3%

FELIX-3977 AIOOBE Major 2
MiMo h h 100.0%

XCM 41 29 100.0%

FELIX-4565 AIOOBE Major 7
MiMo 1,000,001 1,000,001 0.0%

—CM 1,000,001 1,000,001 0.0%

FELIX-2610 IAE Major 14
MiMo 1,000,001 1,000,001 0.0%

—CM 1,000,001 1,000,001 0.0%

FELIX-2375 IAE Minor 7
MiMo 878,615 1,000,001 23.6%

XCM 1,000,001 1,000,001 0.0%

FELIX-2387 IAE Major 2
MiMo 515 374 100.0%

XCM 754 537 100.0%

FELIX-2672 IAE Major 10
MiMo 999,887 1,000,001 0.1%

—CM 1,000,001 1,000,001 0.0%

FELIX-3086 IAE Major 1
MiMo h h 100.0%

XCM 42 28 100.0%

FELIX-3567 IAE Major 7
MiMo 149,136 106,681 99.9%

×CM 134,058 94,461 99.8%

FELIX-3670 IAE Major 1
MiMo h h 100.0%

XCM 39 28 100.0%

FELIX-4444 IAE Major 5
MiMo 19,006 13,624 100.0%

XCM 195,048 135,349 99.3%

FELIX-4616 IAE Major 4
MiMo 2,004 1,731 100.0%

XCM 258,356 176,386 97.7%

FELIX-547 IAE Major 3
MiMo 2,864 1,994 100.0%

XCM 27,091 17,841 100.0%

FELIX-414 IOE Major 5
MiMo 235,813 166,509 98.6%

XCM 925,487 1,000,001 15.0%

FELIX-1188 IOE Major 4
MiMo 3,369 2,346 100.0%

XCM 95,333 65,472 100.0%

FELIX-1517 FNFE Major 6
MiMo 998,565 1,000,001 0.2%

—CM 998,942 1,000,001 0.3%

FELIX-2912 FNFE Major 7
MiMo 996,182 1,000,001 0.8%

—CM 995,310 1,000,001 1.1%

FELIX-4628 FNFE Major 3
MiMo 1,225 827 100.0%

×CM 104 73 100.0%

FELIX-1580 IOOBE Critical 3
MiMo 4,525 3,157 100.0%

XCM 13,923 10,196 100.0%

FELIX-2120 IOOBE Major 1
MiMo 65 46 100.0%

×CM 44 29 100.0%

FELIX-2615 IOOBE Major 2
MiMo 451 307 100.0%

XCM 924 652 100.0%

FELIX-3402 IOOBE Minor 12
MiMo 1,000,001 1,000,001 0.0%

—CM 1,000,001 1,000,001 0.0%

FELIX-4524 IOOBE Major 6
MiMo 240,146 171,505 98.5%

XCM 969,506 1,000,001 5.5%

FELIX-411 CCE Major 1
MiMo h h 100.0%

XCM 42 30 100.0%

FELIX-1197 CCE Major 29
MiMo 1,000,001 1,000,001 0.0%

—CM 1,000,001 1,000,001 0.0%

FELIX-1216 CCE Major 2
MiMo 130 91 100.0%

X
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Table 5 – continued from previous page

Issue key Exception Priority Size Model Mean Median Rate Result
CM 969 632 100.0%

