An Empirical Study on Cross-language Clone Bugs

Honghao Chen, Ye Tang, and Hao Zhong
Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
{chenhonghao,tangye_22,zhonghao}@sjtu.edu.cn

ABSTRACT

Many applications have implementations in different languages.
Although their languages are different, they can implement similar
or even identical functionalities. If an implementation has a bug,
the other implementations can have corresponding bugs. In this
paper, we call them cross-language clone bugs, or mirror bugs for
short. Mirror bugs are important since many applications release
implementations in different languages. From mirror bugs, it can
be feasible to learn more bug patterns, and thus detect more types
of bugs. Although researchers have conducted empirical studies
to analyze the bugs in clones, to the best of our knowledge, no
study has ever explored mirror bugs. As a result, many research
questions are still open. For example, are there any mirror bugs
in real projects? Are bug fixes in a language useful to detect and
repair bugs in other languages? To answer the above questions, in
this paper, we conduct the first empirical study on mirror bugs. In
this study, we manually analyze 402 bugs that are collected from
four projects, and each project releases a Java implementation and
C# implementation. Our study presents answers to two interesting
research questions. According to our results, there is a timely need
for a tool that assists in detecting mirror bugs. Indeed, we find that
some programmers already manually identify and fix mirror bugs,
even without any tool support.

ACM Reference Format:

Honghao Chen, Ye Tang, and Hao Zhong. 2024. An Empirical Study on Cross-
language Clone Bugs. In 2024 IEEE/ACM 46th International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion °24), April
14-20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3639478.3643075

1 INTRODUCTION

To attract more users, projects can be implemented in multiple
programming languages. For example, many popular mobile ap-
plications release both iOS versions and Android versions. Even
if a project is implemented in a single language, outsiders can re-
implement the project in other languages. For example, LocationTech
implements Java Topology Suite (JTS) [6], a library that provides
geometric functions. Meanwhile, outsiders implement, Net Topol-
ogy Suite [7], a C# correspondence of JTS. When a project has
implementations in multiple languages, they are typically ported
from the implementation in a single language. As a result, these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE-Companion °24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0502-1/24/04...$15.00
https://doi.org/10.1145/3639478.3643075

60% 60%
50% 36 50%
83 40% 40%
39 30% 30%
20% 20%
10% 10%
9 11 " 0%
Logging JTS/NTS Hibernate Lucene JTS/NTS Hibernate Lucene

<l 87

100% 100%
'8 Ill III o0 [| o0
80% 80%
12 70% 70%
6
3

reported m®identified ®unfixed

two-sided Java-sided mC#-sided

(a) One-sided and two-sided (b) Reported and identified
Figure 1: The distribution

implementations in different languages can contain many similar
code fragments. Indeed, researchers [8, 12] have detected many
cross-language clones. When they analyze bugs in the same lan-
guage, researchers [11, 13] found that many bugs appear in similar
code fragments. Furthermore, researchers [10, 15] have proposed
approaches to extract bug signatures and detect similar bugs in
clones. Similarly, bugs can appear in similar code fragments, even
if they are implemented in different languages, and a tool is desir-
able to detect such bugs. However, to the best of our knowledge,
no study has been conducted to analyze mirror bugs. Compared
with bugs in clones, languages supplement interesting elements
to the studies on mirror bugs. For example, memory leaks are less
found in Java code than in C code, since Java provides the garbage
collection mechanism to manage memory resources. To deepen the
knowledge of bugs, we explore the following questions:

¢ RQ1. How many mirror bugs are there? The answers are
useful for understanding the significance of mirror bugs.

¢ RQ2. How many mirror bugs are fixed? The answers are
useful for understanding the awareness of mirror bugs.

2 METHODOLOGY

Dataset. In this study, we select 4 real-world projects. From
the four projects, we have sampled 402 bugs from these projects.
From the projects, we select bug reports in order of their priorities
or from the latest ones. For each implementation, we terminate
the selection, if all candidates are inspected or 90 bug reports are
selected. As the analysis of mirror bugs involves many complicated
issues, we cannot implement a tool to automate the analysis. Due to
the heavy effort of manual analysis, we cannot afford the analysis
of more bugs. Indeed, from the four projects, we have collected 402
bugs, which are already more than other empirical studies [9, 14].

