
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

An Empirical Study on API Usages
Hao Zhong, Member, IEEE, and Hong Mei, Fellow, IEEE

Abstract—API libraries provide thousands of APIs, and are essential in daily programming tasks. To understand their usages, it has
long been a hot research topic to mine specifications that formally define legal usages for APIs. Furthermore, researchers are working
on many other research topics on APIs. Although the research on APIs is intensively studied, many fundamental questions on APIs are
still open. For example, the answers to open questions, such as which format can naturally define API usages and in which case, are
still largely unknown. We notice that many such open questions are not concerned with concrete usages of specific APIs, but usages
that describe how to use different types of APIs. To explore these questions, in this paper, we conduct an empirical study on API usages,
with an emphasis on how different types of APIs are used. Our empirical results lead to nine findings on API usages. For example, we
find that single-type usages are mostly strict orders, but multi-type usages are more complicated since they include both strict orders
and partial orders. Based on these findings, for the research on APIs, we provide our suggestions on the four key aspects such as the
challenges, the importance of different API elements, usage patterns, and pitfalls in designing evaluations. Furthermore, we interpret
our findings, and present our insights on data sources, extraction techniques, mining techniques, and formats of specifications for the
research of mining specifications.

Index Terms—API usage, mining specification, empirical study.

F

1 INTRODUCTION

As a successful example of information hiding [54], Applica-
tion Programming Interfaces (APIs) are widely used in the modern
software industry. Although reusing APIs reduces programming
effort, researchers and practitioners complain that APIs are often
poorly documented [61] and difficult to use [46]. After decades
of development, software repositories accumulate many source
files that illustrate API usages. In recent years, it has been
a hot research topic to mine specifications from such source
files, and a mined specification defines the legal sequences or
the invariants (e.g., preconditions) for calling APIs. Robillard
et al. [60] present a comprehensive survey on this research
direction. These approaches mine many specifications in various
formats (e.g., frequent call sequences [90], automata [5], temporal
logics [76], and graphs [50]), and researchers have applied such
mined specifications in detecting bugs [29], monitoring anomaly
behaviors [19], and recommending code samples [90]. Besides
mining specifications, researchers have proposed other approaches
that assist programming with APIs more effectively. For example,
researchers have proposed approaches that update API calls from
an obsolete version to a recent version [10], [81] and migrate API
calls across languages [47], [89].

Although the research on APIs is intensively studied, many
fundamental questions are still not fully explored. For example,
in literature, researchers proposed approaches that mine two types
of specifications: single-type specifications that define API usages
of individual API classes (e.g., [92]), and multiple-type specifica-
tions that define API usages of multiple API classes (e.g., [90]).
However, the two types of approaches are never compared with
each other, and researchers even do not know which specifications
fit their needs. As another example, researchers have proposed
approaches that update API calls from an obsolete version to a
recent version. In their evaluations, most approaches (e.g., [10])
present their effectiveness in updating individual libraries. Until

• H. Zhong and H. Mei are with the Department of Computer Science and
Engineering, Shanghai Jiao Tong University, China, 200240.
E-mail: {zhonghao,meih}@sjtu.edu.cn

now, researchers do not know whether multiple libraries are
typically used in the same piece of code. If they are, evaluating
on individual libraries is insufficient to prove the effectiveness of
proposed approaches. In total, our study explored the following
six research questions:

• What is the role of API fields and static API elements?
• Which is the best format to define API usages?
• What is the right tradeoff between single-type usages and

multiple-type usages?
• To what degree do programmers work with APIs from

different libraries?
• What are the proper lengths for API usages?
• How frequently are APIs used?

Section 3.1 presents the details of the above research questions,
and Section 3.2 analyzes the significance of these research ques-
tions, as far as mining specification is concerned.

Benefits. It is desirable to answer the above research questions,
and the benefits are as follows:
Benefit 1. With the answers to the above questions, researchers
can make better choices, when they design their approaches or
evaluations in future work. In addition, researchers can also revisit
and tune their proposed approaches, according to the answers.
Benefit 2. With the answers to the above questions, researchers can
rethink whether the answers are consistent with their intuitions.
Indeed, an inconsistency can indicate a neglected problem, which
may need further exploration. For example, many approaches (e.g.,
[90]) mine multiple-type specifications as sequences. As Finding
6 shows that graphs are more suitable to encode multiple-type
usages, researchers can extend their approaches with graphs.

As APIs are many and complicated, even experienced pro-
grammers may not fully understand their usages. To deepen the
knowledge on APIs, researchers have conducted empirical studies
(see Section 7 for details), but prior studies do not touch our open
questions. In addition, some empirical studies (e.g., [66]) were
manually analyzed, which can be biased and does not scale. To
answer the open questions, it is desirable to automate the process.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

lock unlock

manipulation

closurecreation

(a) The specification template

(b) A sample specification

Fig. 1. The bias in Zhong et al. [92]

Challenges. Intuitively, as specifications formally define API
usages, analyzing mined specifications can provide valuable hints
to the open questions. However, it is difficult to answer the open
questions in this way, due to the following challenges:
Challenge 1. It is difficult to analyze mined specifications, since
they are in various formats and are difficult to obtain. Furthermore,
Robillard et al. [60] show that many mined specifications are false.
It can be nontrivial to identify correct specifications.
Challenge 2. It is insufficient and biased to analyze mined spec-
ifications. As discussed before, researchers often rely on their
personal experience to design their approaches. The limitation
or bias in their personal experience can lead to bias in analysis
results. For example, Zhong et al. [92] rely on a template to mine
specifications for resources (e.g., files and database connections).
Figure 1(a) shows the template, and it defines the typical actions
such as creation, lock, manipulation, unlock, and closure. For a
resource, Zhong et al. [92] link its methods to corresponding
actions, when they infer its specification. For example, Figure 1(b)
shows an inferred specification for the LOB resource. If we analyze
specifications mined by Zhong et al. [92], we can obtain only the
knowledge on resources, since all their specifications are inferred
from a resource template.

Our insight. Instead of analyzing mined specifications, we
extract API usages directly from client code. As we do not analyze
the mined specifications of specific approaches, we eliminate the
bias inside selected mining approaches. Furthermore, we notice
that the open questions in Section 3.1 are not concerned with
usages of specific concrete APIs, but how to use different types
of APIs. For example, if we divide API usages into single-type
usages and multiple-type usages, it becomes feasible to answer
which is more common and in which cases.

Our contribution. In this paper, we implemented a tool that
analyzes how programmers use different types of APIs. With its
support, we conducted an empirical study on API usages. Our
study leads to the following results:

• The importance and the challenges of the research
on APIs. Researchers have proposed many approaches
that mine specifications from client code. Despite of their
positive results, we find that most APIs do not have much
client code, so we have to learn their usages from other
data sources such as documents (Finding 9).

• API elements. It is reasonable for researchers to focus on
methods, since methods are more frequently called than
fields (Finding 2). While methods appear in both strict
orders and partial orders, fields are more frequently used
in partial orders (Finding 3). Researchers can pay more
attention to static methods, since they are frequently called
and their usages are different (Finding 1).

• Usage patterns. Strict orders and partial orders roughly
divide API usages into two halves (Finding 4). Single-type
usages and multi-type usages are equivalently common
(Finding 5). Most single-type usages are strict orders, but
multi-type usages include as many strict orders as partial
orders (Finding 6). API usages typically are short but with
some quite long outliers, and partial orders are often longer
than strict orders (Finding 8).

• Evaluation. Most usages call no more than two libraries,
and when more than one library is called, one of them
is typically J2SE (Finding 7). As a result, although e-
valuating individual libraries can lose many usages, it
is sufficient to add J2SE to individual libraries, when
researchers design evaluations.

More specifically, in Section 6, we present the interpretation
of our findings, as far as mining specifications is concerned. The
other sections of this paper are organized as follows. Section 2
introduces the background of our study. Section 3 introduces
our research goal. Section 4 presents our analysis methodology.
Section 5 presents our empirical study. Section 7 presents related
work. Section 8 concludes and discusses the future work.

2 MINING SPECIFICATION

As introduced in Section 1, many papers on APIs are related
to mining specifications. In this section, for the research in mining
specifications, we briefly introduce its data sources (Section 2.1),
techniques (Section 2.2), and mined specifications (Section 2.3).

2.1 Data Source
Definition 1. An Application Programming Interface (API) is a set

of visible code elements provided by frameworks or libraries,
and such frameworks or libraries are called API libraries. The
code of API library is called API code.

For most commercial libraries, API code is not available. Most
approaches consider API code as a black box, with only several
exceptions (e.g., [12], [91]).
Definition 2. Client code is application code that reuses or extends

code elements provided by API libraries.

The definitions of API code and client code are relative to each
other. For example, Lucene uses classes and methods provided by
J2SE1, so we consider Lucene as client code and J2SE as API
code, when we analyze the code of Lucene. Meanwhile, Nutch2

uses classes and methods provided by Lucene, so we consider
Nutch as client code and Lucene as API code, when we analyze the
code of Nutch. The following code further illustrates the concept:
1: import java.io.BufferedReader;
2: import java.io.BufferedWriter;
3: import java.io.InputStreamReader;
4: import java.io.OutputStreamWriter;
5: import java.io.PrintWriter;
6: import java.net.ServerSocket;
7: import java.net.Socket;...
8: public static void main(...){
9: ...
10: ServerSocket s = new ServerSocket(8080);
11: Socket socket = s.accept();
12: BufferedReader br = new BufferedReader(

new InputStreamReader(socket.getInputStream()));
13: PrintWriter pw = new PrintWriter(new BufferedWriter(

new OutputStreamWriter(socket.getOutputStream())),

1. http://java.sun.com/j2se/
2. http://lucene.apache.org/nutch/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

14: while(true){
15: String str = br.readLine();...
16: pw.println("Message Received");
17: pw.flush();
18: }
19: ...
20: br.close();
21: pw.close();
22: socket.close();
23: s.close();...
24:}

If we consider the above code as a piece of client code, the
bold code elements are API elements, since they are imported
from a third-party library, J2SE.
Definition 3. An API usage is the way to call API code, which

includes its call sequences or invariants.