FELIX-2306 CCE Minor 4
MiMo 18,799 13,353 100.0%

XCM 45,515 33,058 100.0%

FELIX-3001 CCE Minor 2
MiMo h h 100.0%

XCM 793 512 100.0%

FELIX-3323 CCE Major 3
MiMo 345 231 100.0%

XCM 986 678 100.0%

FELIX-3960 CCE Blocker 4
MiMo 9,179 6,194 100.0%

XCM 23,716 16,927 100.0%

FELIX-819 NCDFE Major 11
MiMo 1,000,001 1,000,001 0.0%

—CM 1,000,001 1,000,001 0.0%

FELIX-1516 NCDFE Major 7
MiMo 999,756 1,000,001 0.1%

—CM 999,480 1,000,001 0.1%

FELIX-2492 NCDFE Major 2
MiMo 2,502 1,766 100.0%

×CM 2,188 1,569 100.0%

FELIX-3153 NCDFE Major 4
MiMo 21,033 14,613 100.0%

XCM 1,000,001 1,000,001 0.0%

Second, a found match in H provides valuable hints to synthesize patches. For example, Figure 5a shows the fault
code of FELIX-187223. With our repair model, we found a match, LUCENE-303224, and Figure 6 shows the patch
for this bug. This patch indicates that programmers can place a buggy line inside an If statement, and check whether
its values are null to avoid NPE. Although the programmers of FLEX are unlikely to read LUCENE-3032 before
they fix FELIX-1872, they follow the same way to fix this bug, as shown in Figure 5c.

The success rate is calculated as successes over the total times of executions (it is 1,000 in our evaluation).
2. Tried times. In each execution, if both compared models successfully generate a correct repair shape, we compare
their tried times. As our generation is a guided random search, we follow the guidance of Arcuri and Briand [1]. Our
null hypothesis is as follows:

(H2) The difference between the the CM model and our mined repair model, as far as times of attempts are concerned,
is not statistically significant.

We reject the null hypothesis, when the p value is smaller than 0.05. When it is rejected, if the mean times of our
model is smaller than the mean times of the CM model, we consider that our model synthesizes a correct repair shape
faster than the general mode. That is to say, we consider a model (t1) is better than another model (t2), only when t1
needs significantly fewer tried times to generate the golden standard than t2 does.

6.2.3. Results
Table 5 shows the overall results. Column “Model” lists compared repair models. In each row, “MiMo” denotes

our repair models, and “CM” denotes the general repair model. Column “Success rate” lists success rates. Based on
this column, we come to the following results:
Result 1. The success rates of the CM model are consistent with the prediction of Martinez and Monperrus [43].
The evaluation results of Martinez and Monperrus [43] show that when generating correct repair shapes, the maximum
lengths for the CT model and the CTET model are eight and four, respectively. As the CM model is finer than the
CT model and is coarser than the CTET model, the maximum length for CM shall be between four and eight. In
Table 5, the maximum length for the CM model is seven (FELIX-2230, FELIX-2326, FELIX-2912, and FELIX-
3567), with low success rates (e.g., 1.1%). We estimate that seven is near to the maximum value. Our result indicates

23https://issues.apache.org/jira/browse/FELIX-1872
24https://issues.apache.org/jira/browse/LUCENE-3032
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1 p u b l i c vo id s e t A t t r i b u t e ( S t r i n g name , O b j e c t v a l u e ) {
2 t h i s . a t t r i b u t e s . p u t ( name , v a l u e ) ;
3 }

(a) The buggy code of FELIX-1872

1 − d e l e t e S l i c e . a p p l y ( p e n d i n g D e l e t e s , numDocsInRAM ) ;
2 + i f ( d e l e t e S l i c e != n u l l ) {
3 + d e l e t e S l i c e . a p p l y ( p e n d i n g D e l e t e s , numDocsInRAM ) ;
4 +}

(b) The patch of LUCENE-3032

1 p u b l i c vo id s e t A t t r i b u t e ( S t r i n g name , O b j e c t v a l u e ) {
2 i f ( ( name != n u l l ) && ( v a l u e != n u l l ) ) {
3 t h i s . a t t r i b u t e s . p u t ( name , v a l u e ) ; }}

(c) The fixed code of FELIX-1872

Figure 5: The usefulness ofH

that the CM model and our random generation are correct, since the capability meets the prediction of Martinez and
Monperrus [43] (seven is between four and eight).
Result 2. Our models have higher success rates than the CM model. In Table 5, Row “MiMo” shows the results
of our models. The maximum length for our models is ten (FELIX-1195, FELIX-1496, and FELIX-2672), which is
higher than the CM model (seven). In particular, for the six bugs such as FELIX-1195, FELIX-1496, FELIX-2213,
FELIX-3117, FELIX-2375, and FELIX-3153, our repair models are able to generate correct repair shapes, but the
CM model fails to generate any correct repair shapes. The results show that the divide-and-conquer strategy improves
the state of the art. However, we notice that some bug fixes (e.g., FELIX-2922) are too complicated for all the repair
models. This could be a limitation of the random search, and we further discuss this issue in Section 7.

