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Abstract—In this paper, we consider the crucial problem of
maximizing the profit of a crowd sensing platform which receives
sensing requests from various subscribers and completes the
requests by leveraging sensing time of participating smartphones.
The profit of the platform equals the total charges of sensing
request minus the payments to smartphones. It is of great
challenge to the maximal profit for the platform, because of
stochastic arrivals of sensing requests, dynamic participation
of smartphones, and high complexity in allocating requests to
smartphones. In response to the challenges, we propose an
optimal online control framework which can efficiently utilize the
limited sensing time on each smartphone. Based on the stochastic
Lyapunov optimization techniques combined with the idea of
weight perturbation, our control framework makes online control
decisions including sensing requests admission and dispatching
control, sensing time purchasing control and sensing time allo-
cation control, without requiring any knowledge of the future
patterns. Rigorous mathematical analysis and comprehensive
simulation results show that our control framework can achieve
a time averaged profit that is arbitrarily close to the optimum,
while still maintaining strong system stability.

I. INTRODUCTION

In recent years, mobile smartphones have become an indis-

pensable part of people’s lives. Most of smartphones embed a

rich set of built-in sensors, such as accelerometer, gyroscope,

microphone, GPS, and camera [1]. As a consequence, it is

unprecedentedly easier for one to collect sensing information

around surroundings and share such sensing information. As a

new compelling paradigm for large-scale sensing information

collection, mobile crowd sensing [2] collects sensing data from

a multitude of individual smartphones, underpinning a variety

of valuable knowledge discovery, environment monitoring and

decision making applications. So far, there have been a number

of crowd sensing deployments, such as noise mapping [3],

personal environmental impact analysis [4], and road traffic

monitoring [5].

There are two types of mobile crowd sensing, depending

on the way of smartphone user participation, i.e., participatory
sensing and opportunistic sensing [1][6]. Participatory sensing

requires participants to actively engage in sensing activities by

manually determining how, when, what and where to sense. In

opportunistic sensing, however, sensing activities are typically

automated, without requiring user intervention to actively and

consciously perform sensing tasks. In practice, opportunistic

sensing applications may run in the background and the

phone users may not be aware of active execution of sensing

applications. In other words, opportunistic applications are

Fig. 1. An illustration of a crowd sensing system. The platform serves
multiple types of sensing requests which can arrive dynamically.

usually transparent to phone users. The benefit of opportunistic

sensing is that it significantly lowers the burden of phone

users, allowing higher participation, which is crucial for wide

adoption of mobile crowd sensing.
This paper concentrates on opportunistic sensing based

mobile crowd sensing. In most cases, mobile crowd sensing

applications are built for specific purpose and requirements.

The sensing data generated by the application are usually

only available for single use. To realise the greater vision

of a mobile crowdsensing application, common platforms that

facilitates easy development and deployment of crowd sensing

applications are developed, e.g., MOSDEN [7], and MECA

[8]. Fig. 1 describes a typical crowd sensing system consisting

of a platform deployed in the cloud. Smartphones with various

embedded sensors are connected to the platform via wireless

networks.
The platform can provide sensing services to its subscribers

by processing their sensing data collection requests. The

subscribers can be different sensing applications which use

different types of sensing data. Sensing requests from sub-

scribers arrive at the platform dynamically. The platform then

dispatches sensing requests to smartphones for processing. At

last it aggregates sensing data of smartphones and forwards

the results to subscribers. In this way, the platform processes

sensing requests from subscribers and charges them for that

service. In other words, the platform can generate revenue

(utility) by processing sensing requests. In this paper, we

consider different types of heterogeneous sensing requests.

They may differ from each other in required sensors and can

generate different utility.
We can find that smpartphones play a significantly impor-

tant role in such a crowd sensing system since that the service



availability of the platform crucially depends on participation

of smartphones. However, the users of smartphones, named

participants, will suffer some cost during contribution to the

platform, such as battery energy cost, data processing and

transmission cost and their normal use of smartphones may be

affected when processing sensing requests. So that participants

would not allow the platform to utilize their devices without

limitation for free.

Therefore we consider the platform pays the participants

to motivate their participation in sensing requests process-

ing, according to their sensing time which means the time

consumption for processing sensing requests. To let the par-

ticipants decide how much sensing time they are willing

to provide, we consider that they can sell sensing time to

the platform for requests processing. After purchasing some

sensing time, the platform then can utilize participants for

processing sensing requests. But it cannot utilize more than

the available sensing time that has been purchased. Note that

when and how much time to sell completely depends on the

participants’ willingness. For example, a participant may not

be willing to sell much sensing time when he or she is busy on

smartphone but may be willing to sell more sensing time when

he or she doesn’t use smartphone frequently. The amount of

sensing time that participant is willing to sell represents how

willing the participant wants to participate in the system and

is totally dynamic and unpredictable.

The objective of the platform is to maximize the profit,

which equals to the revenue minus payment, subject to the

constraints that the average system backlog is finite (system

stability), and the sensing time-availability constraint is met,

i.e., the sensing time consumed on each smartphone is no more

than the time that is available, at all time. To achieve the

goal, four important control decisions need to be made in the

crowd sensing system: (1) how many requests of each type

to be admitted at any given time; (2) how to dispatch the

admitted sensing requests to a number of smartphones; (3)

how to allocate limited available sensing time to each type

of sensing requests for processing, on each smartphone; and

(4) how much sensing time to purchase when participants are

willing to sell some.

We see that it is quite challenging to achieve the optimal

profit subject to the constraints. The biggest challenge behind

the problem is that the information of sensing requests’ arrival

is not a priori knowledge, which is unpredictable and even

bursty. And each participant’s willingness to participate is also

unknown and unpredictable in advance. In other words, we

do not know the amount of sensing time that participants

are willing to sell and when they are willing to sell. Thus,

conventional deterministic control methods are not applicable

here. Second, the sensing time-availability constraint greatly

complicates the design of an efficient control algorithm, due

to the fact that the current sensing time expenditure decision

may lead to sensing time outage in the future and thereby

affect the future decisions. Third, there exists an intrinsic

tradeoff among system stability, sensing time purchasing and

the processing throughput which impacts the profit. What’s

more, all the control decisions are deeply coupled and affect

with each other.