The above code illustrates the two types of API usages: Lines
10 to 23 show the legal call sequences to implement a server, and
Line 10 shows an invariant for the ServerSocket method. Ernst
et al. [17] define an invariant as a property that holds at a certain
point or points in a program. When calling the above API method,
programmers typically set the port number (the parameter) as
8080. As many approaches (e.g., [17]) mine invariants according
to their frequencies, they can mine parameter = 8080 as an in-
variant, when calling the above method. Except several exceptions
(e.g., [53], [92]), most existing approaches mine specifications
from client code. In particular, API usages are extracted through
the following sources:
1. Source code. Some tools (e.g., [90]) statically analyze source
files of client code to extract API usages. Due to the complexity of
code, static approaches can produce infeasible call sequences or
values. For example, an early version of MAPO [80] can extract
call sequences from both if-clauses and else-clause, and thus
extracts infeasible call sequences. However, it is easier for static
analysis to extract all the API usages from a piece of client code.
2. Trace. Some tools (e.g., [5]) instrument client code or API code.
After that, they execute client code with various input values, and
the instrumented code records API usages. Although API usages
in traces are accurate, it can lose some API usages, due to the
difficulty to prepare sufficient test cases.
3. Bytecode. Some tools (e.g., [51]) statically analyze bytecode
of client code to extract API usages. It is simpler to analyze
bytecode than source code, but analyzing bytecode has its unique
challenges. For example, Meng and Miller [40] complain that
bytecode can have non-code bytes, missing symbols, and over-
lapping instructions, which complicate the analysis.

All the three sources have their advantages and disadvantages.
Despite of the different sources, when extracting API usages,
existing tools record method sequences (e.g., [5], [90]), graphs
(e.g., [50]), or occurrence sets [42]. Although it is easier to store
call sequences, graphs can better present API usages in some
cases. For example, in the above code, if we record API usages in
chronological order, the called API methods in Line 12 are before
the called API methods in Line 13. However, even if the order
of the two lines is changed, the semantic of the code remains the
same. Acharya et al. [2] show that graphs are natural to define the
above usage, since it is a partial order.

2.2 Mining Technique
Researchers have proposed various mining techniques that

mine specifications [60], and the definition is as follow:
Definition 4. A specification defines a type of legal API usages

(e.g., legal call sequences or invariants).

(a) automaton [13]

2013/4/26

1

S13 S14 S12
connect close

close
flush

flush
write

flush
close

x x

Pattern P

BufferedReader.<init>x

BufferedReader.readLine

BufferedReader.close

Sub-pattern Q

PASV DC DCC SSL
setPasvcommand(…)

getSSL(…)
createServerSoc(…)

AG (Label.<init> (CodeStream)
AF Label.place ())

forall i 1 i old count
implies i_th(i) = old i_th(i)

ExAcquireFastMute ExReleaseFastMute
PipedOutputStream of JDK 1.4

(b) frequent call sequence [83]

2013/4/26

1

S13 S14 S12
connect close

close
flush

flush
write

flush
close

x x

Pattern P

BufferedReader.<init>x

BufferedReader.readLine

BufferedReader.close

Sub-pattern Q

PASV DC DCC SSL
setPasvcommand(…)

getSSL(…)
createServerSoc(…)

AG (Label.<init> (CodeStream)
AF Label.place ())

forall i 1 i old count
implies i_th(i) = old i_th(i)

ExAcquireFastMute ExReleaseFastMute
PipedOutputStream of JDK 1.4

(c) UML [33]

2013/4/26

1

S13 S14 S12
connect close

close
flush

flush
write

flush
close

x x

Pattern P

BufferedReader.<init>x

BufferedReader.readLine

BufferedReader.close

Sub-pattern Q

PASV DC DCC SSL
setPasvcommand(…)

getSSL(…)
createServerSoc(…)

AG (Label.<init> (CodeStream)
AF Label.place ())

forall i 1 i old count
implies i_th(i) = old i_th(i)

ExAcquireFastMute ExReleaseFastMute
PipedOutputStream of JDK 1.4

(d) graph model [50]

2013/4/26

1

S13 S14 S12
connect close

close
flush

flush
write

flush
close

x x

Pattern P

BufferedReader.<init>x

BufferedReader.readLine

BufferedReader.close

Sub-pattern Q

PASV DC DCC SSL
setPasvcommand(…)

getSSL(…)
createServerSoc(…)

AG (Label.<init> (CodeStream)
AF Label.place ())

forall i 1 i old count
implies i_th(i) = old i_th(i)

ExAcquireFastMute ExReleaseFastMute
PipedOutputStream of JDK 1.4

(e) CTL [75]

2013/4/26

1

S13 S14 S12
connect close

close
flush

flush
write

flush
close

x x

Pattern P

BufferedReader.<init>x

BufferedReader.readLine

BufferedReader.close

Sub-pattern Q

PASV DC DCC SSL
setPasvcommand(…)

getSSL(…)
createServerSoc(…)

AG (Label.<init> (CodeStream)
AF Label.place ())

forall i 1 i old count
implies i_th(i) = old i_th(i)

ExAcquireFastMute ExReleaseFastMute
PipedOutputStream of JDK 1.4

(f) invariant [78]

Fig. 2. Sample mined specifications

An API usage can be either legal or illegal, but common API
usages are likely to be legal usages. As a result, most existing
techniques are Apriori-based [4]. In this paper, we classify existing
mining techniques into the following categories:
1. Sequential pattern mining. From multiple sequences of ob-
servations, the sequential pattern mining techniques [3] discover
the subsequences that frequently appear in observed sequences.
For mining specifications, existing approaches (e.g., [90]) consider
extracted call sequences as their observations, and mine frequently
called sequences of API methods.
2. Grammatical inference. From multiple sequences of observa-
tions, the grammatical inference techniques [14] learn a formal
grammar or a finite state machine that accounts for the character-
istic of observations. For mining specifications, most approaches
(e.g., [5]) use the k-tail algorithm [7] to learn automata from called
sequences of API methods.
3. Frequent subgraph mining. The frequent subgraph min-
ing techniques [82] mine frequent subgraphs that appear in the
observed graphs. For mining specifications, existing approaches
(e.g., [50]) extract graphs from client code, and discover frequent
subgraphs as graph patterns. Robillard et al. [60] point out that
graphs and automata are equivalent for mined specifications. How-
ever, their underlying techniques are different. The grammatical
inference techniques recover automata from call sequences, while
the graph mining techniques identify subgraphs from graphs.
4. Frequent itemset mining. From a large set of transaction items,
the frequent itemset mining techniques [8] discover items whose
frequencies are more than a predefined threshold. In literature,
existing approaches (e.g., [29], [42], [70]) mine API calls that
often appear in the same piece of code or the same revision.

Besides the above major techniques, researchers have pro-
posed other in-house techniques to mine specifications. Robillard
et al. [60] present a comprehensive review on the research in
this line. For example, Kremenek et al. [25] define a template
for API usages, and use the factor graph techniques [35] to build
specifications that fit the predefined template.

2.3 Mined Specification
Figure 2 shows six example mined specifications in the litera-

ture. In particular, Figures 2(a) to 2(e) define legal call sequences
of methods, and Figure 2(f) defines legal relations of runtime
values. Mined specifications have the following benefits:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

2017/11/7

1

XCreateWidow
XOpenDisplay

XMapWindow
XNextEventXGetWindow

Attrributes XSelectInput

XGetAtomNameXFreeGCXCloseDisplay

Fig. 3. A sample specification for partial and strict orders

1. Specifications concisely define API usages. As specifications
summarize usages from many code samples, programmers can
understand API usages without reading many code samples one by
one. Although specifications can lose details, existing approaches
(e.g., [90]) can recommend their related code samples.
2. Specifications reflect ideal API usages. Technically, mined
specifications do not exactly repeat API usages that are extracted
from client code. Instead, many details can be filtered. For exam-
ple, sequential pattern mining and graph mining ignore observa-
tions whose frequencies are lower than a predefined threshold. As
another example, Ammons et al. [5] point out that their underlying
k-tail algorithm [7] can ignore some sequences that do not fit the
learnt automata. It is reasonable to ignore some details, since such
details are relevant to only specific implementation purposes. As
specifications ignore such details, they reflect ideal API usages,
which are focused and easier to understand.

As shown in Figure 2, most approaches mine specifications
that define legal call sequences of APIs. It needs quite different
techniques to analyze call sequences and invariants. Our study
focuses on call sequences to cover more relevant questions. We
further discuss this issue in Section 8.

3 RESEARCH GOAL

Our research goal is to provide insights on how to improve the
research on APIs. Instead of specific APIs, to achieve our research
goal, we need to analyze common ways to call different types of
API elements. Here, API elements refer to classes, methods, and
fields that are declared by API libraries and called by client code.

In this section, we break our research goal into six research
questions about API usages (Section 3.1), and then analyze the
significance of the research questions, as far as the research on
mining specifications is concerned (Section 3.2).

3.1 Research Question
In our study, we have the following research questions:

RQ1. What is the role of API fields and static API elements?
We notice that researchers typically focus on only API in-

stance methods. For example, all the specifications in Figure 2
define method usages, silently neglecting fields. Many researchers
believe that fields are seldom used, since the information hiding
principle does not recommend direct accesses on fields. However,
we argue that we still need more evidences to fully understand the
importance of fields and static code elements. In addition, static
API methods often have quite different usages from instance API
methods. For example, calling an instance method often changes
the states of its declaring type, but calling a static method often
does not change the states of its declaring type. The difference can
lead to their different usages. A simple way to answer the problem
is to count corresponding API elements, but this way is indirect
and does not reflect their true usages. Instead, we analyze client
code to provide our direct answers.
RQ2. Which is the best format to define API usages?

