
Poster: An Empirical Study on Using Hints from
Past Fixes

Hao Zhong
Department of Computer Science and Engineering

Shanghai Jiao Tong University, China
Email: zhonghao@sjtu.edu.cn

Na Meng
Department of Computer Science

Virginia Tech, USA
Email: nm8247@cs.vt.edu

Abstract—With the usage of version control systems, many bug
fixes have accumulated over the years. Researchers have proposed
various approaches that reuse past fixes to fix new bugs. However,
some fundamental questions, such as how new bug fixes can be
constructed from old fixes, have not been investigated. When an
approach reuses past fixes to fix a new bug, the new bug fix
should overlap with past fixes in terms of code structures and/or
code names. Based on this intuition, we systematically design six
overlap metrics, and conduct an empirical study on 5,735 bug
fixes to investigate the usefulness of past fixes. For each bug fix,
we create delta dependency graphs, and identify how bug fixes
overlap with each other by detecting isomorphic subgraphs. Our
results show Besides that above two major findings, we have
additional ten findings, which can deepen the understanding on
automatic program repair.

I. INTRODUCTION

With the usage of version control systems, many bug fixes
have accumulated over the years. Researchers have conducted
various empirical studies to understand bug fixes. For example,
Nguyen et al. find that bugs can be repetitive [7], indicating
that it is feasible to fix new bugs using past fixes. Based
on the observation, researchers have proposed approaches
that reuse past fixes to repair new bugs. For example, Kim
et al. extract fix patterns from thousands of bug fixes [2].
Martinez and Monperrus mine repair models from past bug
fixes to guide the repair process [5]. Meng et al. infer program
transformation from change examples, and then leverage the
transformation to apply similar edits [6]. Long et al. train a
model to locate and reuse related past bug fixes [4]. Although
their approaches show promising results, we argue that neither
existing empirical studies nore repair approaches are complete:
1. Existing empirical studies are based on simple or
even manual analyses. In their empirical studies, researchers
typically check out only buggy files and fixed files [10]. As
such files are partial code, most empirical studies (e.g., [5],
[9]) were conducted with the support of PPA [1], the state-of-
the-art analysis tool for partial code. Due to the challenges of
analyzing partial code, PPA can build only abstract syntax
trees for partial code, and is insufficient to support many
complicated analyses. As a result, most studies (e.g., [9]) do
not fully explore their research questions, since PPA cannot
support their desirable analyses. To conduct such analyses,
some studies (e.g., [2], [8]) are even based on manual analysis,
which is error-proning and does not scale.

2. Some hypotheses are not fully explored. We notice that
some hypotheses are not fully explored, before corresponding
approaches are proposed. For example, Long et al. construct
new fixes based on known past fixes [4]. Although their
evaluation shows positive evidences that some bugs can thus
be fixed, their underlying hypothesis is not fully explored by
any empirical studies.

II. METHODOLOGY

Our study is based on the hypothesis: whether a fix can
be constructed from past fixes depends on their similarity or
overlap in terms of code names and/or structures. Previous
studies (e.g., [9]) collected many bug fixes, so it is feasible to
ensure the representativeness of our study.

For each pair of modified source files, we build two system
dependency graphs (gl and gr), and a delta graph:

Definition 1: A delta graph is defined as a triple, δ =
〈SGl, SGr, L〉, where SGl is a set of subgraphs of gl; SGr is
a set of subgraphs of gr; and L ⊆ Gl ×Gr is a set of edges.
A 〈sgl1, sgr1〉 edge denotes that sgl1 is modified to sgr1.

For a set of past fixes F = {f1, . . . , fn)}, a new bug fix fb,
and their delta graphs (∆ = {δ1, . . . , δn}, and δb), we define
the following overlap metrics:
1. Fully overlapped bug fixes (FI): A previous fix δi covers
both the structure and name changes of δb, i.e., δb ⊆ δi.
2. Partially overlapped bug fixes (PI): No previous fix can
cover both the structure and name changes of δb, but the
composition of some fixes cover both types of changes, i.e.,
δb ⊆ δm ∪ . . . ∪ δn.

To understand the importance of structure changes, we
define a function that transfers a delta graph to an abstract
graph by replacing concrete methods and fields with standard
representations. The transfer function µ(v) is shown below:

µ(v) =


invoke method, v invokes a method.
get field, v gets a field.
put field, v puts a field.
v, otherwise.

(1)

We present the resulting abstract graphs as A = {α1, . . . , αn},
and αb. We define the following two overlap metrics relevant
to structure changes:



TABLE I: Overall result of learning from the same project

Project
Both Structure Code Name

FixFI % PI % FS % PS % FN % PN %
aries 8 1.8% 10 2.3% 38 8.6% 144 32.6% 16 3.6% 37 8.4% 442

cassandra 68 2.8% 115 4.7% 383 15.6% 1,202 48.8% 126 5.1% 327 13.3% 2,463
derby 37 1.5% 44 1.8% 249 10.4% 865 36.2% 63 2.6% 169 7.1% 2,392

mahout 9 2.1% 14 3.2% 47 10.7% 155 35.4% 12 2.7% 29 6.6% 438
Total 122 2.1% 183 3.2% 717 12.5% 2,366 41.3% 217 3.8% 562 9.8% 5,735

3. Fully overlapped structure changes (FS): The structure
changes of a previous fix αi cover the structure changes of
αb, i.e., αb ⊆ αi.
4. Partially overlapped structure changes (PS): αb is
composed of known structure changes, i.e., αb ⊆ αm∪. . .∪αn.