Mobile crowd sensing has received increasingly extensive

research study. Unfortunately, little work has studied the prob-

lem of maximizing the profit of the crowd sensing platforms

subject to the constraints of system stability and sensing time

availability. In particular, little work of the crowd sensing plat-

form has noticed the fact of dynamic request arrival and hasn’t

considered the problem of user motivation. As a consequence,

most of the existing studies [7] [8] simply assume the sensing

requests are known and within the system’s capacity, which

is not practical. And they utilize the smartphone for sensing

data collection without limitation and payment.

In this paper, we propose a profit maximizing algorithm

for crowd sensing platforms. To tackle the aforementioned

challenges, we take advantage of Lyapunov optimization tech-

nique developed in [9] to design a novel optimal online control
framework which can independently and simultaneously make

all the four control decisions in the crowd sensing system.

We utilize the basic Lyapunov optimization technique together

with the idea of weight perturbation, e.g., [10] and [11].

The idea is to construct the algorithm based on a quadratic

Lyapunov function, but carefully perturb the weights used for

decision making, so as to push the available sensing time

volume towards certain nonzero values on each smartphone

to avoid underflow. Based on this idea, our control framework

can achieve a time-averaged profit which is arbitrarily close to

the optimum, while still remain strong stability. Specifically,

our control framework is able to achieve a time-averaged

profit that is within O(1/V ) of the optimum for any V > 0,

and guarantees that the system backlog is deterministically

bounded by O(V ).

The remainder of this paper is organized as follows. In

Section II, we formulate our system model as well as the

objective. In Section III, we present the details of our optimal

control framework. We evaluate the performance of our control

framework based on simulation results in Section IV. And we

discuss related work in Section V. Finally, a brief conclusion

of this work is given in Section VI.

II. SYSTEM MODEL

In this section, we formulate a typical crowd sensing system

model in Fig. 2. It consists of a platform deployed in the cloud

and a set of smartphones denoted by N = {1, 2, · · · , n}. The

system is to serve m types of heterogenous sensing requests

M = {1, 2, · · · ,m} with diverse arrival rates. These sensing

requests may differ in required sensors or other smartphone

resources (e.g. processor, memory) and can generate different

utility. We consider a system that operates in slotted time

where the time slot length can range from a few seconds

to minutes. In every time slot t(= 0, 1, 2, · · · , τ, · · · ), a

number of sensing requests of different types may arrive at

the platform. And we use Ri(t) to denote the number of the

i-th type of sensing requests that arrive at the platform in time

slot t.



Fig. 2. A crowd sensing system with four control decisions including re-
quest admission control, request dispatching control, sensing time purchasing
control, and sensing time allocation control.

We assume that the number of arrival requests Ri(t), ∀i ∈
M, is independent and identically distributed (i.i.d) over time

slots, and is independent of the current amount of unfinished

workload in the system. And we denote the time averaged

arrival rate of requests of the i-th type as ri = E{Ri(t)}. We

also assume that 0 ≤ Ri(t) ≤ Rmax
i , ∀i ∈ M, with some finite

Rmax
i in all time slots. Since the arrival of sensing requests

is highly dynamic and usually unpredictable, and can even

spike abruptly, we do not assume any priori knowledge of the

statistics of Ri(t), ∀i ∈ M, ∀t.
A. Control Decisions

In every time slot, the system needs to make four important

control decisions, as introduced in Fig. 2.

1) Admission control of sensing requests: The first con-

trol decision of the system is to decide how many sensing

requests of each type to admit into the system. In each time

slot, heterogenous sensing requests arrive at the platform. To

prevent system overload, only a subset of each type of requests

Ai(t), ∀i ∈ M, can be admitted into the system to be pro-

cessed. Therefore, admission control decisions Ai(t) are made

in every time slot, subject to the constraint 0 ≤ Ai(t) ≤ Ri(t).
2) Dispatching control of sensing requests: As soon as a

subset of sensing requests of each type Ai(t), ∀i ∈ M, are

admitted into the platform, the second control decision is to

dispatch (allocate) Ai(t) to each smartphone for processing.

We use Aij(t) to denote the number of the requests of the

i-th type that are dispatched to smartphone j in time slot t.
Obviously, the dispatching control decisions need to satisfy

the constraint:
∑

j∈N Aij(t) = Ai(t), ∀i ∈ M, ∀t.
Since it is impossible for smartphones to finish processing

all dispatched (allocated) requests at once, each smartphone

maintains a queue for each type of sensing requests where

that type of requests will wait to be processed. We define the

request queue backlog Qij(t) as the number of requests that

are waiting in the queue of type i on smartphone j at the

beginning of time slot t, as Fig. 2 shows.
3) Purchasing control of sensing time: To let sensing

requests be processed on each participant’s smartphone, the

platform needs to purchase the sensing time of each participant

at first. We suppose that sensing time is measured in second.

As explained in Section I, according to the participants’

willingness and practical situation, the amount of sensing

time that a participant is willing to sell is typically not fixed

and varies over time. The participant can sell any amount of

sensing time in any time slot. For convenient illustration, we

name the amount of sensing time that participant is willing

to sell as purchasable sensing time. We use Hj(t) to denote

the amount of purchasable sensing time on smartphone j
in time slot t. In other words, Hj(t) denotes how many

seconds the participant is willing to sell to the platform for

processing sensing requests. 1 We assume that Hj(t), ∀j ∈ N
is i.i.d over time slots and there exists a finite Hmax such

that 0 ≤ Hj(t) ≤ Hmax, ∀j ∈ N , ∀t. And we denote the

time averaged purchasable sensing time on smartphone j as

hj = E{Hj(t)}.