As shown in Figure 2, researchers have mined specifications
in various formats (e.g., frequent call sequences, automata, and

graphs). However, it is still unclear which is the best format to
define API usages, and in which cases. Some researchers believe
that the choice of formats is subjective. However, we argue that
there may be some objective measures to determine the formats.
For example, Acharya et al. [2] proposed an approach that mines
partial-order specifications, and Figure 3 shows an example of
their mined specifications. The specification shows that XFreeGC
and XCloseDisplay are in a strict order, and XSelectInput
and XMapWindow are in a partial order. In this example, sequences
naturally define strict orders, but graphs naturally define partial
orders. To answer the research question, we build API graphs
(Section 4.2), and count how many built graphs illustrate partial
orders, i.e., having branches.
RQ3. What is the right tradeoff between single-type usages
and multiple-type usages?

In this paper, we define single-type API usages as usages
that involve individual API classes, and multi-type API usages
as usages that involve multiple API classes. Intuitively, multi-type
API usages can be more useful, since corresponding specifications
describe API usages of multiple classes and such usages are less
documented. However, researchers often have to make a trade-off,
since the multi-type analysis is more expensive than the single-
type analysis. For example, when Moreno et al. [43] propose an
approach that extracts code samples from the client code of a
given method. When extracting code samples, they approach uses
a static slicer [73] to compute an intra-procedural, backward slice
of the given method. To answer the research question, we count
how many API usages involve single types or multiple types.
RQ4. To what degree do programmers work with APIs from
different libraries?

It is widely known that programmers use more than an API
library in a project, but it is less unknown how programmers use
APIs from different libraries. For example, it is unclear whether
programmers typically use APIs within individual libraries, or use
APIs from different libraries closely to implement complicated
functionalities. The difference can have impacts on how to eval-
uate proposed approaches. Although conducting evaluations on
individual libraries is clear to present results, many interesting
findings may be neglected, if programmers frequently use APIs
from different libraries closely in practice. To answer the research
question, we count how many API usages involve single libraries
or multiple libraries.
RQ5. What are the proper lengths for API usages?

It is largely unknown how lengthy API usages can be. The
answer to this research question can improve existing approaches.
For example, researchers (e.g., [37]) proposed various code search
engines that recommend code samples for APIs. If most API
usages are lengthy, it can improve their effectiveness to recom-
mend long code samples. In this paper, we present our insights by
analyzing the sizes of API graphs.
RQ6. How frequently are APIs used?

Researchers still do not fully understand how frequently pro-
grammers use APIs. Thummalapenta and Xie [69] provide an
indirect answer, since they find that even popular API libraries
have unpopular API classes. Their results do not indicate that
unpopular APIs are useless, since with the evolution of software,
unpopular APIs can become popular. For example, the latest API
library can implement many new APIs. When the new APIs are
just released, we typically cannot find their client code, but later
they can become popular. The question matters, since client code
is a common source for the research on APIs. If many APIs are

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Data source Extraction Mining Format

RQ1

RQ2

RQ3

RQ4

RQ5

RQ6

Mining specifications

Fig. 4. The relations between RQs and mining specifications

unpopular, researchers can consider other sources. In this paper,
we present the frequencies of called APIs to answer the question.

3.2 The Significance of the RQs
Figure 4 shows the significance of our research questions, in

the context of mining specifications. Based on the major steps of
mining specifications (see Section 2 for details), we list four key
components such as data sources, extraction techniques, mining
techniques, and formats of specifications. Our research questions
cover all the four components:
1. Data source. RQs 4 and 6 are concerned with the data sources
of mining specifications. For example, when evaluating their spec-
ification mining approaches, some researchers (e.g., [18]) consider
method calls of all third-party libraries as API method calls, and
other researchers (e.g., [2]) focus on only individual API libraries.
If programmers often closely use APIs from different libraries
in a code snippet, it is more reasonable to consider all third-party
libraries than specific libraries in evaluations. As another example,
if many APIs do not have sufficient client code for mining, it is
worthy to explore other data sources (e.g., [92]).
2. Extraction techniques. RQs 1, 3, 4, 5, and 6 are concerned with
the extraction techniques of mining specifications. For example,
when extracting API usages, most approaches ignore API fields.
If fields play an important role, it is reasonable to consider API
fields for extraction techniques. As another example, it needs much
different techniques to extract API usages from other sources (e.g.,
documents) than client code.
3. Mining techniques. RQs 1, 2, 3, 5, and 6 are concerned with
the mining techniques of mining specifications. For example, Ro-
billard et al. [60] show that only 7 out of 33 surveyed approaches
mine multi-type specifications, due to the complexity of mining
such specifications. If we understand in which cases multi-type
usages frequently occur, we can design corresponding techniques
for such cases. As another example, researchers (e.g., [18], [26])
proposed approaches that combine small specifications into longer
ones. The answer to the lengths of API usages can reveal the
boundary of such approaches.
4. Formats of specifications. RQs 1 and 2 are concerned with
the formats of mined specifications. Based on the formats of
mined specifications, Zhong et al. [92] divide approaches for
mining legal call sequences into sequence-based approaches and
automaton-based approaches. In their taxonomy, mined sequences
include logic and sequence diagrams. For example, Wasylkowski
et al. [77] propose an approach that mines frequent call sequences,
and then extend their approach to mine CTLs [75]. According to
the taxonomy of Zhong et al. [92], the above two approaches

TABLE 1
Dataset.

Name LOC #AL Description
cassandra 393,038 94 a distributed database.

derby 1,259,797 10 a relational database.
lucene 692,520 24 a search library.

jfreechart 327,104 6 a chart library.
solr 314,645 75 an enterprise search platform.
poi 567,201 15 a library for MS documents.

zoopkeeper 116,232 28 an open-source server.

are sequence-based. Robillard et al. [60] claim that automaton
specifications and graph specifications are equivalent, so we use
graph-based approaches to denote approaches that mine automata
or graphs. The key difference between the two types of specifica-
tions is their capability to define partial orders. For example, in the
sample code of Section 2, it is allowed to change the call sequence
of Lines 12 and 13. It is quite difficult to define the call relation
between the two lines as a strict order, but it is straightforward
to define it as a partial order. The difference can partially explain
why researchers (e.g., Pradel and Gross [57]) observed that some
call sequences are incidental in traces. The answers to the research
questions can define proper formats under different scenarios.

Section 5 presents our major findings, and we further interpret
our findings for mining specifications, in Section 6.

4 METHODOLOGY

This section introduces our dataset (Section 4.1) and our major
steps (Section 4.2).

4.1 Dataset
Table 1 shows our subjects. The jfreechart project is from

SourceForge3, and the other five projects are from Apache4. We
selected these projects, since they are widely used. In addition,
to reduce the bias on specific software, we selected projects
from various categories such as databases, servers, platforms, and
API libraries. Column “LOC” lists lines of code. To ensure the
representativeness of our subjects, we select both small and large
projects, and the largest project has more than a million lines of
code. We consider source files of these subjects as client code.
Column “#AL” lists used API libraries. We identify these API
libraries from build configuration files of these projects. In total,
these projects use 148 unique API libraries. Column “Description”
lists descriptions of our subject projects.

4.2 Support Tool
We implemented a tool to support our study, and it has the

following major functionalities:
1. Building dependency graphs. In the graph theory, label graphs
are an important type of graphs, and its definition is as follow:
Definition 5. A labeled graph is defined as g = 〈V,E, µ, ν〉,

where V is a set of vertices; E ⊆ V × V is a set of edges;
µ : V → LV is a function that assigns labels to vertices; and
ν : E → LE is a function that assigns labels to edges.

From the view of the graph theory, a dependency graph is a
labeled graph, and its definition is as follow:

3. http://sourceforge.net/
4. http://www.apache.org/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Definition 6. A dependency graph is a labeled graph g = 〈V,E,
µ0, ν0〉, where V is a set of code instructions; E ⊆ V ×
V is a set of edges that denote data dependency or control
dependency; µ0 : V → LV is a function that assigns full
names to vertices; and ν0 : E → LE is ∅.

Our tool uses WALA5 to build a dependency graph for each
client method. As explained in the manual of WALA6, in a
dependency graph, each node denotes an instruction in a language
that is close to the JVM bytecode. When building dependency
graphs, WALA supports both intra-procedure and inter-procedure
analysis. Its inter-procedure analysis typically produces larger de-
pendency graphs than its intra-procedure analysis, since it explores
internal structures of called client methods. Although larger graphs
better reflect API usages from the view of machines, the inter-
procedure analysis has negative impacts on analyzing API usages.
For example, a client method (m) may be called by many client
methods (M). If we apply inter-procedure analysis, the depen-
dency graph of the client method (g) will appear in dependency
graphs of all the methods in M . As a result, the frequency of g
becomes high (at least |M | + 1 times), which can be surprising,
since such usages may not be common. To reduce the bias, like
other approaches (e.g., [90]), our tool applies only intra-procedure
analysis. The strategy does not lose any information, since it builds
dependency graphs for all client methods. Section 5.7 further
discusses this issue.
2. Encoding API graphs. Based on our inspection on the open
questions in Section 3.1, we notice that the open questions are not
concerned with the usages of specific APIs, but the general trends
of using different types of APIs. To capture the usages of different
APIs, our tool builds an API graph from each dependency graph,
and its definition is as follows:
Definition 7. An API graph is a labeled graph g = 〈V,E, µ1,

ν1〉, where V is a set of API elements; E ⊆ V × V is a set of
dependencies; and µ1 and ν1 are defined as follows:

µ1(v) =

im, if v is an instance method.
sm, if v is a static method.
if, if v is an instance field.
sf, if v is a static field.

ν1(〈vi, vj〉) =

sc, if vi and vj are declared by the same
API class.

sl, if vi and vj are declared by the same
library, but not the same class.

dl, if vi and vj are declared by different
API libraries.