In Table 5, Columns “Mean” and “Median” list the mean and median values of attempts when generating the first
correct repair shape, respectively. Based on the test, we come to the following result:
Result 3. Our models have fewer tried times than the CM model for most bugs. Column “Result” lists comparison
results. For each row of this column, “X” denotes that the mean values of MiMo attempts are significantly smaller
than the mean values of CM attempts; “×” denotes that the mean values of CM attempts are significantly smaller than
the mean values of MiMo attempts; and “—” denotes that the difference is not significant. The results show that our
repair models are more effective in 72.8% of bugs; are less effective in 8.5% of bugs; and are not significantly different
in the remaining bugs. For the three “×” bugs such as FELIX-4628, FELIX-2120, and FELIX-2492, our models also
achieve 100% success rates, despite of more tried times.

As shown in Table 2, our repository includes only 6 projects for mining repair models, and as shown in Figure 3,
even the most popular exception, NPE, has only about two hundred bugs. In contrast, the repair model of Martinez
and Monperrus [43] is built on 89,993 commits from 14 projects. Our much smaller pool of commits can reduce the
effectiveness of our repair models. Our results are inspiring, since our repair models still achieve better results.

6.2.4. More Findings
Finding 1. The priorities of bug reports are not correlated with exception names nor repair sizes. In Table 5,
Column “Priority” lists priorities of bugs. The distribution of priorities shows the importance of exception-related
bugs. Column “Size” lists sizes of oracle repair shapes. It is interesting to know whether exception names and repair
sizes are correlated with priorities, and we run the Pearson correlation analysis [21] on the above three columns. The
sig value between exception names and priorities is 0.591, and the sig value between repair sizes and priorities is
0.556. The results show that priorities are not correlated with exception names nor repair sizes. That is to say, a bug
can be important, even if the bug throws a simple exception and it does not involve many repair actions.

The result is inspiring for automatic program repair. Although Monperrus [48] criticises that existing approaches
can fix only limited bugs, our result shows that simple bugs may still be critical. For example, in Table 5, FELIX-
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1 − f i n a l S t r i n g t a r g e t F i l t e r =( S t r i n g ) p r o p e r t i e s . g e t ( . . . ) ;
2 − i f ( ( g e t T a r g e t ( ) == n u l l&&t a r g e t F i l t e r == n u l l )
3 | | g e t T a r g e t ( ) . e q u a l s ( t a r g e t F i l t e r ) )
4 + f i n a l S t r i n g newTarge t =( S t r i n g ) p r o p e r t i e s . g e t ( . . . ) ;
5 + f i n a l S t r i n g c u r r e n t T a r g e t = g e t T a r g e t ( ) ;
6 + i f ( ( c u r r e n t T a r g e t == n u l l&&newTarge t == n u l l )
7 + | | ( c u r r e n t T a r g e t != n u l l&&c u r r e n t T a r g e t . e q u a l s ( newTarge t ) ) )
8 . . .
9 −S e r v i c e R e f e r e n c e [ ] r e f s = . . . ( t a r g e t F i l t e r ) ;

10 + S e r v i c e R e f e r e n c e [ ] r e f s = . . . ( newTarge t ) ;

Figure 6: The patch that fixes FELIX-1846

184625 is a blocker bug (the highest priority in an Apache issue tracker). Its description says that NPE is thrown, when
a target filter is undefined, and Figure 6 shows its patch. When a target filter is undefined, getTarget() returns a
null value, and the null value leads to NPE, when its member method, equals(), is called. The fixed code solves
the problem, since the return value is checked whether it is null, before its member method is called. The fix is
simple, and it takes only several hours to fix the bug. However, the reporter still believes that it is a critical bug.
Finding 2. Small fixes are similar, but are often not identical. Nguyen et al. [52] show that similar small bug fixes
frequently recur. Our results are consistent with their results, since all the found matches are small bug fixes (marked
as h in Table 5). Although Nguyen et al. [52] show that many bug fixes are similar, our results show that most bug
fixes are not identical. The results highlight the importance of automatic program repair, since this direction deals
with the variety in fixing bugs.