The platform needs to decide whether or not to purchase

sensing time on each smartphone, when there are purchasable

sensing time in time slot t, i.e., Hj(t) > 0. We model the

purchasing decision as ej(t) ∈ [0, Hj(t)], which denotes the

amount of sensing time that are purchased on smartphone j
in time slot t. We assume that the sensing time purchased

on each smartphone can be accumulated for further use, and

the sensing time purchased in time slot t is assumed to be

available for use from the next time slot t + 1. We model

such an accumulation as a sensing time queue. And we use

the sensing time queue size on smartphone j in time slot t,
denoted by Sj(t), to measure the amount of available sensing

time that has been purchased on smartphone j in time slot t.
4) Sensing time allocation: In order to process each type

of sensing requests waiting in the corresopnding queue main-

tained by each smartphone, the smartphone needs to allocate

sensing time to each type of request in every time slot. Let

pij(t) denote the amount of sensing time allocated to the i-
th type of sensing request on smartphone j in time slot t. It

is clear that, in any time slot t, the sensing time allocation

decisions must satisfy the following sensing time-availability
constraint: ∑

i∈M
pij(t) ≤ Sj(t), ∀j ∈ N . (1)

That is, the consumed sensing time must be no more than

what is available. Since processing too many sensing requests

of the same type in one time slot may cause a high occupancy

rate of certain smartphone resources, such as a certain sensor

1The value of Hj(t) can be obtained by participant’s declaration to the
system. In each time slot t, if the participant declares that he or she is willing
to sell some sensing time, Hj(t) > 0; If the participant doesn’t declare,
Hj(t) = 0.



and processor, so that result in participants’ discomfort when

using their smartphones, we limit the amount of sensing time

allocated to each type of sensing requests as: 0 ≤ pij(t) ≤
pmax, for some finite pmax.2

Given the sensing time allocation decision, the processing

rate of the i-th type of sensing requests on smartphone j
in time slot t is given by the processing rate-sensing time
function:

uij(t) = uij(pij(t)) = αi · pij(t), (2)

where αi means the number of processable sensing requests

of i-th type by consuming one second sensing time. And we

denote αmax = max
i

αi.

B. Queueing Dynamics
Recall that Qij(t) denotes the request queue backlog of type

i on smartphone j. In each time slot t, the number of sensing

requests dispatched to each queue is Aij(t). And the number

of requests that can be processed is uij(t). Therefore, we can

obtain the following queueing dynamics over time for each

queue on each smartphone as:

Qij(t+ 1) = max[Qij(t)− uij(t)), 0] +Aij(t), (3)

with Qij(0) = 0, ∀i ∈ M, ∀j ∈ N . In this paper, we say

that the system is stable if all queues are stable, that is the

following is met:

lim
t→∞ sup

1

t

t−1∑
τ=0

E(Qij(τ)) < ∞, ∀i, ∀j. (4)

Similarly, Sj(t) is the sensing time queue size on smart-

phone j in time slot t, which denotes the amount of available

(purchased) sensing time for processing sensing requests on

smartphone j. Under the sensing time-availability constraint

(1), we find that on each smartphone j, the sensing time queue

Sj(t) evolves according to the following:

Sj(t+ 1) = Sj(t)−
∑
i∈M

pij(t) + ej(t), (5)

with Sj(0) = 0, ∀j ∈ N .

C. Profit Model and Objective Formulation
1) Profit Model: The objective of our control framework

is to maximize the profit of the platform in crowd sensing

systems, which equals to the revenue minus cost. The revenue

is the utility produced by processing sensing requests while

the cost is the payment for participants in purchasing their

sensing time.
The utility usually depends on the system throughput.

Here, the sensing requests processing throughput of the crowd

sensing system is the number of requests that can be admitted

and processed. Specifically, for each type of sensing request

∀i ∈ M, we define the time averaged throughput of type i

as ai = limt→∞ 1
t

t−1∑
τ=0

E(Ai(τ)). Obviously, there is ai ≤ ri,

2Note that, the maximum possible allocated sensing time in one time slot
mpmax(seconds) can not exceeds the length of time slot.

since the time averaged throughput ai cannot exceed the time

averaged arrival rate ri for any type of sensing requests.

Intuitively, the larger throughput is achieved, the more utility

can be obtained. So the utility brought by the i-th type of

requests processing throughput can be given by a linear utility-

throughput function:

Ui(Ai(t)) = βi ·Ai(t), (6)

where βi is a type-specific positive coefficient for character-

izing different utility produced by processing each type of

sensing request. And we denote βmax = max
i

βi.

The cost of the platform is the payment for each partici-

pant. We define the payment for purchasing sensing time of

smartphone j as:

Cj(ej(t)) = k · ej(t), (7)

where k is the unit price for one second sensing time. And

we denote the time averaged sensing time purchased on

smartphone j as ej = limt→∞ 1
t

t−1∑
τ=0

E(ej(τ)).

2) Objective Formulation: The objective of our control

framework is to make a series of control decisions in every

time slot, including admitting the right amount of sensing

requests Ai(t), dispatching requests to each smartphone, pur-

chasing appropriate sensing time on each smartphone, and

allocating available sensing time to each type of sensing

requests subject to the sensing time-availability constraint (1),

so as to maximize the time averaged profit of the platform as

follows:

max
∑
i∈M

Ui(ai)−
∑
j∈N

Cj(ej) (8)

subject to the system stability constraint (4).

It is of great challenges to make optimal control deci-

sions for maximizing the profit of the platform: First, the

information of sensing requests’ arrival and the purchasable

sensing time on each smartphone is time-varying and un-

predictable, which makes it infeasible to precisely calculate

optimal solution in an offline manner. Second, the sensing

time-availability constraint (1) couples the current sensing time

allocation decision and the future decisions, for that a current

decision may incur the sensing time queue to be empty and

thereby block some sensing time allocation actions in the

future. In response, our control framework offers an online

and distributed control algorithm in Section III based on a

modified Lyapunov function, which is able to efficiently make

all four important decisions.

III. CONSTRUCTING ONLINE CONTROL FRAMEWORK

In this section, we present our profit optimal online control

framework which is able to concurrently make all control

decisions shown in Fig.2. The design of our control framework

is based on Lyapunov optimization technique developed in [9].

The idea is to construct a Lyapunov control algorithm com-

bined with perturbed weights for making control decisions.