Given a dependency graph g = 〈V,E, µ0, ν0〉, our tool builds
its API graph g′ = 〈V ′, E′, µ1, ν1〉 with the following steps:
(1) If v ∈ V and v is an API element, it adds v to V ′ and assign
its label as µ1(v), and if v is not an API element, it ignores v.
(2) If ∃〈v1, v2〉 . . . 〈vn, vm〉 ∈ E, v1 and vm are API elements,
and v2 . . . vn are not API elements, it adds 〈v1, vm〉 to E′.
(3) It assigns labels to nodes and edges, according to Definition 7.

As the sequential rule of calling methods after calling con-
structors is less interesting, we ignore constructors. Indeed, as
constructors are not instance methods nor static methods, our built
API graphs do not include constructors.

5. http://wala.sf.net
6. http://wala.sourceforge.net/wiki/index.php/UserGuide:IR

Our tool uses ASM7 to analyze the bytecode of API libraries. If
a code element of an API library is public, it adds the code element
to an API list. When analyzing client code, our tool compares the
full name of a called code element with the API list to determine
whether it is an API element. If a code element does not appear in
the API list, we consider it as a client-code element.
3. Clustering. During the analysis process, we have to cluster data,
according to our research questions. For example, to explore RQ1,
we cluster client code methods into categories, based on how they
call different types of API elements. In data mining, the cluster
analysis [6] is the task that groups items into categories according
to the similarity between items. As the cluster analysis meets our
requirement, in this study, we use the traditional kmeans clustering
to build clusters, and the Silhouette analysis [62] to determine the
number of clusters. To reduce superficial conclusions, we remove
categories whose items are fewer than a hundred after clustering.
For example, when we analyze RQ1 for each API library, we do
not consider API libraries whose calls are fewer than a hundred.
Some data are time series data. For example, Figure 8 shows called
API classes per API graph, which can be considered as time series
data. To cluster such data, we use the derivative dynamic time
warping [24] to calculate their similarity values.

For two time series such as P = p1, p2, . . . , pi, . . . , pn and
Q = q1, q2, . . . , qj , . . . , qm, a warping path W is a contiguous
set of mappings between P and Q:

W = w1, w2, . . . , wk, . . . , wu, max(m,n) ≤ u ≤ m+ n
The problem of calculating the distance between P and Q is then
reduced to searching for the path that minimizes the warping cost:

dis(P,Q) = min
{ √∑u

i=1
wi

u
(1)

Researchers have proposed various approaches that handle
the problem (e.g., slope weighting [64] and step patterns [45]).
While most previous approaches use the Euclidean distance, the
derivative dynamic time warping [24] compares the estimated
derivatives of two points to calculate their distance. The estimated
derivative of a point q is defined as follow:

dx(q) =
(qi − qi−1) + ((qi+1 − qi−1)/2)

2
(2)

Intuitively, an estimated derivative denotes the slope of the point
to its left and right neighbors. As a result, a low distance indicates
that two compared time series have similar shapes.

5 EMPIRICAL RESULT

We used our tool to analyze the projects in Table 1, and present
our findings for the open question listed in Section 3.1.

5.1 RQ1. Field and Static Code Element

We used our tool to build an API graph for each client method
in Table 1. Based on built graphs, we calculated the distribution of
static methods, instance methods, static fields, and instance fields.
Figure 5 shows the distribution. Based on the result, we come to
the first finding:

Finding 1. Static API methods are frequently called. In total,
more than 30% called elements are static API elements.

7. http://asm.ow2.org/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
percent

cassandra
derby

jfreechart
lucene

poi
solr

zookeeper static method
instance method
static field
instance field

Fig. 5. The distribution of called API elements

In total, we find that about one third of called code elements
are static. API libraries typically do not declare so many static
code elements. For example, for J2SE, the distribution of its
declared code elements is as follow:

0 20% 40% 60% 80% 100%

j2se

Here, the colors of the bars are of the same meanings as Figure 5.
As shown in the above bar graph, most declared code elements
in J2SE are instance methods. The difference between declared
code elements and called code elements indicates that static code
elements are more frequently called than instance code elements.
We notice that a code element is often declared as static, so that
it is easily called in different contexts. The design choice may
explain why static code elements are frequently called.

We further analyze the distribution of static code elements per
library. For this research question, the features of a library include
its occurrences of static methods, instance methods, static fields,
and instance fields. Under the guide of the Silhouette analysis,
we classify libraries into six categories. In each category, the
occurrences of API calls (e.g., the calls of static API methods) are
similar. Based on the results, we find that in 80.0% of libraries,
programmers call much more instance elements than static ele-
ments, and in the remaining 20% of libraries, programmers call
half of their static elements and half of their instance elements
roughly. An extreme library is JUnit8, and in total, 94.6% of its
called elements are static. As a testing framework, JUnit declares
many static methods. For example, the Assert class9 declares
nine static methods, and this class is called by most test cases.
This design choice can explain why so many static code elements
are called for JUnit.

Based on Figure 5, we come to the second finding:

Finding 2. Methods are more frequently called than fields.
In total, more than 80% called elements are methods.

We further analyzed the distribution for each library, and we
find that most libraries call much more methods than fields, except
the two libraries such as antlr10 and uima11. For most libraries, it is
reasonable to focus on only API methods, but we sill find several
anomalies that need specific treatments.

To understand the role of fields and methods, we classify API
graphs based on their nodes and edges. For each API graph, we
generate a seven-bit key in the following format:

8. http://junit.org
9. http://junit.org/javadoc/latest/org/junit/Assume.html
10. http://www.antlr.org
11. https://uima.apache.org

1000100
0100100
1000010
1000110
1100001
1100010
1100101
1100110
1100011
1100111
1000011
1000001
1001010
1100100
0100010
1000101
0100001
0100101
1101111
1000111
1010010

0% 10% 20% 30% 40%
percent

total

(a) strict order

1100111
1000110
1100110
1101111
1100101
1000100
1001110
0100100
1000111
1010110
1101110
1100011
1000010
1100010
0010110
1000101
1001111
1010111
1001010
1000011
1101011
0100101
1011110
1110111
1100001
1101101
0101101
1101010
1001011
0100110
1010101
0101111

0% 10% 20% 30%
percent

total

(b) partial order

Fig. 6. The classification results based on the types of nodes and edges

The bits are of the same meanings as they are in Definition 7.
Each bit is either 0 or 1, where 1 denotes that the graph has the
corresponding type of nodes or edges and 0 denotes no such type
of nodes or edges. For example, the key, “1000100”, denotes that
a graph has only instance methods that are declared by the same
class. During our classification, we put graphs with the same key
into the same category, and use the key to name the category.
Figures 6(a) and 6(b) shows the classification results for strict
orders and partial orders, respectively. Here, we use strict orders
to denote API graphs without branches, and partial orders to
denote API graphs with branches. In the two figures, the horizontal
axes list percentages from graphs in the corresponding category
to the total graphs, and the vertical axes list keys of categories.
The “total” line shows the result, when classify strict orders and
partial orders of all the seven projects altogether. The keys of the
vertical axes are in a descending order of the “total” line. The
boxplots show the quartiles, when we classify strict orders and
partial orders of the seven projects separatively. To save space, we
do not present categories whose percents are less than 0.1%.

In Figure 6(a), the third and the fourth bits of all the top ten
categories are zero. The result indicates that all strict orders in
the top ten categories do not have any fields. In the contrast, in
Figure 6(b), three out of the top ten categories of partial orders
have fields. As a result, graph-based approaches should pay more
attention to fields, whereas sequence-based approach can focus on
only methods. This leads to our third finding:

Finding 3. Fields are more related to partial orders than to
strict orders.

In summary, for RQ1, our results show that (1) static methods
are frequently called; (2) fields are less called than methods; and
(3) fields are more related to partial orders than strict orders.

5.2 RQ2. The Format to Encode API Usage
We classify API graphs into three categories, and Figure 7

shows the result. In particular, “1node” denotes graphs with only a

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

node; “strict order” denotes graphs without branches; and “partial
order” denotes graphs with branches. In about one third of API
graphs, each graph calls only an API element. From such graphs,
we randomly selected 100 samples. Although our samples are
insufficient to present the real distribution, after manual inspection,
we identify the following cases:
1. No sequential rules. For example, the Math class12 of J2SE
declares tens of numeric methods. These methods do not have any
sequential rules, and are often called individually by client code.
Please note that we focus on legal call sequences. Even if a method
does not have any sequential rules, it can follow other rules such
as invariants. For example, the following code throw an exception:
1: public static void main(...){
2: Random r = ...
3: int rand = r.nextInt(-1);
4:}

The error message says “bound must be positive”. Although the
nextInt method does not have any sequential rules, it requires
that its input value must be positive. As introduced in Section 4.2,
our built API graphs do not include constructors. Although a
constructor is called to construct a Random object, its API graph
has only a node. As a result, we put it into the “1node” category.
2. Extended Types. We notice that programmers can override
APIs. For example, the following code extends the FileOut-
putStream class:
1: public class SortedFileOutputStream extends
2: FileOutputStream {
3: private StringBuffer sb = null;
4: @Override
5 public void write(byte[] b) throws IOException{
6: if (sb == null){
7: sb = new StringBuffer();
8: }
9: sb.append(new String(b, off, len));
10: }
11: ...
12: }

In the above example, the overridden method is as follow:
1: public void write(byte b[]) throws IOException {
2: writeBytes(b, 0, b.length, append);
3: }

In the SortedFileOutputStream class, programmers override
the above method to append the input value to a string.
3. Wrappers. We notice that programmers can implement wrap-
pers for APIs. For example, a wrapper is as follow:
1: public class LogFile {
2: private final File logFile;
3: private FileOutputStream fileOutputStream;
3: public void append(String log){
4: if (fileOutputStream!=null) return;
5: try {
6: fileOutputStream.write(log.getBytes());
7: } catch (FileNotFoundException e) {
8: Log.e(...);
9: }
10: }
11: ...
12:}

In the above code, programmers implement a wrapper, and in
Lines 3 to 10, the append method exposes the write method.