Bug fixes can involve code name changes. We define a
function θ(δ) to collect code name changes:

θ(δ) = {(nameo, namen)} (2)

where nameo denotes an original code name, and namen
denotes its modified new code name. For F and fb, the
extracted names changes are represented as B = {β1, . . . , βn}
and βb. The following two overlap metrics are defined relevant
to name changes:
5. Fully overlapped name changes (FN): The name changes
of a previous fix βi cover the name changes of βb, i.e., βb ⊆ βi.
6. Partially overlapped name changes (PN): βb is compos-
able of known name changes, i.e., βb ⊆ β1 ∪ . . . ∪ βn.

We implemented a tool, called GRAPA [10], that extracts
system dependency graphs and delta graphs for bug fixes.
For each pair of modified methods (ml and mr) in a bug
fix, GRAPA builds two system dependency graphs, gl and gr.
GRAPA compares gl and gr with the Hungarian algorithm [3].
Our evaluation results [10] show that GRAPA correctly builds
delta graphs for more than 90% of fixes. More details on the
tool are available at

http://cs.sjtu.edu.cn/∼zhonghao/tr/grapa.pdf

III. EARLY RESULT AND FUTURE WORK

Table I shows the overall result. Column “Project” lists
names of projects. Columns “Both”, “Structure”, and “Code
Name” list matched bugs with corresponding overlap metrics.
Column “Fix” lists number of collected fixes. In total, Column
“Both” shows that only several percents of bugs can be fixed,
if an approach requires both structure changes and code name
mappings. Column “Code Name” shows slightly better results,
but Column “Structure” shows that more bugs can be fixed,
if a repair approach requires only structure changes. Based on
our results, it is likely to learn code structures from past fixes,
but it is less likely to learn code mappings. As a result, only
about 3% of bug fixes can be constructed from past fixes. In
our future work, we plan to explore more open questions:
OP1: How creative is a bug fix?

Although many researchers admit the complexity of fixing
bugs, some recent studies (e.g., [7], [9]) present contradicted
evidences. This research question mainly concerns the expla-
nation for the contradicted evidences. For each bug, we plan to

investigate how many of its nodes and methods can be covered
by past fixes. If a change never appears in past fixes, it shall
be more difficult to be fixed and needs more creative activities.
OP2. What are the challenges when preparing the repos-
itory of past bug fixes?

For a bug under fixing, it needs to locate its related past
fixes, before we can learn useful knowledge. This research
question concerns how difficult it is to retrieve useful past
fixes for a bug, which is reflected by the ratio from the useful
past fixes to the total past fixes.
OP3. What is the potential to learn from other projects?

A project can have only limited past bug fixes, especially
when the project is new. A natural way to handle this problem
is to learn from other projects, but its effectiveness is largely
unknown. To investigate this research question, we plan to
explore to what degree can a new bug fix be constructed from
past bug fixes from other projects.

IV. ACKNOWLEDGEMENT

Hao Zhong is sponsored by the National High Technol-
ogy Research and Development Program of China (863)
No.2015AA015302, the National Nature Science Founda-
tion of China No. 61572313, and the grant of Science
and Technology Commission of Shanghai Municipality No.
15DZ1100305. Na Meng is sponsored by the NSF CCF No.
1565827.

REFERENCES

[1] B. Dagenais and L. J. Hendren. Enabling static analysis for partial Java
programs. In Proc. 23rd OOPSLA, pages 313–328, 2008.

[2] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation
learned from human-written patches. In Proc. 35th ICSE, pages 802–
811, 2013.

[3] H. W. Kuhn. The hungarian method for the assignment problem. Naval
research logistics quarterly, 2(1-2):83–97, 1955.

[4] F. Long and M. Rinard. Automatic patch generation by learning correct
code. In Proc. 43rd POPL, pages 298–312, 2016.

[5] M. Martinez and M. Monperrus. Mining software repair models for
reasoning on the search space of automated program fixing. Empirical
Software Engineering, 20(1):176–205, 2013.

[6] N. Meng, M. Kim, and K. S. McKinley. LASE: locating and applying
systematic edits by learning from examples. In Proc. 35th ICSE, pages
502–511, 2013.

[7] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N.
Nguyen. Recurring bug fixes in object-oriented programs. In Proc.
32nd ICSE, pages 315–324, 2010.

[8] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai. Bug characteristics
in open source software. Empirical Software Engineering, 19(6):1665–
1705, 2014.

[9] H. Zhong and Z. Su. An empirical study on real bug fixes. In Proc.
37th ICSE, pages 913–923, 2015.

[10] H. Zhong and X. Wang. Boosting complete-code tools for partial code
analysis. In submitted, 2017.