By carefully perturbing the weights, it can be guaranteed that

whenever a smartphone allocates sensing time to the sensing

requests, there is always enough available time in the sensing

time queue. We will show that our control algorithm can be

proved to achieve a time averaged profit that is arbitrarily close

to optimum, while still maintaining system stability.

A. Problem Transformation Based on Lyapunov Optimization

To start, we first choose a perturbation parameter θj , j ∈ N
(to be specified later) and then define a perturbed Lyapunov
function as follows:

L(t)
Δ
=

1

2

∑
j∈N

∑
i∈M

Q2
ij(t) +

1

2

∑
j∈N

[Sj(t)− θj ]
2
. (9)

This function represents not only a scalar measure of request

queue congestion, but also the sensing time queue level on

each smartphone. By keeping the Lyapunov function value

small, we in fact push the request queue backlogs towards

small values which suggests the system stability, and push
the sensing time queue size Sj(t) towards θj . Thus, by

carefully choosing the value of θj , we can guarantee that the

sensing time queue always has enough available sensing time

whenever the smartphone decides to allocate sensing time to

process sensing requests.

We use Q(t) = (Qij(t)) and S(t) = (Sj(t)) to denote

the matrix of the request queues and sensing time queues on

smartphones and denote Z(t) = (Q(t),S(t)). To keep system

stable and the volume of available sensing time that has been

purchased staying around a certain level by consistently push-

ing the Lyapunov function towards a small value, we introduce

a one-slot conditional Lyapunov drift, which represents the

change in Lyapunov function from one slot to the next, as

follows:

Δ(t)
Δ
= E{L(t+ 1)− L(t)|Z(t)}. (10)

The expectation here is taken over the randomness of sensing

requests’ arrival and participants’ willingness to sell sensing

time and the (possibly random) control decisions made in

response to those information.

According to Lyapunov optimization, the underlying ob-

jective of our optimal control algorithm is to make control

decisions to minimize an upper bound of the following drift-
minus-profit expression in each time slot:

ΔV (t)
Δ
= Δ(t)− V E{

∑
i∈M

Ui(Ai(t))−
∑
j∈N

Cj(ej(t))|Z(t)}.
(11)

Insight: The control parameter V ≥ 0 represents an

importance weight on how much we emphasize the profit

maximization compared to system stability. We want to make

Δ(t) small to push request queue backlogs towards lower con-

gestion state, but we also want to make E{∑i∈M Ui(Ai(t))−∑
j∈N Cj(ej(t))|Z(t)} big so that we can obtain a large profit.

So this parameter V enables various tradeoffs between system

stability and profit.

We have the following lemma regarding the drift-minus-
profit expression:

Lemma 1: In each time slot t, under any feasible control

decisions, including requests admission, dispatching, sensing

time purchasing and allocation subject to the sensing time-

availability constraint (1), we have:

Δ(t)− V E{
∑
i∈M

Ui(Ai(t))−
∑
j∈N

Cj(ej(t))|Z(t)} ≤ B

−
∑
i∈M

E{V βiAi(t)−
∑
j∈N

Qij(t)Aij(t)|Z(t)} (12)

+
∑
j∈N

E{V kej(t) + [Sj(t)− θj ]ej(t)|Z(t)} (13)

−
∑
j∈N

E{
∑
i∈M

Qij(t)αipij(t)

+[Sj(t)− θj ]
∑
i∈M

pij(t)|Z(t)} (14)

where B =
n
∑

i∈M [α2
i p

2
max+(Rmax

i )2]+n(Hmax+mpmax)
2

2 is a

finite constant parameter.

Proof: First, squaring both sides of (3), and using the fact

that for any Q ≥ 0, u ≥ 0, A ≥ 0, (max[Q − u, 0] + A)2 ≤
Q2 + u2 +A2 − 2Q(u−A), and combining with Eq. (2), we

have:

Q2
ij(t+ 1)−Q2

ij(t) ≤ α2
i p

2
ij(t) +A2

ij(t)−
2Qij(t)[αipij(t)−Aij(t)]

≤ α2
i p

2
max + (Rmax

i )2 −
2Qij(t)[αipij(t)−Aij(t)].

Then, according to Eq. (5), we have:

[Sj(t+ 1)− θj ]
2 − [Sj(t)− θj ]

2

= [Sj(t+ 1)− Sj(t)][Sj(t+ 1) + Sj(t)− 2θj ]

= [ej(t)−
∑
i∈M

pij(t)]
2 − 2[Sj(t)− θj ][

∑
i∈M

pij(t)− ej(t)]

≤ (Hmax +mpmax)
2 − 2[Sj(t)− θj ][

∑
i∈M

pij(t)− ej(t)].

Based on the above two inequations, we further have:

L(t+ 1)− L(t) ≤ B −Qij(t)[αipij(t)−Aij(t)]

−[Sj(t)− θj ][
∑
i∈M

pij(t)− ej(t)], (15)

by defining B =
n
∑

i∈M [α2
ip

2
max+(Rmax

i )2]+n(Hmax+mpmax)
2

2 .

Taking expectations on both sides of (15) over the random-

ness of control decisions conditioning on Z(t), subtracting

the term V E{∑i∈M Ui(Ai(t))−
∑

j∈N Cj(ej(t))|Z(t)} from

both sides, combining with Eq. (6) and Eq. (7), and rearranging

the terms, we can see that lemma 1 holds.

B. Profit Optimal Online Control Algorithm

In this subsection, we will present our profit optimal online

control algorithm (POC). The idea of the algorithm is to ap-

proximately minimize the upper bound of the drift-minus-profit



given above, subject to the sensing time-availability constraint

(1). In each time slot t, according to online observation of

Q(t) and S(t), POC takes the following four phases of control

actions, including requests admission and dispatching control,

sensing time purchasing, sensing time allocation and queue

update.

1) Request Admission and Dispatching: For requests of

each type i ∈ M, the requests admission decisions Ai(t) and

dispatching decisions (Ai1(t), Ai2(t), · · · , Ain(t)) as shown

in Fig. 2 can be made by maximizing term (12). Since the

admission decisions and dispatching decisions of different

types are independent from each other, we can concurrently

choose Ai(t) and Aij(t) to be the optimal solutions of the

following optimization problem:

max
Ai(t),Aij(t)

V βiAi(t)−
∑
j∈N

Qij(t)Aij(t) (16)

s.t. 0 ≤ Ai(t) ≤ Ri(t), ∀i ∈ M,∑
j∈N

Aij(t) = Ai(t).