When client code calls the methods of the FileOutput-
Stream class, it typically follows some sequential rules (e.g.,
write→ flush → close) to avoid resource leaks. From the
viewpoint of an intra-procedural analysis, the usages in extended
types and wrappers are partial. As a result, it is infeasible to
discover full usages from extended types or wrappers, if they are
not called by other client code.

12. http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

cassandra

derby

jfreechart

lucene

poi

solr

zookeeper

1 node
strict order
partial order

Fig. 7. The distribution of API graphs

Figure 7 shows that less than one third of API graphs illustrate
strict orders. Sequence-based approaches (e.g., [90]) mine fre-
quent call sequences. Their mined specifications naturally define
legal call sequences in strict orders, and it can be unnecessary
to use graph mining for these API usages. Figure 7 shows that
more than one third of API graphs illustrate partial orders. Graph-
based approaches (e.g., [50]) naturally handle these partial orders.
In the contrast, sequence mining may lose valuable information
of branches, and is insufficient to mine partial orders. Section 2
illustrates such an example.

We further analyze this issue for each library, and we find that
most libraries follow similar patterns as shown in Figure 7. For
example, the distributions of the two common libraries such as
J2SE and JUnit are as follows:

j2se

junit

0 20% 40% 60% 80% 100%

Here, the colors of the bars are of the same meanings as Figure 7.
However, we find that antlr and rat13 follow a different pattern:

rat

antlr

0 20% 40% 60% 80% 100%

For the two libraries, graph mining is more suitable than sequence
mining to mine their usages, since most API graphs of the two
libraries are partial orders. We find that the usages of the two
libraries are different. For example, antlr is a parser library, and
it provides various types that provide the basic parsing function-
alities. For a specific language, programmers need to extend these
types. In particular, the following code parses Javascript:
1: class JavascriptParser extends Parser{
2: public final ... expression()...{
3: ...
4: try{
5: ...
6: EOF2=(Token)match(input,...);
7: retval.stop = input.LT(-1);...
8: } catch (RecognitionException re) {
9: reportError(re);
10: recover(input,re);
11: }...
12: }}

In the above code, Parser14 is extended, and both API methods
and fields are called. Typically, most API types are not designed
to be extended. However, we find that many API types in antlr are
purposely designed to be extended. The difference may explain
why most of its usages are partial orders. Based on Figure 7, we
come to our fourth finding:

Finding 4. Sequences and graphs can naturally encode the
usages for a half of API graphs.

13. http://creadur.apache.org/rat
14. http://www.antlr.org/api/Java/org/antlr/v4/runtime/Parser.html

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

1 2 3 4 5 6 7 8
number of classes

0%

10%

20%

30%

40%

50%

60%
pe

rc
en

t
cassandra

derby

jfreechart

lucene

poi

solr

zookeeper

Fig. 8. The number of called API classes per API graph

Although sequences can encode only a half of API usages, it is
popular for its simplicity. As sequences have simpler structures, it
is easier to mine specifications from sequences than from graphs.
In addition, after specifications are mined, it is also easier to detect
the violations of sequences than the violations of graphs.

We further analyze this issue by comparing the top ten cate-
gories in Figure 6(a) with the top ten categories of Figure 6(b).
We find that six categories appear in both lists. API usages in
these categories include both strict orders and partial orders. For
example, “0100100” ranks the second in Figure 6(a) and the eighth
in Figure 6(b). It indicates that when static methods are called
between classes, they can be called in either strict orders or partial
orders, and both cases are common. The other four categories
appear only in one list. For example, “1000010” ranks the third in
Figure 6(a), but the thirteenth in Figure 6(b). It indicates that when
instance methods are called among different classes, the usage is
more likely a strict order than a partial order.

In summary, we find that strict orders and partial orders are
half-and-half. The distribution may explain why sequence-based
approaches and graph-based approaches are both popular.

5.3 RQ3. Single and Multiple Type Usage
For each API graph, we calculated its number of involved API

classes, and Figure 8 shows the result. Its horizontal axis lists
number of called classes per API graph, and its vertical axis lists
corresponding percent. We find that about half of the API graphs
call only a class. The result indicates that multi-type usages and
single-type usages are both common. In addition, we find that API
usages typically do not involve many classes, since Figure 8 show
that most API graphs have fewer than eight classes.

We further analyze this issue for each library. As the data in
Figure 8 are time series data, we use dynamic time warping [24]
to calculate the similarity values, and classify libraries into two
categories: 67.8% of libraries follow the below pattern:

1 2 4 6 8 10 12 14

In the above pattern, most API graphs involves two API classes.
In the remaining libraries, most API graphs involve only one API
class, and the pattern is as follows:

1 2 4 6 8 10 12 14

Although most libraries follow the first pattern, the top two
frequent libraries, J2SE and JUnit, follow the second pattern. As
a result, the trends in Figure 8 are more like the second pattern.
Based on the observations, we come to our fifth finding:

1 2 3 4 5 6
number of API libraries

0%

20%

40%

60%

80%

100%

pe
rc

en
t

cassandra
derby
jfreechart
lucene
poi
solr
zookeeper

Fig. 9. The number of called API libraries per API graph

Finding 5. Single-type usages and multi-type usages are both
common. For libraries such as J2SE and JUnit, single-type
usages are slightly more than multi-type usages.

We further analyze this issue on the categories of Figure 6.
The API graphs of single-type usages have only sc edges, so their
keys end with “100”. In Figure 6(a), the keys of three categories
end with “100”, and their ranks are the first, the second, and the
fourteenth. In Figure 6(b), the key of only one category ends with
“100”, and its rank is sixth. The API graphs of multi-type usages
have other key patterns. We find both Figure 6(a) and Figure 6(b)
have such patterns. Our observations lead to our sixth finding:

Finding 6. Single-type usages have more strict orders than
multi-type usages.

In summary, according to our results, sequence-based ap-
proaches are sufficient to mine single-type specifications, but
multi-type specifications need more advanced techniques. Most
libraries have as many multi-type usages as single-type usages.

5.4 RQ4. Inter Library Usage
For each API graph, we calculated its number of called API

libraries, and Figure 9 shows the distribution. Its horizontal axis
lists number of called libraries for each API graph, and its vertical
axis lists corresponding percent. We find that more than 80% of
API graphs call only an API library in total. Section 5.2 shows
that when a type extends an API type or when a type implements
a wrapper for an API type, the type can implement methods that
call single API method. As API graphs built from these methods
do not illustrate API usages, if we ignore such cases in Figure 9,
about half of API graphs call only an API library.

We further analyze this issue for each library, as we did in the
previous sections. We find that 46.7% of libraries follow the below
pattern that is similar to Figure 9:

1 2 3 4 5 6

The remaining libraries follow the below pattern, where most API
graphs call two libraries:

1 2 3 4 5 6

Many researchers (e.g., [2]) evaluate their approaches on indi-
vidual libraries. Although many usages call individual libraries,
about forty percent of the total usages call multiple libraries.
For these usages, if we restrict our approaches on individual
libraries, we can extract only partial usages, which can reduce

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

th
e

su
m

 o
f n

od
es

 a
nd

 e
dg

es

(a) all

th
e

su
m

 o
f n

od
es

 a
nd

 e
dg

es

(b) strict orders

th
e

su
m

 o
f n

od
es

 a
nd

 e
dg

es

(c) partial orders

Fig. 10. The sum of nodes and edges per API graph

the effectiveness of our approach. For example, Acharya et al.
[2] mine partial orders of API methods. When they evaluate their
approach on individual libraries, they can ignore frequent call pairs
between two libraries. After manual inspection, we identify the
following ways when multiple libraries are called together.
1. Input values. The input value of a library can be declared by
another library. The following code illustrate this way:
1: ByteArrayOutputStream s = ...;
2: CsvOutputArchive a = new CsvOutputArchive(s);

2. Thrown exceptions. A method of a library can throw excep-
tions that are declared by another library. In the following code, a
method of Thrift15 throws a J2SE exception.
1: try{
2: TServer server = ...;
3: server.serve();
4: ...
5: }catch(Exception ex){
6: ex.printStackTrace();
7: }

3. Extensions. A type of a library can extend types that are de-
clared by another library. For example, MapIterator of Apache
extends Iterator of J2SE, so in the following code, it allows
calling the methods of J2SE:
1: IterableMap iterableMap = ...;
2: MapIterator it = iterableMap.mapIterator();
3: while(it.hasNext()){
4: Object key = it.next();
5: ...
6: }

15. https://thrift.apache.org

10 20 30 40 50 60 70 10 20
library

0%

10%

20%

30%

40%

50%

60%

pe
rc

en
t

class

method

field

j2se method

j2se class
j2se field

Fig. 11. The called APIs

Typically, a library is not supposed to be used with any other
libraries, except J2SE. Figure 9 shows that more than 80% of
usages call no more than two libraries. As shown in the above code
samples, when two libraries are called, in about 90% of cases, one
of them is J2SE. These observations lead to our seventh finding:

Finding 7. More than 80% of API usages call only one or
two API libraries.

The result indicates that it is sufficient if researchers add J2SE
to other libraries in their evaluations. Although more libraries can
be called together, our result shows that such cases are rare.

5.5 RQ5. The Length of API Usage
For each API graph, we calculated its sum of edges and

nodes. Here, we count both edges and nodes, since both reflect
the complexity of calling APIs. Figure 10(a) shows the boxplot
of results. Some methods call many API elements, so their API
graphs are quite large. To better present the results, we set the
upper bound of its vertical axis as a hundred. Despite of some
large outliers, Figure 10(a) shows that the medians are about ten,
which is small.