Protocol. Our manual inspection includes reading the intro-
ductions and manuals of the projects; inspecting bug reports to
understand the symptoms; and inspecting patches to understand
the causes. Specifically, for each bug report in one of the paired
projects p;, we search the bug reports of the other project p;s for a

https://doi.org/10.1145/3639478.3643075
https://doi.org/10.1145/3639478.3643075
https://doi.org/10.1145/3639478.3643075

ICSE-Companion ’24, April 14-20, 2024, Lisbon, Portugal

report whose symptoms are similar. If we can find such a report,
we check out their fixing commits to determine whether it is a two-
sided bug. If we cannot find a bug report with similar symptoms, we
locate its buggy files in p; according to its fixing commit. After that,
we search the latest source files of p;, for equivalent source files.
If we can reproduce a similar symptom on the equivalent source
files of py, we classify this bug report as a two-sided bug. If not,
we identify it as a one-sided bug. Also, while classifying, we pay
special attention to whether two-sided bugs are fixed.

3 EARLY RESULT

RQ1. Overall Distribution. Figure 1a shows the distribution
of different projects. In Lucene and Hibernate, two-sided bugs are
around 10%. However, we find around 60% sampled bugs from
JTS are mirror bugs. We notice that some programmers from NTS
participate in the development of JTS and actively learn the fixed
bugs of JTS. When Log4j upgrades from 1.x to 2. x, most source files
are rewritten. As we select recent bugs, the bugs from Log4net are
similar to Log4j 1.x, but we find no two-sided bugs between Log4j2
and Log4net. In total, we find that 14.7% of sampled bugs appear
in both the Java and C# implementations. As the implementations
in two languages have many differences during their independent
evolution, the percentage is high, and can motivate many research
topics on cross-language bugs.

RQ2. Fixed or Unfixed. We analyze how many two-sided bugs
were fixed in this research question. Figure 1b shows the distribu-
tion of different projects. JTS and NTS have no reported mirror bug,
but they actively identified mirror bugs. Lucene and Hibernate tell
a different story. For example, Figure 2 shows a reported mirror
bug. Although their reporters are different, the buggy code lines
and even their repairs are quite similar. The similarity highlights
the importance of detecting mirror bugs. In total, 45 (76.2%) of
our found two-sided bugs are already fixed. 9 have bug reports in
both Java and C# implementations, but 36 bugs have reports on
only one side. Among unfixed bugs, we find some bugs have minor
symptoms, and programmers of the other implementation may not
fix them. For example, the symptom of Lucene-10118 [5] is that
the log messages in ConcurrentMergeScheduler are too simple. The
programmers of Lucene may not pay attention to this minor bug.
More details are presented on our website:
https://github.com/chenhh021/cross-language-poster

4 WORK PLAN

To extend this work to a full paper, our work plan is as follows:

1. Analyze the causes for one-sided bugs. The results are use-
ful for understanding the differences that are caused by languages.
For example, the difference in implementations of different lan-
guages. We also plan to build the taxonomy for the causes. The
results are useful for designing a detection tool for mirror bugs.
For example, after knowing all the causes, a tool can improve its
accuracy in detecting mirror bugs.

2. Find and fix new bugs. We plan to try to manually find new
bugs based on mirror bugs, and if we succeed, we will attempt to fix
them according to the known patch. After that, we will report them
to developers to collect their feedback. This manual process will

(RIS

ENRVIRS

[

RTINS

Honghao Chen et al.

Second-level cache doesn't support @OneToOne

Description Reporter Nathan Xu Created September 16, 2020 at 10:48 AM
Currently Hibernate's second-level cache doesn't support @OneToOne. The issue here is the entity
which is not fetched from cache is mapBy field and currently Hibernate only supports collection

cache as the only non-id cache.
(a) HHH-14216 [1]
One-to-one second level cache issue #2552

deAtog commented on 18 Sep 2020

When assembling an object with one-to-one relationships, a second level cache miss occurs
while trying to assemble the related object. The OneToOneType has the following code:
Hibernate ORM has this same issue, so coordinating a fix in both would benefit all.