This problem seems a little complicated due to the coupling

of Ai(t) and Aij(t). We can consider the problem in a simple

way: if the value of Ai(t) is given in advance, the problem

can be rewritten as follows:

min
Aij(t)

∑
j∈N

Qij(t)Aij(t) (17)

s.t.
∑
j∈N

Aij(t) = Ai(t), ∀i ∈ M.

Note that in (17), the amount of the i-th type requests

dispatched to smartphone j is weighted by the current queue

backlog. Therefore, the optimal dispatching decision for i-th
type request, ∀i ∈ M, is to dispatch as many admitted requests

as possible to the smartphone with the shortest queue:

Aij(t) =

{
Ai(t), if j = j∗i ,
0, otherwise.

(18)

where j∗i = argminj∈N Qij(t), that is, the queue of the i-th
type request maintained by smartphone j∗i is the shortest queue

among all n queues for the i-th type request. Such a control

strategy is like an intuitive “Dispatch to the Shortest Queue”
strategy for load balance. We also find that this strategy can

reduce processing delay of newly admitted sensing requests

since they are dispatched to the shortest queues.

Based on the dispatching strategy in (18), the request

admission control decision Ai(t) in (16) can be solved as:

max
Ai(t)

V βiAi(t)−Qij∗i (t)Ai(t) (19)

s.t. 0 ≤ Ai(t) ≤ Ri(t), ∀i ∈ M.

Problem (19) is a simple linear programming problem with

respect to Ai(t) and the optimal solution is:

Ai(t) =

{
Ri(t), V βi > Qij∗i (t),
0, otherwise.

∀i ∈ M. (20)

Insight: We can see that the strategy in (20) is a threshold-
based admission control strategy. When the backlog of the

shortest queue for type i, Qij∗i (t), is smaller than a threshold

V βi, all the arrived sensing requests in current time slot are

admitted into the system. This increases the system throughput

Ai(t) when the system is of a low congestion state. But

when the backlog of shortest queue exceeds the threshold,

all the arrived requests will be denied to guarantee the system

stability.

2) Sensing Time Purchasing: On each smartphone j ∈ N ,

the sensing time purchasing control decisions can be made

by minimizing term (13). Since the purchasing decisions on

different smartphones are independent from each other, each

ej(t) can be concurrently decided by solving the following

optimization problem:

min
ej(t)

V kej(t) + [Sj(t)− θj ]ej(t) (21)

s.t. 0 ≤ ej(t) ≤ Hj(t), ∀j ∈ N .

It is easy to get the optimal solution:

ej(t) =

{
Hj(t), Sj(t) < θj − V k,
0, otherwise.

∀j ∈ N . (22)

Insight: Actually, there is no need to make any purchasing

decisions if no sensing time is purchasable on smartphones,

i.e., Hj(t) = 0. If there is sensing time purchasable, this

strategy will perform sensing time purchasing on smartphone

j only when the available sensing time volume is less than

θj −V k, and hence Sj(t) ≤ θj −V k+Hmax for all t. In this

way, we can avoid purchasing too much sensing time when

there is enough available sensing time for processing sensing

requests. As we will show later, by this strategy, our algorithm

can achieve a profit that is within O(1/V ) of the optimal, by

limiting the volume of available sensing time that has been

purchased within O(V ).

3) Sensing Time Allocation: First, we define the perturbed
weight of the i-th type sensing request on smartphone j in

time slot t as:

Wij(t)
Δ
= Qij(t)−Rmax

i . (23)

Observing that the sensing time allocation decisions pij(t)
are independent among different smartphones. Therefore, in

each time slot t, the sensing time allocation decisions on

each smartphone j ∈ N , (p1j(t), p2j(t), · · · , pmj(t)), can

be determined in a fully distributed manner, by solving the

following maximization problem:

max
pij(t)

∑
i∈M

Wij(t)αipij(t) + [Sj(t)− θj ]
∑
i∈M

pij(t)(24)

s.t. pij(t) ∈ {0, 1, · · · , pmax},
sensing time-availability constraint (1),

∀i ∈ M, ∀j ∈ N .

The term (24) can be rewritten as
∑

i∈M[Wij(t)αi+Sj(t)−
θj ]pij(t), where Wij(t)αi + Sj(t)− θj can be viewed as the

weight of the decision variable pij(t). The optimal solution



for the maximization problem would prefer to make pij(t)
with larger positive weight as big as possible. Following this

intuition, each smartphone j adopts a simple but effective

greedy strategy that ranks each allocation decision variable

pij(t) according to their weight. Then it searches from the one

with largest positive wight to the one with the smallest positive

weight and allocates the sensing time value to each pij(t)
as big as possible subject to the constraints. The remaining

variables with negative weight are set to zero.

4) Queue Update: Finally, the request queue backlogs of

each type i maintained by each smartphone j, Qij(t), can

be updated according to the dynamic (3), with the optimal

values of Aij(t) and pij(t) determined by the above strategies.

Similarly, the sensing time queues Sj(t) on smartphones can

be updated according to dynamic (5), based on the optimal

values of ej(t) and pij(t).

C. Implementation of POC

We note that POC only requires the knowledge of the queue

sizes Q(t) and H(t). It can make online control decisions

without any priori knowledge of Ri(t) and Hj(t). This is

very useful in practice since the future information of sensing

requests arrival and participants’ sensing time sale is difficult

to obtain or predict.

As mentioned above, the sensing time purchasing and

allocation decisions on different smartphones are independent

from each other. Therefore, these two decisions can be made

on each smartphone in a fully distributed manner. We can

divide POC into two parts. The first part is the request

admission and dispatching control performed on the platform,

with the knowledge of queue sizes Q(t) of all smartphones.