Gabel and Su [18] show that the number of mined real
specifications become smaller, when they try to mine longer
specifications. We notice that their mined specifications call about
ten methods at the most. The result is consistent with ours, since
the medians are also about ten. For longer specifications, it can be
difficult to collect adequate API graphs.

Zhong and Su [87] analyzed thousands of bug fixes, and they
find that a bug fix typically includes fewer than five API-related
repair actions. Based on this finding, they suspect that an API
usage is typically short. Our result provides a positive evidence to
their hypothesis, since the medians are all small.

In Figure 10(b) and Figure 10(c), we build the boxplots for
strict orders and partial orders separatively. Figure 10(b) shows
that strict orders are shorter, and about half of strict orders are
method pairs. This point explains why many approaches (e.g.,
[83]) produce positive results, although they mine only method
pairs. Figure 10(c) shows that partial orders are larger, which poses
extra barriers for mining. The results lead to the eighth finding:

Finding 8. API usages are typically short, but some ex-
ceptional usages can be lengthy. In addition, partial orders
typically involve more API elements than strict orders.

5.6 RQ6. The Frequency of API Usage
We use A to denote the API elements of an API library, and

for each project, we use Ai to denote called API elements. Based

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

5 10 15 20 25 30 35 40 45
library

0%

5%

15%

20%
pe

rc
en

t

class
method
field

j2se field j2se method
j2se class

Fig. 12. The commonly called APIs

on the two definitions, we calculate the percent of called API

elements as
|
⋃

Ai|
|A| . Figure 11 shows the results in the descending

orders of API classes, methods, and fields, respectively. We find
that for most libraries, only a small portion of APIs are called.
Several libraries have exceptionally high percent. After inspection,
we find that they are all small libraries. For example, the noggit
library16 declares only seven classes. Although programmers often
use several classes of the library, these classes already cover about
half of its declared API classes.

In Figure 11, we add markers to the points of J2SE. Although
our subjects have more than two million lines of code, they call
only less than 10% of API elements for most libraries. A library
may be called by more than one project. For these libraries, we
further calculate the percent of commonly called API elements

as
|
⋂

Ai|
|A| . Figure 12 shows that even fewer API elements are

commonly called. In Figure 12, we also use markers to denote the
points of J2SE. This observation lead to our following finding:

Finding 9. Only a small portion of APIs are explicitly called
by client code, and even fewer APIs are commonly called.

Our results are largely consistent with other studies (e.g., [9],
[38], [69]). If we analyze more projects, we anticipate that more
APIs will be called, but the trend still holds. For example, Ma
et al. [38] analyzed 39 Java projects. In total, they find that only
about twenty percent of J2SE methods are called.

Although many API elements are never called, from the
viewpoint of API desingers, they are still important, since they
can be frequently called by other API elements. Removing such
unpopular API elements can lead to the change of its functionality
or even the failure of compilation.

We must warn that the real percent can be higher, since API
designers may not release all public code elements as APIs.
However, our results reveal a practical issue of the research on
APIs. Researchers have proposed various approaches that rely on
client code (e.g., mining specifications [90] and recommending
code samples [21]). For these approaches, it is extremely difficult
to achieve high recalls of API usages, even if millions lines of code
are collected. For example, Borges and Valente [9] analyzed 396
Android projects, and they complain that about forty percent of
Android API methods are never called. Their approach [9] mines
frequent call sequences for Android APIs. As most APIs are not
frequently called, they successfully mine specifications only for
fewer than ten percent of methods. Indeed, many unpopular APIs
are important, and can later become popular. Furthermore, some
rarely used APIs can be useful in specific tasks. For example,
researchers can have to use APIs that are rarely used in production
code, when they implement tools for instrumenting and debugging

16. https://github.com/yonik/noggit

purposes. It can take much more effort to learn unpopular APIs,
since it is rather difficult to find their existing code samples. The
lack of client code places a barrier for learning API usages from
client code, but also reveals the opportunities to learn their usages
from other sources (e.g., API documents [84], [92]).

In summary, our results show that many APIs do not have
sufficient client code. To understand their usages, we have to refer
to other data sources (e.g., documents).

5.7 Threats to Validity
The threat to internal validity includes our technical choice

of intra-procedural analysis. Although it eliminates the bias over
frequently called client methods, it can split an API usage into
separative graphs, which can have negative impacts on our find-
ings. Although inter-procedural analysis can be useful in some
cases, its impacts on our study are mixed. For example, Section 5.2
show that extended types and wrappers show partial usages, but
neither inter-procedural analysis nor intra-procedural analysis can
extract their full usages, if they are not called in other client code.
As another example, inter-procedural can produce extremely long
API call sequences, in which irrelevant API usages mix up. The
threat could be reduced by splitting usages with API calls that
indicate the beginning and the end of an API usage, but it can take
nontrivial effort to identify such API calls. The threat to internal
validity also includes WALA and its built system dependency
graphs. WALA can fail to analyze some methods, and build wrong
system dependency graphs. The thread could be reduced with
more advanced tools. In addition, existing approaches can use
other representations than system dependency graphs to encode
API usages. As their representations and ours describe the same
usages, it is feasible to interpret our findings according to the
differences of representations. The threat to external validity
includes that although we analyze millions of lines of code, our
projects are limited and all in Java. The threat could be further
reduced by introducing more subjects in future work.

6 INTERPRETATION OF OUR FINDINGS

For mining specifications, we interpret our findings as follows:
1. Data source. When evaluating their approaches, if researchers
select individual libraries as subjects, they should consider both
their chosen libraries and J2SE (Finding 7). Although some
popular APIs are intensively called, many APIs are rarely called
(Finding 10). As a result, there is a strong need for mining
specifications from other sources than client code.
2. Extraction techniques. Researchers should pay more attention
to static API fields and methods (Finding 1). It is reasonable for
existing approaches to focus on method calls (Finding 2), but when
researchers mine graphs or automata, they should extract API field
accesses (Finding 3). Extracting API usages for individual API
libraries can lose information, but it is sufficient in many cases if
the J2SE is included during analysis (Finding 7).
3. Mining techniques. Sequence-based approaches are suitable
to mine single-type API usages, and graph-based approaches are
suitable to mine multiple-type API usages (Findings 5 and 6).
As API usages are typically short, researchers can tune their
mining techniques accordingly (Finding 8). As there is a need
for other data sources than client code, corresponding techniques
are required to handle other types of data (Finding 10).
4. Formats of specifications. Both sequence-based approaches
and graph-based approaches have their unique values in defining

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

multi-type and single-type API usages (Finding 4). Researchers
can include fields in their specifications (Finding 2), especially
when they mine graphs or automata (Finding 3).

Our study mainly focuses on mining specifications. Although
this research field is intensively studied, the interpretations on
this specific research field can be narrow, since the research on
APIs covers much more topics than mining specifications, as we
discussed in Section 1. Researchers who work on different topics
can have different interpretations on our findings. As the topic is
highly relevant, although we tried our best to be fair, the wide
audience can have different opinions on our findings, and our
interpretations are not final. Other researchers can replicate our
study and provide their insights, which can deepen our knowledge
on APIs and make their research more solid.

7 RELATED WORK

Mining specifications. Ammons et al. [5] mine automata for
APIs. Follow-up researchers [13], [18], [19], [26], [34], [53] refine
their approach, and other researchers [49], [50] mine graphs.
Robillard et al. [60] show that automata and graphs are equivalent
for specifications. The research in this line can be reduced to the
grammar inference problem, and can be solved by corresponding
techniques (e.g., the k-tail algorithm [7]). Li and Zhou [29] extract
method pairs, and other researchers [63], [71] improve their
approach in more complicated contexts. Engler et al. [16] extract
frequent call sequences, and other researchers [58], [77] improve
their approach with more advanced techniques. Furthermore, re-
searchers [28], [39], [75] encode mined sequences as temporal
logic. The research in this line can be reduced to sequence
mining [3]. Murali et al. [44] lean specifications in the format of
Bayesian networks. All the above approaches are concerned with
call sequences. Ernst et al. [17] infer invariants to define rules
for variables. Smith et al. [67] infer relations between inputs and
outputs. To define more detailed API usages, researchers [36], [74]
produce more informative specifications by combining frequent
call sequences with invariants. Some mined specifications can be
simple. Researchers [18], [26] fuse simple specifications into more
lengthy and complicated ones, and other researchers [11], [56] use
test cases to enrich mined specifications. Our findings are useful
to improve the above approaches.
Working with APIs. Instead of proposing a mining technique,
researchers also work on other perspectives of APIs. Typical
scenarios include migrating API code between different lan-
guages [47], [89], searching API documents [68] or tutorials [55],
evolving API client code [10], [81], detecting errors in API doc-
uments [86], classifying forum threads on APIs [93], embedding
API documents with forum discussions [72], and recommending
API samples [43], [94] or more effective APIs [23]. Lin et al. [30]
learn latent locks in API code to detect deadlocks. Gu et al. [20]
learn API usages with neural networks. Our study reveals nine
findings that are useful to improve existing approaches.
Empirical Studies on APIs. Researchers conduct empirical stud-
ies to understand API usages. These studies cover the knowledge
on concurrency APIs [52] or deprecated APIs [59], rules in
API documents [41], the evolution of APIs [22], [66], [79], the
obstacles to learn APIs [61], the link between software quality and
APIs [31], the impact of API changes on forum discussions [32],
the practice on specific APIs [46], the mappings of APIs [88], the
adoption of trivial APIs [1], and the impact of the type system and
API documents on API usability [15]. The prior studies do not

fully explore our open questions. Our work focuses on a different
research angle, complementing the above studies.