6.3. Threats to Validity

The threat to internal validity includes the possible errors in the recounted model. To make a fair comparison, we
have to recount the CM model from the CTET model, and a miscalculation could lead to a wrong model. To reduce
the threat, we read the CTET model carefully, when we build the CM model. As the CTET model does not explain its
repair actions, we can misunderstand some repair actions, and miscalculate the probabilities of some merged repair
actions. However, our results show that the effectiveness of the CM model is in line with the predication of Martinez
and Monperrus [43], which indicates that the CM model is correctly counted. The threat to external validity includes
that selected open source projects may not fully reflect the nature of commercial projects. However, Ma et al. [39]
show that many commercial companies involve in open source development, which weakens the boundary between
open source projects and commercial projects. The threat to external validity also includes the selected oracle bugs.
Although we conducted our study on 59 real bugs, our approach is evaluated on limited bugs. In addition, we notice
that programmers can hide exceptions, even if they do not fully understand the causes of thrown exceptions. In some
cases, hiding exceptions does not repair bugs, but makes the debugging process even more difficult. As a result, our
golden standard is not fully reliable. The threat could be further reduced by introducing more bugs and more manual
inspection in future work.

7. Discussion and Future Work

Mining repair models for more bug categories. We notice that many bugs do not throw exceptions. For example,
concurrency bugs can hang a system without any exceptions. For these bugs, it is feasible to determine their categories
with other sources (e.g., runtime behaviors [55, 32]). Furthermore, researchers have conducted various empirical
studies on bugs (e.g., [67]). Their results are useful to identify more categories of bugs for analysis.
Mining synthesis models for bug categories. Kaleeswaran et al. [23] show that an approach is useful, even if
it provides only hints on fixing bugs but does not fix bugs. Still, we understand the importance of reducing the
gap between repair shapes and patches. It can be feasible to build the mappings between bug symptoms and their
treatments. For example, when we fix NPE-related bugs, we often check variables against null values. In addition,
as pointed out by Le Goues et al. [29], researchers proposed approaches that mine specifications from code [95, 89],

25https://issues.apache.org/jira/browse/FELIX-1846
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documents [96], and traces [13]. Zhong and Mei [90] conduct an empirical study on API usages. Their findings can be
useful to repair API-related bugs. It may also be feasible to borrow ideas from related research fields (e.g., behaviour
model synthesis [74], service composition [40], and online healing [11]). In future work, we plan to leverage the
preceding work to build a synthesis model for specific bugs.
Guiding the repair process. In the research context of automatic program repair, researchers assume that faults are
already localized by existing spectra-based fault localization approaches [79]. However, Liu and Zhong [35] show
that a located fault is often not the true location of a bug, and the effectiveness of an approach can be significantly
reduced, if located bugs are not ranked as the top ones. Especially for exception-related bugs, simply trying to repair
the location that throws the exception is a very dangerous action, since it potentially hides the failure behavior of the
bug. In addition, although Qi et al. [57] show that the random search is more effective than the genetic algorithm,
Martinez and Monperrus [43] and our work both show that it is feasible to fix only small bugs, without a better
guidance algorithm. Murphy-Hill et al. [50] analyze various issues, when programmers fix bugs manually. Based on
these issues, we plan to explore more advanced fault localization approaches and guiding algorithms in future work.