And the second part is the sensing time purchasing and

allocation decisions performed on each smartphone locally,

with its own queue sizes information. Then, the platform and

smartphones communicate with each other to exchange the

control decisions and update the queue sizes for the next

time slot. This distributed control decision making method

can significantly lighten the computation load of the central

platform when the number of smartphones becomes larger and

larger, which is desirable in practical implementation.

D. Performance Analysis

We now analyze the performance of POC, in terms of a

close to optimum time-averaged profit and strong stability of

the system. First, we define the parameter θj as:

θj
Δ
= αmaxβmaxV +mpmax. (25)

We see that the value of θj can be easily determined since it

only requires the knowledge of the maximum coefficients of

the utility function (6) and the processing rate-sensing time

function (2), and the maximum sensing time expenditure in

one time slot, and requires no knowledge of Ri(t) or Hj(t).
This feature is very desirable for practical implementations.

Theorem 1: For arbitrary sensing request arrivals of each

type (R1(t), R2(t), · · · , Rm(t)) and arbitrary purchasable

sensing time of each participant (H1(t), H2(t), · · · , Hn(t)),

under the POC algorithm with θj defined in (25), we have the

following:

a) The request queues and the sensing time queues satisfy

the following over all time slots:

0 ≤ Qij(t) ≤ βiV +Rmax
i , (26)

0 ≤ Sj(t) ≤ θj − V k +Hmax. (27)

What’s more, when a smartphone allocates nonzero

sensing time to any type of request, Sj(t) ≥ mpmax.

b) The gab between the time averaged profit achieved by

POC and the optimal profit ρ∗ is within B̃/V :

∑
i∈M

Ui(ai)−
∑
j∈N

Cj(ej) ≥ ρ∗ − B̃

V
, (28)

where ρ∗ =
∑

i∈M Ui(a
∗
i ) −

∑
j∈N Cj(e

∗
j ), a∗i and

e∗j are the optimal solution to problem (8), and B̃ =
B+mnpmax

∑
i∈M Rmax

i αi, which is a finite constant

independent of V .

Proof: (Part a)) We prove (26) at first. Obviously, it holds

for t = 0 since Qij(0) = 0, ∀i ∈ M, ∀j ∈ N . Now assume

that Qij(t) ≤ βiV +Rmax
i , ∀i ∈ M, ∀j ∈ N in time slot t, we

would like to show that it also holds for time slot t+1. First, if

there is no sensing requests of type i dispatched to smartphone

j, then Qij(t+ 1) ≤ Qij(t) ≤ βiV +Rmax
i ; Second, if there

are sensing requests of type i dispatched to smartphone j,

according to request admission and dispatching strategy of

POC, j must be the smartphone with the shortest queue for

type i among all n queues for type i. Hence, according to (18)

and (20), we must have Qij(t) < βiV . Since any queue for

type i can receive at most Rmax
i sensing requests of type i in

any time slot, Qij(t + 1) ≤ Qij(t) + Rmax
i < βiV + Rmax

i .

Then (26) is proved.

As we have explained when introducing sensing time pur-
chasing strategy of POC that Sj(t) ≤ θj − V k+Hmax, then

(27) is proved. We now show that, when Sj(t) < mpmax,

(24) will be maximized by choosing pij(t) = 0 for all i
on smartphone j: Since Qij(t) is upper bounded by βiV +
Rmax

i , then Wij(t) ≤ βiV . Therefore, the weight of pij(t),
Wij(t)αi + Sj(t)− θj ≤ αiβiV +mpmax − (αmaxβmaxV +
mpmax) ≤ 0. We can easily see that (24) is maximized

by pij(t) = 0, ∀i ∈ M. This shows that Sj(t) ≥ mpmax

whenever smartphone j allocates sensing time to any type

of request. Hence all sensing time allocation decisions are

feasible. It shows that the constarint (1) is indeed redundant

in POC and completes the proof of part a).

(Part b)) Next, we prove part b) which requires the following

lemma 2.

Lemma 2: (Existence of Optimal Randomized Stationary

Policy): For arbitrary sensing request arrival rate of each type

(r1, r2, · · · , rm) and arbitrary purchasable sensing time of

each participant (h1, h2, · · · , hn), there exists a randomized

stationary control policy σ that chooses feasible control de-

cisions Aσ
i (t), A

σ
ij(t), e

σ
j (t) and pσij(t), ∀i ∈ M, ∀j ∈ N , ∀t,

independent of the current queue sizes, and yields the follow-



ing steady state values:

E{Aσ
i (t)} = a∗i

E{αip
σ
ij(t)} ≥ E{Aσ

ij(t)} (29)

E{eσj (t)} = e∗j
E{

∑
i∈M

pσij(t)} = E{eσj (t)}. (30)

Since Lemma 2 can be proved using similar techniques in

[9], we omit the details for brevity. Note that in Lemma 2,

(29) shows the rate of dispatched requests to smartphone j of

type i is no more than the processing rate; (30) says that the

rate of sensing time purchasing is equal to the sensing time

consumption rate on smartphone j.

We now show that POC approximately minimizes the upper

bound of the drift-minus-profit expression (11). Note that POC

indeed minimizes the following function in each time slot t:

D(t) = −[
∑
i∈M

V βiAi(t)−
∑
j∈N

Qij(t)Aij(t)]

+ {
∑
j∈N

V kej(t) + [Sj(t)− θj ]ej(t)}

− {
∑
j∈N

∑
i∈M

[Qij(t)−Rmax
i ]αipij(t)

+[Sj(t)− θj ]
∑
i∈M

pij(t)},

subject to only the constraints: Ai(t) ∈ [0, Ri(t)], ej(t) ∈
[0, Hj(t)] and 0 ≤ pij(t) ≤ pmax, i.e., without the sensing

time-availability constraint (1). We define D̃(t) as:

D̃(t) = −[
∑
i∈M

V βiAi(t)−
∑
j∈N

Qij(t)Aij(t)]

+ {
∑
j∈N

V kej(t) + [Sj(t)− θj ]ej(t)}

− {
∑
j∈N

∑
i∈M

Qij(t)αipij(t) + [Sj(t)− θj ]
∑
i∈M

pij(t)},

which is in fact the function inside the expectation of the

upper bound of the drift-minus-profit. It is clear that,

D(t) = D̃(t) +
∑
j∈N

∑
i∈M

Rmax
i αipij(t).