8 CONCLUSION AND FUTURE WORK

It has been a hot research topic to mine specifications for APIs,
and many other topics on APIs are intensively studied. However,
in the research on APIs, some underlying hypotheses are still not
fully explored. In this paper, we conduct an empirical study on
millions lines of code to further explore API usages. Based on our
results, we summarize nine findings and provide our insights to
improve the future research on APIs. In our future work, we plan
to explore the following two directions:
1. More API usages other than call sequences. Although most
existing approaches focus on only legal call sequences, APIs can
have other patterns. For example, Nguyen et al. [48] show that
some preconditions are followed, when client code calls APIs. As
another example, Zhang et al. [85] show that parameters of API
methods follow specific patterns. Different techniques are needed
to analyze these API usages. For example, it is quite difficult to
determine runtime values for static analysis, so dynamic approach-
es are preferred. There are open questions for these usages, and an
empirical study on API usages can provide insights, which needs
more effort in future work.
2. The social aspects of API elements. Our built system de-
pendency graphs have similar structures with social networks. It
can be feasible to borrow existing social network analysis [65] to
analyze the social aspects of API elements (e.g., their roles). In
future work, we plan to investigate whether such social aspects
are useful to improve the research on APIs.
3. Direct improvements. Our empirical study does not make
direct improvements, but our findings are useful for follow-up
researchers. For example, we find that evaluating on individual
libraries is insufficient and adding J2SE can cover most usages.
To show its direct benefits, researchers can redo their evaluations.
As another example, Legunsen et al. [27] complain that many false
alarms are reported, when they use specifications to detect bugs.
Our results show that it is imprecise to encode many multi-type
usages as sequences. The imprecision can lead to false alarms. It
can be worthy exploring whether it reduces false alarms, if we
consider this issue. In future work, we plan to investigate how to
make direct improvements with our findings.
4. Empirical studies on specific API libraries. We notice that
specific API libraries can have different usages. For example, in
Section 5.1, we find that JUnit has more static methods than other
libraries. As a result, its usage patterns are different. As another
example, in Section 5.2, we find that programmers have to extends
the types of antlr, when they implement their own parsers with the
library. In practice, many frameworks (e.g., GEF17) have similar
usage patterns. Instead of calling their methods, programmers have
to extend their types, resulting in different usage patterns. In future
work, we plan to explore usages of these specific libraries.

ACKNOWLEDGEMENT

We appreciate the anonymous reviewers for their constructive
comments. This work is sponsored by the National Key Basic
Research Program of China (973 program) No. 2015CB352203,
the National Nature Science Foundation of China No. 61572313,
and the grant of Science and Technology Commission of Shanghai
Municipality No. 15DZ1100305.

17. http://www.eclipse.org/gef/

http://www.eclipse.org/gef/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

REFERENCES

[1] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab. Why
do developers use trivial packages? an empirical case study on npm. In
Proc. ESEC/FSE, pages 385–395, 2017.

[2] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns as partial
orders from source code: from usage scenarios to specifications. In Proc.
ESEC/FSE, pages 25–34, 2007.

[3] R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. ICDE,
pages 3–14, 1995.

[4] R. Agrawal, R. Srikant, et al. Fast algorithms for mining association
rules. In Proc. VLDB, pages 487–499, 1994.

[5] G. Ammons, R. Bodı́k, and J. Larus. Mining specifications. In Proc.
29th POPL, pages 4–16, 2002.

[6] P. Berkhin. A survey of clustering data mining techniques, pages 25–71.
Springer Berlin Heidelberg, 2006.

[7] A. W. Biermann and J. A. Feldman. On the synthesis of finite-
state machines from samples of their behavior. IEEE Transactions on
Computers, 100(6):592–597, 1972.

[8] C. Borgelt. Frequent item set mining. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 2(6):437–456, 2012.

[9] H. Borges and M. T. Valente. Mining usage patterns for the Android
API. PeerJ Computer Science, 1(1):1–13, 2015.

[10] B. E. Cossette and R. J. Walker. Seeking the ground truth: a retroactive
study on the evolution and migration of software libraries. In Proc. 20th
FSE, pages 65–76, 2012.

[11] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller. Generating
test cases for specification mining. In Proc. 19th ISSTA, pages 85–96,
2010.

[12] L. de Alfaro and T. Henzinger. Interface automata. pages 109–120, 2001.
[13] G. de Caso, V. Braberman, D. Garbervetsky, and S. Uchitel. Program

abstractions for behaviour validation. In Proc. 33rd ICSE, pages 381–
390, 2011.

[14] C. De La Higuera. A bibliographical study of grammatical inference.
Pattern recognition, 38(9):1332–1348, 2005.

[15] S. Endrikat, S. Hanenberg, R. Robbes, and A. Stefik. How do API
documentation and static typing affect API usability? In Proc. 36th ICSE,
pages 632–642, 2014.

[16] D. Engler, D. Chen, and A. Chou. Bugs as inconsistent behavior: A
general approach to inferring errors in systems code. In Proc. 18th SOSP,
pages 57–72, 2001.

[17] M. Ernst, J. Perkins, P. Guo, S. McCamant, C. Pacheco, M. Tschantz, and
C. Xiao. The Daikon system for dynamic detection of likely invariants.
Science of Computer Programming, 69(1-3):35–45, 2007.

[18] M. Gabel and Z. Su. Javert: fully automatic mining of general temporal
properties from dynamic traces. In Proc. 16th FSE, pages 339–349, 2008.

[19] M. Gabel and Z. Su. Online inference and enforcement of temporal
properties. In Proc. 32nd ICSE, pages 15–24, 2010.

[20] X. Gu, H. Zhang, D. Zhang, and S. Kim. Deep API learning. In Proc.
ESEC/FSE, pages 631–642, 2016.

[21] R. Holmes and G. C. Murphy. Using structural context to recommend
source code examples. In Proc. 27th ICSE, pages 117–125, 2005.

[22] A. Hora, R. Robbes, N. Anquetil, A. Etien, S. Ducasse, and M. T. Valente.
How do developers react to API evolution? the Pharo ecosystem case. In
Proc. 31st ICSME, pages 1–9, 2015.

[23] D. Kawrykow and M. P. Robillard. Improving API usage through
automatic detection of redundant code. In Proc. 24th ASE, pages 111–
122, 2009.

[24] E. J. Keogh and M. J. Pazzani. Derivative dynamic time warping. In
Proc. 1st SDM, pages 5–7, 2001.

[25] T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler. From
uncertainty to belief: Inferring the specification within. In Proc. 7th
OSDI, pages 259–272, 2006.

[26] T. D. Le, X. B. Le, D. Lo, and I. Beschastnikh. Synergizing specification
miners through model fissions and fusions. In Proc. 30th ASE, pages
115–125, 2015.

[27] O. Legunsen, W. U. Hassan, X. Xu, G. Roşu, and D. Marinov. How good
are the specs? a study of the bug-finding effectiveness of existing Java
API specifications. In Proc. 31st ASE, pages 602–613, 2016.

[28] C. Lemieux, D. Park, and I. Beschastnikh. General LTL specification
mining. In Proc. 30th ASE, pages 870–875, 2015.

[29] Z. Li and Y. Zhou. PR-Miner: Automatically extracting implicit pro-
gramming rules and detecting violations in large software code. In Proc.
ESEC/FSE, pages 306–315, 2005.

[30] Z. Lin, H. Zhong, Y. Chen, and J. Zhao. LockPeeker: Detecting latent
locks in Java APIs. In Proc. 31rd ASE, pages 368–378, 2016.

[31] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk. API change and fault proneness: a threat
to the success of Android apps. In Proc. FSE, pages 477–487, 2013.

[32] M. Linares-Vásquez, G. Bavota, M. Di Penta, R. Oliveto, and D. Poshy-
vanyk. How do API changes trigger Stack Overflow discussions? a study
on the Android SDK. In Proc. 22nd ICPC, pages 83–94, 2014.

[33] D. Lo and S. Maoz. Scenario-based and value-based specification
mining: better together. In Proc. 25th ASE, pages 387–396, 2010.

[34] D. Lo, L. Mariani, and M. Pezzè. Automatic steering of behavioral model
inference. In Proc. ESEC/FSE, pages 345–354, 2009.

[35] H.-A. Loeliger. An introduction to factor graphs. IEEE Signal Processing
Magazine, 21(1):28–41, 2004.

[36] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation of
software behavioral models. In Proc. 30th ICSE, pages 501–510, 2008.

[37] F. Lv, H. Zhang, J. Lou, S. Wang, D. Zhang, and J. Zhao. Codehow:
Effective code search based on API understanding and extended boolean
model. In Proc. 30th ASE, pages 260–270, 2015.

[38] H. Ma, R. Amor, and E. Tempero. Usage patterns of the Java standard
API. In Proc. 13th APSEC, pages 342–352, 2006.

[39] S. Maoz and J. O. Ringert. GR(1) synthesis for LTL specification
patterns. In Proc. 10th ESEC/FSE, pages 96–106, 2015.

[40] X. Meng and B. P. Miller. Binary code is not easy. In Proc. 25th ISSTA,
pages 24–35, 2016.

[41] M. Monperrus, M. Eichberg, E. Tekes, and M. Mezini. What should
developers be aware of? an empirical study on the directives of API
documentation. Empirical Software Engineering, 17(6):703–737, 2012.

[42] M. Monperrus and M. Mezini. Detecting missing method calls as viola-
tions of the majority rule. ACM Transactions on Software Engineering
and Methodology, 22(1):7:1–7:25, 2013.

[43] L. Moreno, G. Bavota, M. D. Penta, R. Oliveto, and A. Marcus. How
can I use this method? In Proc. 37th ICSE, pages 880–890, 2015.

[44] V. Murali, S. Chaudhuri, and C. Jermaine. Bayesian specification
learning for finding API usage errors. In Proc. ESEC/FSE, pages 151–
162, 2017.

[45] C. Myers, L. R. Rabiner, and A. E. Rosenberg. Performance tradeoffs in
dynamic time warping algorithms for isolated word recognition. IEEE
Transactions on Acoustics, Speech and Signal Processing, 28(6):623–
635, 1980.