8. Related Work

Automatic program repair. Weimer et al. [77] is a pioneer in the automatic-program-repair research. Follow-up
researchers extend the approach with additional operators [28, 25, 20, 75] and additional inputs such as forum discus-
sions [16], past fixes [38] and code repositories [24]. Qi et al. [57] show that the random search is more effective than
the genetic algorithm in guiding repairs. Liu and Zhong [35] mine more repair templates from StackOverflow. Qi et
al. [58] show that automatic repair can lead to false fixes. Smith et al. [66] show that the random search is less effec-
tive than the genetic algorithm, and developers can also make similar false fixes. Martinez and Monperrus [43] mine
repair models to reduce the search space. Xuan and Monperrus [83] purify test cases to better locate faults. Long and
Rinard [36] focus the search on the most promising regions, and present a detailed analysis on the search space [37].
Sidiroglou et al. propose approaches that repairs buffer overflows [63] and internet worms [64]. Rolim et al. [60]
learn repairs from existing code samples. Xiong et al. [81] and Xuan et al. [82] repair bugs in if conditions, with
knowledge learnt from documents and code samples. Chen et al. [6] repair bugs with learnt contracts. Le et al. [27]
synthesize patches based on examples. Saha et al. [61] introduce more repair templates and algorithms to rank patch-
es. Liu and Zhong [35] mine StackOverflow for more repair templates. Instead of the genetic algorithm, Mechtaev et
al. [45] use constraint solving to generate patches, and combine symbolic execution for improvement [46]. Tan and
Roychoudhury [68] show that learning the nature of recurring bugs can lead to an effective repair approach for such
bugs. Recent studies [85, 86] show that better test cases can lead to better synthesized patches. Zhong and Meng [91]
analyze the potential of reusing past fixes. Liu et al. [34] compare test coverage to determinate correct patches. Hassan
and Wang [19] repair build scripts with fixing histories. Yang et al. [84] show that the suspiciousness-first algorithm
is better than the rank-first algorithm in parallel repair and patch diversity. We further analyze the divide-and-conquer
strategy in a detailed depth, and our evaluation results show that our repair models improve the general repair model.
Repairing corrupt data. Researchers have proposed various approaches to repair errors in data. Demsky and Ri-
nard [9] dynamically detect and repair data structures based on predefined constraints. Novark et al. [53] propose
Exterminator that repairs heap-based memory errors. Elkarablieh et al. [12] repair data structures based on written
assert statements. Carzaniga et al. [5] repair corrupt data based on recorded successful executions. It may be feasi-
ble to borrow ideas from automatic program repair to deal with the variety in repairing corrupt data, and our strategy
shall work too.
Empirical studies on bug fixes and exceptions. Some empirical studies were conducted to understand bug fixes or
exceptions. Yin et al. [88] show that bug fixes can introduce new bugs. Nguyen et al. [51] show that repetitiveness
is common in small size bug fixes. Eyolfson et al. [14] show that the bugginess of a commit is correlated with the
time to make the commit. Zhong and Su [93] estimate the potential of automatic program repair by comparing what
programmers did in repairing bugs with what are implemented in existing repair approaches. Campos and Maia [4]
replicate this study [93] with more bug fixes, and explored more issues such as which repair patterns are common.
Baishakhi et al. [59] show that buggy code has higher entropies. Koopman and DeVale [26] analyze the exception
handling mechanisms of different operation systems. Garcia et al. [17] survey the exception handling mechanisms of
object-oriented software. Zhong and Meng [91] explore the potential of using hints from past fixes. Our study reveals
the nature of fixing exception-related bugs, complementing the previous studies.
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9. Conclusion

Although the general repair model reduces the search space of generating patches, we argue that it can improve
the general model if we mine repair models for bug categories. To explore the hypothesis, we implement EXFI that
classifies bugs based on their related exceptions. With its support, we construct the first benchmark in which bug
categories are marked. In total, the benchmark contains 1,483 bugs. Furthermore, we implement MIMO that mines a
repair model for each category of bugs that are related to an exception. In our study, we compare the general repair
model with our mined repair models. Our results show that our repair models are significantly different from the
general repair model, and are more effective than the general repair model in generating correct repair shapes.
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[56] P. Prabhu, N. Maeda, G. Balakrishnan, F. Ivančić, and A. Gupta. Interprocedural exception analysis for C++. In Proc. ECOOP, pages

583–608, 2011.
[57] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength of random search on automated program repair. In Proc. ICSE, pages 254–265,

2014.
[58] Z. Qi, F. Long, S. Achour, and M. Rinard. An analysis of patch plausibility and correctness for generate-and-validate patch generation

systems. In Proc. ISSTA, pages 24–36, 2015.
[59] B. Ray, V. Hellendoorn, Z. Tu, C. Nguyen, S. Godhane, A. Bacchelli, and P. Devanbu. On the “naturalness” of buggy code. In Proc. ICSE,