Since POC minimize D(t), we have:

D̃P (t) +
∑
j∈N

∑
i∈M

Rmax
i αip

P
ij(t)

≤ D̃ALT (t) +
∑
j∈N

∑
i∈M

Rmax
i αip

ALT
ij (t),

where the superscript P denotes the POC algorithm, and

ALT denotes any other alternate policy. Combined with the

fact that,

0 ≤
∑
j∈N

∑
i∈M

Rmax
i αipij(t) ≤ mnpmax

∑
i∈M

Rmax
i αi,

we further have:

D̃P (t) ≤ D̃ALT (t) +mnpmax

∑
i∈M

Rmax
i αi. (31)

That is, the value of D̃(t) under POC is no greater than

the value under any other policy plus a constant. Moreover,

it has been explained that the sensing time-availability is

naturally satisfied under POC algorithm without explicitly

being enforced in part a). According to the definition of D̃(t),
we have:

Δ(t)− V E{
∑
i∈M

Ui(A
P
i (t))−

∑
j∈N

Cj(e
P
j (t))|Z(t)}

≤ B + E{D̃P (t)|Z(t)}.
Based on (31), we have:

Δ(t)− V E{
∑
i∈M

Ui(A
P
i (t))−

∑
j∈N

Cj(e
P
j (t))|Z(t)} (32)

≤ B̃ + E{D̃ALT (t)|Z(t)},
where B̃ = B+mnpmax

∑
i∈M

Rmax
i αi. Plugging the optimal

randomized stationary policy σ in Lemma 2 into (32) yields:

Δ(t)−V E{
∑
i∈M

Ui(A
P
i (t))−

∑
j∈N

Cj(e
P
j (t))|Z(t)} ≤ B̃−V ρ∗,

where ρ∗ =
∑

i∈M Ui(a
∗
i ) − ∑

j∈N Cj(e
∗
j ). Then taking

expectations over Z(t) and summing the above over time slots

τ ∈ {0, 1, · · · , t− 1}, we have:

E{L(t)− L(0)} − V
t−1∑
τ=0

E{
∑
i∈M

Ui(A
P
i (τ))

−
∑
j∈N

Cj(e
P
j (τ))} ≤ tB̃ − tV ρ∗.

Rearranging terms and considering the fact that L(t) ≥ 0 and

L(0) = 0, dividing both sides by V t yields:

1

t

t−1∑
τ=0

E{
∑
i∈M

Ui(A
P
i (τ))−

∑
j∈N

Cj(e
P
j (τ))} ≥ ρ∗− B̃

V
. (33)

Since the utility function Ui(∗) and the cost function Cj(∗)
are linear, we have:

1

t

t−1∑
τ=0

E{
∑
i∈M

Ui(A
P
i (τ))} =

∑
i∈M

Ui(
1

t

t−1∑
τ=0

E(AP
i (τ))),

1

t

t−1∑
τ=0

E{
∑
i∈M

Cj(e
P
j (τ))} =

∑
i∈M

Cj(
1

t

t−1∑
τ=0

E(ePj (τ))).

By plugging the above two equations into (33) and taking a

lim as t → ∞, we finally have:

∑
i∈M

Ui(ai)−
∑
j∈N

Cj(ej) ≥ ρ∗ − B̃

V
, (34)

This completes the proof of part b).

Insight: Part a) of Theorem 1 provides a powerful de-



terministic guarantee of upper bounds on all request queue

backlogs and the volume of available sensing time that has

been purchased within O(V ) in any time slot. This feature

shows that POC can ensure the system stability and avoid

purchasing too much sensing time which may not be required

in the future. Moreover, part a) shows that the sensing time-

availability constraint (1) is naturally satisfied under POC

without explicitly being enforced. Part b) suggests that the

difference between the time averaged profit achieved by POC

and the optimal profit is within O(1/V ). If the value of

parameter V is large enough, the time averaged profit obtained

by POC can become arbitrarily close to the optimum. But

a large V will also result in large request queue backlogs

according to (26), which implies great processing delays for

sensing requests.

IV. PERFORMANCE EVALUATION

We carry out simulations to evaluate our online control al-

gorithm POC for crowd sensing platforms. In our simulations,

we consider that the platform is to serve m (varies form 3 to

5) heterogenous types of sensing requests. The utility brought

by processing different types of request are different according

to the type-specific utility coefficient βi, which are [1,2,3,4,5]

for the 5 types of requests in our simulations. The sensing

requests of type i arrive at the platform according to a random

process of average rate ri, which are [30,50,30,30,40]. For

each type of sensing request, we set its maximum arrival rate

as Rmax
i = 2ri. And we assume that, in each time slot t, the

number of newly arrived sensing requests, Ri(t), is uniformly

and randomly distributed within [0, Rmax
i ]. The coefficient αi

is assumed to be one for all types of sensing requests. Besides,

we choose pmax = 1 and the cost coefficient k = 1.

Suppose that there are n (varies from 50 to 300) smart-

phones participating in the system. On each smartphone, we

simulate the purchasable sensing time as: If there is no sensing

time being purchasable in time slot t, then Hj(t) = 0;

Otherwise, Hj(t) takes a random value within [0,1000] with

equal probability. And the time (slot) interval between each

time sensing time being purchasable is assumed to be within

[100,1000] randomly, with equal probability. All the following

simulations are run for 10, 000 time slots.

First, we verify the optimality of our algorithm. Fig. 3
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Fig. 3. Simulation results of POC with the growth of V.

shows the simulation results with the growth of parame-

ter V . In this case, we use m = 4 types of sensing

requests and n = 100 smartphones and simulate V ∈
{20, 30, 40, 50, 60, 80, 100, 150, 200, 300, 500}. We see that

the time averaged profit of the platform achieved by POC

improves significantly and converges quickly to very close to

the optimal value as the value of V increases. Meanwhile, the

average request queue backlog and sensing time queue size

which means the available (purchased) sensing time volume

both grow linearly as the value of V increases. It shows the

tradeoffs between the profit and system stability which can be

adjusted by parameter V , and verifies Theorem 1 that the time

averaged profit achieved by POC can approach the optimal

profit within a gap of O(1/V ) while ensuring deterministic

upper bounds of O(V ) on request queue backlogs and the

volume of sensing time purchased.