[46] S. Nadi, S. Krger, M. Mezini, and E. Bodden. “Jumping through hoops”:
Why do Java developers struggle with cryptography APIs? In Proc.
ICSE, pages 935–946, 2016.

[47] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen. Statistical
learning approach for mining API usage mappings for code migration.
In Proc. 29th ASE, pages 457–468, 2014.

[48] H. A. Nguyen, R. Dyer, T. N. Nguyen, and H. Rajan. Mining precon-
ditions of APIs in large-scale code corpus. In Proc. 22nd FSE, pages
166–177, 2014.

[49] H. V. Nguyen, H. A. Nguyen, A. T. Nguyen, and T. N. Nguyen.
Mining interprocedural, data-oriented usage patterns in JavaScript web
applications. In Proc. 36th ICSE, pages 791–802, 2014.

[50] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen. Graph-based mining of multiple object usage patterns. In Proc.
ESEC/FSE, pages 383–392, 2009.

[51] T. T. Nguyen, H. V. Pham, P. M. Vu, and T. T. Nguyen. Learning API
usages from bytecode: a statistical approach. In Proc. 38th ICSE, pages
416–427, 2016.

[52] S. Okur and D. Dig. How do developers use parallel libraries? In Proc.
20th FSE, pages 54–65, 2012.

[53] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. Paradkar.
Inferring method specifications from natural language API descriptions.
In Proc. 34th ICSE, 2012.

[54] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053–1058, 1972.

[55] G. Petrosyan, M. P. Robillard, and R. D. Mori. Discovering information
explaining API types using text classification. In Proc. 37th ICSE, pages
869–879, 2015.

[56] M. Pradel and T. Gross. Leveraging test generation and specification
mining for automated bug detection without false positives. In Proc.
34th ICSE, pages 288–298, 2012.

[57] M. Pradel and T. R. Gross. Automatic generation of object usage
specifications from large method traces. In Proc. 24th ASE, pages 371–
382, 2009.

[58] M. Ramanathan, A. Grama, and S. Jagannathan. Path-sensitive inference
of function precedence protocols. In Proc. 29th ICSE, pages 240–250,
2007.

[59] R. Robbes, M. Lungu, and D. Röthlisberger. How do developers react to
API deprecation?: the case of a smalltalk ecosystem. In Proc. 20th FSE,
pages 76–87, 2012.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[60] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford.
Automated API property inference techniques. IEEE Transactions on
Software Engineering, 39(5):613–637, 2013.

[61] M. P. Robillard and R. DeLine. A field study of API learning obstacles.
Empirical Software Engineering, 16(6):703–732, 2011.

[62] P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied
mathematics, 20:53–65, 1987.

[63] M. A. Saied, O. Benomar, H. Abdeen, and H. Sahraoui. Mining multi-
level API usage patterns. In Proc. 22nd SANER, pages 23–32, 2015.

[64] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization
for spoken word recognition. IEEE Transactions on Acoustics, Speech
and Signal Processing, 26(1):43–49, 1978.

[65] J. Scott. Social network analysis. Sage, 2012.
[66] L. Shi, H. Zhong, T. Xie, and M. Li. An empirical study on evolution of

API documentation. In Proc. FASE, pages 416–431, 2011.
[67] C. Smith, G. Ferns, and A. Albarghouthi. Discovering relational specifi-

cations. In Proc. ESEC/FSE, pages 616–626, 2017.
[68] S. Subramanian, L. Inozemtseva, and R. Holmes. Live API documenta-

tion. In Proc. 36th ICSE, pages 643–652, 2014.
[69] S. Thummalapenta and T. Xie. SpotWeb: Detecting framework hotspots

and coldspots via mining open source code on the web. In Proc. 23rd
ASE, pages 327–336, 2008.

[70] S. Thummalapenta and T. Xie. Alattin: Mining alternative patterns for
detecting neglected conditions. In Proc. 24th ASE, pages 283–294, 2009.

[71] S. Thummalapenta and T. Xie. Mining exception-handling rules as
sequence association rules. In Proc. 31th ICSE, pages 496–506, May
2009.

[72] C. Treude and M. P. Robillard. Augmenting API documentation with
insights from Stack Overflow. In Proc. 38th ICSE, pages 392–403, 2016.

[73] N. Tsantalis and A. Chatzigeorgiou. Identification of extract method
refactoring opportunities for the decomposition of methods. Journal of
Systems and Software, 84(10):1757–1782, 2011.

[74] N. Walkinshaw, R. Taylor, and J. Derrick. Inferring extended finite
state machine models from software executions. Empirical Software
Engineering, 21(3):811–853, 2016.

[75] A. Wasylkowski and A. Zeller. Mining temporal specifications from
object usage. In Proc. 24th ASE, pages 295–306, 2009.

[76] A. Wasylkowski and A. Zeller. Mining temporal specifications from
object usage. Automated Software Engineering, 18(3-4):263–292, 2011.

[77] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting object usage
anomalies. In Proc. ESEC/FSE, pages 35–44, 2007.

[78] Y. Wei, C. Furia, N. Kazmin, and B. Meyer. Inferring better contracts.
In Proc. 33rd ICSE, pages 191–200, 2011.

[79] W. Wu, A. Serveaux, Y.-G. Guéhéneuc, and G. Antoniol. The impact
of imperfect change rules on framework API evolution identification:
an empirical study. Empirical Software Engineering, 20(4):1126–1158,
2014.

[80] T. Xie and J. Pei. MAPO: Mining API usages from open source
repositories. In Proc. MSR, pages 54–57, 2006.

[81] Z. Xing and E. Stroulia. API-evolution support with Diff-CatchUp. IEEE
Transactions on Software Engineering, 33(12):818–836, 2007.

[82] X. Yan and J. Han. CloseGraph: mining closed frequent graph patterns.
In Proc. 9th SIGKDD, pages 286–295, 2003.

[83] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perracotta: mining
temporal API rules from imperfect traces. In Proc. 28th ICSE, pages
282–291, 2006.

[84] J. Zhai, J. Huang, S. Ma, X. Zhang, L. Tan, J. Zhao, and F. Qin.
Automatic model generation from documentation for Java API functions.
In Proc. 38th ICSE, pages 380–391, 2016.

[85] C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang, J. Zhao, and P. Ou.
Automatic parameter recommendation for practical API usage. In Proc.
34th ICSE, pages 826–836, 2012.

[86] H. Zhong and Z. Su. Detecting API documentation errors. In Proc.
SPASH/OOPSLA, pages 803–816, 2013.

[87] H. Zhong and Z. Su. An empirical study on real bug fixes. In Proc. 37th
ICSE, pages 913–923, 2015.

[88] H. Zhong, S. Thummalapenta, and T. Xie. Exposing behavioral differ-
ences in cross-language API mapping relations. In Proc. ETAPS/FASE,
pages 130–145, 2013.

[89] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang. Mining
API mapping for language migration. In Proc. 32nd ICSE, pages 195–
204, 2010.

[90] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. MAPO: Mining and
recommending API usage patterns. In Proc. 23rd ECOOP, pages 318–
343, 2009.

[91] H. Zhong, L. Zhang, and H. Mei. Inferring specifications of object
oriented APIs from API source code. In Proc. 15th APSEC, pages 221–
228, 2008.

[92] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource specifications
from natural language API documentation. In Proc. 24th ASE, pages
307–318, 2009.

[93] B. Zhou, X. Xia, D. Lo, C. Tian, and X. Wang. Towards more accurate
content categorization of API discussions. In Proc. 22nd ICPC, pages
95–105, 2014.

[94] Z. Zhu, Y. Zou, B. Xie, Y. Jin, Z. Lin, and L. Zhang. Mining API usage
examples from test code. In Proc. ICSME, pages 301–310, 2014.

Hao Zhong received his PhD degree from
Peking University in 2009. His Ph.D dissertation
was nominated for the distinguished Ph.D dis-
sertation award of China Computer Federation.
After graduation, he worked as an assistant pro-
fessor at Institute of Software, Chinese Academy
of Sciences, and was promoted as an associate
professor in 2012. From 2013 to 2014, he was a
visiting scholar at University of California, Davis.
Since 2014, he had been an associate professor
at Shanghai Jiao Tong University. He is a mem-

ber of the IEEE and ACM. His research interest is the area of software
engineering, with an emphasis on empirical software engineering and
mining software repositories. He is a recipient of ACM SIGSOFT Distin-
guished Paper Award 2009, the best paper award of ASE 2009, and the
best paper award of APSEC 2008.

Hong Mei received his BA and MS degrees from
Nanjing University of Aeronautics and Astronau-
tics in 1984 and 1987, respectively; and Ph.D.
degree in computer science from Shanghai Jiao
Tong University in 1992. From 1992 to 1994,
he was a postdoctoral research fellow at Peking
University. He is a professor with Shanghai Jiao
Tong University, Beijing Institute of Technolo-
gy, and Peking University. He was the dean of
school of EECS at Peking University from 2006-
2014, the vice president for research at Shang-

hai Jiao Tong University from 2013 to 2016, and had been the vice
president for human resource and international affairs at Beijing Insti-
tute of Technology since 2016. His research interests include software
engineering and system software. He is a member of Chinese Academy
of Sciences, a fellow of the IEEE, CCF and TWAS.

	Introduction
	Mining Specification
	Data Source
	Mining Technique
	Mined Specification

	Research Goal
	Research Question
	The Significance of the RQs

	Methodology
	Dataset
	Support Tool

	Empirical Result
	RQ1. Field and Static Code Element
	RQ2. The Format to Encode API Usage
	RQ3. Single and Multiple Type Usage
	RQ4. Inter Library Usage
	RQ5. The Length of API Usage
	RQ6. The Frequency of API Usage
	Threats to Validity

	Interpretation of our Findings
	Related Work
	Conclusion and Future Work
	References
	Biographies
	Hao Zhong
	Hong Mei