(b) NHibernate#2552 [2]

public Object assemble (...) ...

- return resolve(session.getContextEntityldentifier (owner),session ,owner);

+ Serializable id = (Serializable) getldentifierType (session).assemble(oid,
session , null);

+ if (id == null) {return null;}

+ return resolveldentifier (id, session);

I

(c) The patch for HHH-14216 [3]

public override object Assemble (...){

- return Resolveldentifier(session.GetContextEntityldentifier (owner),
. owner);

+ object id = GetldentifierType (session).Assemble (cached,

+ if (id == null){return null;}

+ return Resolveldentifier (id,

b

session
session, null);

session);

(d) The patch for NHibernate#2552 [4]

Figure 2: A mirror bug.

provide references for the development of detection tools and repair
tools. The feedback from developers would help in understanding
the significance of researching such tools.

ACKNOWLEDGEMENT

This work is sponsored by National Nature Science Foundation of
China No. 62232003 and 62272295.

REFERENCES

[1] 2020. https://hibernate.atlassian.net/browse/HHH-14216.

[2] 2020. https://github.com/nhibernate/nhibernate-core/issues/2552.

[3] 2020. https://github.com/hibernate/hibernate-orm/pull/3590.

[4] 2020. https://github.com/nhibernate/nhibernate-core/pull/2576.

] 2021. https://issues.apache.org/jira/browse/LUCENE-10118.

] 2022. https://locationtech.github.io/jts/.

[7] 2022. https://github.com/NetTopologySuite/NetTopologySuite.

] Xiao Cheng, Zhiming Peng, Lingxiao Jiang, Hao Zhong, Haibo Yu, and Jianjun
Zhao. 2016. Mining revision histories to detect cross-language clones without
intermediates. In Proc. ASE. 696-701.

[9] LiJia, Hao Zhong, Xiaoyin Wang, Linpeng Huang, and Xuansheng Lu. 2021. The
symptoms, causes, and repairs of bugs inside a deep learning library. Journal of
Systems and Software 177 (2021), 110935.

[10] Yanjie Jiang, Hui Liu, Nan Niu, Lu Zhang, and Yamin Hu. 2021. Extracting concise

bug-fixing patches from human-written patches in version control systems. In

Proc. ICSE. 686-698.

Sunghun Kim, Kai Pan, and E. James Whitehead Jr. 2006. Memories of bug fixes.

In Proc. ESEC/FSE, Michal Young and Premkumar T. Devanbu (Eds.). ACM, 35-45.

Nicholas A. Kraft, Brandon W. Bonds, and Randy K. Smith. 2008. Cross-language

Clone Detection. In Proc. SEKE. 54-59.

Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H Pham, Jafar Al-Kofahi, and

Tien N Nguyen. 2010. Recurring bug fixes in object-oriented programs. In Proc.

32nd ICSE. 315-324.

[14] Xiao Xuan, Xiaogiong Zhao, Ye Wang, and Shanping Li. 2015. An Empirical
Study of Bugs in Industrial Financial Systems. IEICE Trans. Inf. Syst. 98-D, 12
(2015), 2322-2327.

[15] Hao Zhong, Xiaoyin Wang, and Hong Mei. 2020. Inferring bug signatures to
detect real bugs. IEEE Transactions on Software Engineering 48, 2 (2020), 571-584.

[11

[12

[13

https://github.com/chenhh021/cross-language-poster
https://hibernate.atlassian.net/browse/HHH-14216
https://github.com/nhibernate/nhibernate-core/issues/2552
https://github.com/hibernate/hibernate-orm/pull/3590
https://github.com/nhibernate/nhibernate-core/pull/2576
https://issues.apache.org/jira/browse/LUCENE-10118
https://locationtech.github.io/jts/
https://github.com/NetTopologySuite/NetTopologySuite

	Abstract
	1 Introduction
	2 Methodology
	3 Early Result
	4 Work Plan
	References