Second, we compare POC with two baseline online control

algorithms described as follows.

1) Random Online Control Algorithm (RANDOM): In

this algorithm, each smartphone maintains a queue with

fixed size, which equals to the upper bound of request

queue backlog in POC, for each type of sensing request.

Control decisions are made randomly except for request

dispatching control which consider the load balance by

using the Dispatch to the Shortest Queue strategy as

POC. Requests will be denied only if all the queues

have already been full.

2) Greedy Online Control Algorithm (GREEDY): This

algorithm makes greedy control decisions in each time

slot. It admits sensing requests as many as possible,

dispatches requests using the Dispatch to the Shortest
Queue strategy, purchases and allocates sensing time as

much as possible.

We use POC with V = 100 in the comparison. Results are

shown in Fig. 4, Fig. 5 and Fig. 6:

In the case of Fig.4, we fix the number of sensing request

types m = 4 and compare the time averaged profit achieved

by three algorithms as the number of smartphones varies

from 50 to 300. We find that the profit achieved by POC

increases as the number of smartphones becomes larger since

that more smartphones can result in more available sensing

time as well as processing capacity. And the profit achieved

by POC is always higher than that achieved by the RANDOM

and GREEDY algorithms. Note that when the number of

smartphones exceeds a certain value, the increasing rate of

profit achieved by POC becomes slower and slower while the

profits achieved by the other two algorithms even begin to

decrease. This is because when the number of smartphones

is small, the available sensing time and processing capacity

are relatively not enough. Therefore POC is better than other

algorithms since it can utilize the limited available sensing

time more efficiently. But when the number of smartphone

is large, the sensing requests become relatively not enough

with respect to the big processing capacity provided by a large

number of smartphones. Hence the other two algorithms may
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purchase too much sensing time when there are not many

requests for processing and result in the decreasing in profit.

By contrast, POC can avoid purchasing too much sensing

time and keep the available (purchased) sensing time volume

around a certain level.

In the case of Fig. 5, we use n = 100 smartphones

and compare the time averaged profit obtained by the three

algorithms as the number of sensing request types varies from

3 to 5. We see that POC is always better than the RANDOM

and GREEDY algorithms and the gap between POC and the

other algorithms becomes larger when m increases, since POC

can efficiently utilize the available sensing time.

In Fig. 6, we study the profit achieved by three algorithms

under different requests’ arrival rates. We change the average

arrival rates of each type request from 0.25 of the original

value (0.25ri) to 1.5 times of the original value (1.5ri) and

find that POC can always achieve better time averaged profit

than the other two algorithms regardless of the changing in

arrival rates of sensing requests.

At last, we examine the system stability under our control

algorithm. Different from the above simulations with fixed

average arrival rate of each type sensing request, Fig. 8 plots

the average request queue backlog on each smartphone over

time with the average arrival rates of sensing requests varying

in a bursty manner. We divide the simulation time into three

phases, each of which is of 10,000 time slots. The arrival rates

are varying according to Fig. 7. In the first phase, the average

arrival rates are equal to original values. We let the average

arrival rates of each type sensing request abruptly rise to 2ri
in the second phase and suddenly drop to 0.5ri in the last

phase. We see from Fig. 8 that the system are strong stable

all the time despite abruptly changing in arrival rates.

V. RELATED WORK

Due to the fast increasing of usage of smartphones, mobile

crowd sensing is becoming more and more popular in recent

years and has attracted extensive research attention from both

academia and industry.
A great number of crowd sensing applications have been

designed and implemented. But they all built for specific

purpose and requirements. The sensing data generated by

the application are usually only available for single use. To

realise the greater vision of a mobile crowdsensing appli-

cation, common platforms that facilitates easy development

and deployment of crowd sensing applications are developed.

For example, MOSDEN [7] is a collaborative mobile crowd

sensing platform to develop and deploy opportunistic sensing

applications. It can operate on smartphones capturing and

sharing sensing data between multiple crowd sensing appli-

cations. CDAS system [12] enables deployment of various

crowd sensing applications that require human involvement for

simple verification tasks delivering high accuracy. MECA [8]

provides a platform by which different applications can use

data generated from diverse mobile data sources. But most

of these platforms do not consider the problem of dynamic

request arrival and utilize smartphone resources without limi-

tation and payment to smartphone users.
Little existing work has studied the problem of maximizing

the profit of the corwd sensing applications and platforms,

subject to the constraints of system stability and sensing

time availability. And most of the related work require suf-

ficient statistical knowledge and perform in offline manner or

prediction-based approach. For example, in [13] the authors

seek a mechanism for user participation level determination

and payment allocation which is most viable for the plat-

form, that is, it minimizes the total cost of compensating

participants, while delivering a certain quality of experience to

service requesters. In [14] the authors develop a novel smart

phone based vehicular crowd sensing system that achieves

efficient utilization of limited 3G budgets to improve system

performance. But they all work relying on a prediction-based

approach. Their feasibility heavily depend on the accuracy of

the prediction of future patterns, which is usually nonstationary

and almost unpredictable in the context of crowd sensing. In

comparison, our optimal online control algorithm does not

require any priori knowledge of the future patterns and can

achieve a time averaged profit that could be arbitrarily close

to the optimum.



VI. CONCLUSION

In this paper, we focus on the problem of maximizing

profit for crowd sensing platforms. We propose an online

control framework based on stochastic Lyapunov optimization

techniques in response to the dynamic and unpredictable

sensing requests arrival and purchasable sensing time on

participants which represent their willingness to participate.

Our control framework can independently and concurrently

make four important online control decisions including request

admission control, dispatching control, sensing time purchas-

ing and allocation control for crowd sensing platform, without

any knowledge of the future patterns. Rigorous theoretical

analysis as well as comprehensive simulation results indicate

that our control framework can achieve a time averaged profit

that could be arbitrarily close to the optimum, while still

maintaining strong system stability.
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