2016.
[60] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R. Suzuki, and B. Hartmann. Learning syntactic program transforma-

tions from examples. In Proc. ICSE, pages 404–415, 2017.
[61] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad. ELIXIR: effective object oriented program repair. In Proc. ASE, pages 648–659, 2017.
[62] A. Schroter, N. Bettenburg, and R. Premraj. Do stack traces help developers fix bugs? In Proc. MSR, pages 118–121, 2010.
[63] S. Sidiroglou, G. Giovanidis, and A. D. Keromytis. A dynamic mechanism for recovering from buffer overflow attacks. In Proc. ICISC,

pages 1–15, 2005.
[64] S. Sidiroglou and A. D. Keromytis. Countering network worms through automatic patch generation. IEEE Security & Privacy, 3(6):41–49,

2005.
[65] S. Sinha, H. Shah, C. Görg, S. Jiang, M. Kim, and M. J. Harrold. Fault localization and repair for Java runtime exceptions. In Proc. ISSTA,

pages 153–164, 2009.
[66] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun. Is the cure worse than the disease? overfitting in automated program repair. In Proc.

20



/ The Journal of Systems and Software 00 (2018) 1–21 21

ESEC/FSE, pages 532–543, 2015.
[67] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai. Bug characteristics in open source software. Empirical Software Engineering,

19(6):1665–1705, 2014.
[68] S. H. Tan and A. Roychoudhury. relifix: Automated repair of software regressions. In Proc. ICSE, pages 913–923, 2015.
[69] S. H. Tan, J. Yi, S. Mechtaev, A. Roychoudhury, et al. Codeflaws: a programming competition benchmark for evaluating automated program

repair tools. In Proc. ICSE, pages 180–182, 2017.
[70] S. Thummalapenta and T. Xie. SpotWeb: Detecting framework hotspots and coldspots via mining open source code on the web. In Proc.

ASE, pages 327–336, 2008.
[71] S. Thummalapenta and T. Xie. Mining exception-handling rules as sequence association rules. In Proc. ICSE, pages 496–506, 2009.
[72] Y. Tian, J. Lawall, and D. Lo. Identifying linux bug fixing patches. In Proc. ICSE, pages 386–396, 2012.
[73] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and D. Poshyvanyk. There and back again: Can you compile that

snapshot? Journal of Software: Evolution and Process, 29(4), 2017.
[74] S. Uchitel, J. Kramer, and J. Magee. Synthesis of behavioral models from scenarios. IEEE Transactions on Software Engineering, 29(2):99–

115, 2003.
[75] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and A. Zeller. Automated fixing of programs with contracts. In Proc. ISSTA,

pages 61–72, 2010.
[76] W. Weimer and G. C. Necula. Exceptional situations and program reliability. ACM Transactions on Programming Languages and Systems,

30(2):8, 2008.
[77] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically finding patches using genetic programming. In Proc. ICSE, pages

364–374, 2009.
[78] C. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei. Boosting bug-report-oriented fault localization with segmentation and stack-

trace analysis. In Proc. ICSME, pages 181–190, 2014.
[79] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A survey on software fault localization. IEEE Transactions on Software Engineering,

42(8):707–740, 2016.
[80] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung. Relink: recovering links between bugs and changes. In Proc. ESEC/FSE, pages 15–25, 2011.
[81] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang. Precise condition synthesis for program repair. In Proc. ICSE, pages

416–426, 2017.
[82] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. L. Marcote, T. Durieux, D. Le Berre, and M. Monperrus. Nopol: Automatic repair of

conditional statement bugs in Java programs. IEEE Transactions on Software Engineering, 43(1):34–55, 2017.
[83] J. Xuan and M. Monperrus. Test case purification for improving fault localization. In Proc. FSE, pages 52–63, 2014.
[84] D. Yang, Y. Qi, and X. Mao. An empirical study on the usage of fault localization in automated program repair. In Proc. ICSME, pages

504–508, 2017.
[85] J. Yang, A. Zhikhartsev, Y. Liu, and L. Tan. Better test cases for better automated program repair. In Proc. ESEC/FSE, pages 831–841, 2017.
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