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Abstract—Mobile crowd sensing harnesses the data sensing
capability of individual smartphones, underpinning a variety
of valuable knowledge discovery, environment monitoring and
decision making applications. It is a central issue for a mobile
crowd sensing system to maximize the utility of sensing data
collection at a given cost of resource consumption at each
smartphone. However, it is particularly challenging. On the one
hand, the utility of sensing data from a smartphone is usually
dependent on its context which is random and varies over
time. On the other hand, because of the marginal effect, the
sensing decision of a smartphone is also dependent on decisions
of other smartphones. Little work has explored the utility
maximization problem of sensing data collection. This paper
proposes a distributed algorithm for maximizing the utility of
sensing data collection when the smartphone cost is constrained.
The design of the algorithm is inspired by stochastic network
optimization technique and distributed correlated scheduling. It
does not require any priori knowledge of smartphone contexts in
the future, and hence sensing decisions can be made by individual
smartphone. Rigorous theoretical analysis show that the proposed
algorithm can achieve a time average utility that is within O(1/V )
of the theoretical optimum.

Index Terms—Mobile crowd sensing, utility maximization,
smartphone, online algorithm, distributed algorithm, cost con-
straint.

I. INTRODUCTION

Over the past decades, mobile phones have become an

indispensable part of the daily life of almost everyone. Most

of smartphones embed a rich set of built-in sensors, such

as accelerometer, gyroscope, microphone, GPS, and camera

[1]. As a consequence, it is unprecedentedly easier for one

to collect sensing information around surroundings and share

such sensing information. As a new compelling paradigm

for large-scale sensing data collection and sharing, mobile
crowd sensing [2] harnesses the data collection capability of

individual smartphones, underpinning a variety of valuable

knowledge discovery, environment monitoring and decision

making applications. A number of exciting applications based

on mobile crowd sensing have been explored, e.g., noise

mapping [3], and personal environmental impact analysis [4].

There are two types of mobile crowd sensing, depending

on the way of node participation, i.e., participatory sensing
and opportunistic sensing [1][5]. Participatory sensing requires

participants to actively engage in sensing activities by man-

ually determining how, when, what and where to sense. In

opportunistic sensing, however, sensing activities are typically

automated, without requiring user intervention to actively and

consciously perform sensing tasks. In practice, opportunistic

Fig. 1. An illustration of mobile crowd sensing systems. Smartphones
perform sensing tasks and then reports sensing data to the data collection
server via cellular networks.

sensing applications may run in the background and the

phone users may not be aware of active execution of sensing

applications. In other words, opportunistic applications are

usually transparent to phone users. The benefit of opportunistic

sensing is that it significantly lowers the burden of phone

users, allowing higher participation, which is crucial for wide

adoption of mobile crowd sensing.

This paper concentrates on opportunistic sensing based
mobile crowd sensing. As illustrated in Fig. 1, a mobile crowd

sensing system consists of a central data collection server and

a number of smartphones. Each smartphone opportunistically

collects sensing data around its vicinity and reports the sensing

data to the central collection server, which then applies data

analytics algorithms for monitoring or decision making pur-

poses. The objectives of such a mobile crowd sensing system

include larger sensing data volume, higher data quality, and

lower cost incurred at smartphones for sensing data collection.

We do not consider strategic behaviors of smartphone users

and assume that smartphones are cooperative in participating

sensing data collection. Such mobile crowd sensing systems

are practical in the real world, e.g., when smartphones are

volunteers or members of the same organization. Mobile crowd

sensing systems with strategic smartphones are beyond the

scope of this work.

It is a central issue for a mobile crowd sensing system to
gather high quality sensing data with low resource consump-
tion at smartphones. We observe that the utility of sensing

data collected by a smartphone may be dependent on the

phone context under which it collects the data [1]. The phone

context typically varies over time and can be random in nature.



In a large noise detection and monitoring application, for

example, the utility of acoustic sensing data is larger when the

smartphone is out of the pocket. In a road traffic monitoring

application that is time-sensitive, for another example, the

utility of sensed road traffic condition is smaller when the

smartphone has a poor network connection as it incurs long

delay. In the meanwhile, we should emphasize that it costs

a smartphone non-negligible resources (e.g., energy, CPU,

and bandwidth) as it performs sensing and reporting sensing

data to the system. A smartphone is driven by a battery, and

the computing power is typically limited. As a result, it is

important for smartphones to decide at appropriate time for

better data collection at lower cost. More importantly, a mobile

crowd sensing system can gather sensing data from many

smartphones. It is easy to understand that there is redundancy

with sensing data from different smartphones which leads to

the marginal effect [6]. Therefore, a smartphone decision of

data sensing and reporting should also take decisions of other

smartphones into account.

There are several great challenges for the mobile crowd

sensing system to maximize the utility of sensing data col-

lection at a given cost of resource consumption at each

smartphone. First, the context of each smartphone is random

and varies over time, which is difficult, if not impossible, to

predict for future contexts. Second, a mobile crowd sensing

system may have a large number of smartphones. A centralized

solution for deciding the sensing decision for each individual

smartphone may introduce prohibitive computational and com-

mutation cost. Moreover, it would introduce the single point

of failure problem. Finally, because of the marginal effect,

the sensing decision of a smartphone is also dependent on

decisions of other smartphones.

Mobile crowd sensing has received increasingly extensive

research study. Unfortunately, little work has been done on

maximizing utility of sensing data collection from smart-

phones as the cost of smartphones is constrained. In particular,

little work has noticed the dependence of sensing data utility

on the actual context of a smartphone which is random

and changes over time. In addition, most of existing work

ignores the marginal effect of sensing data. As a consequence,

most existing mobile crowd sensing systems and applications

[3][7] blindly make smartphones to collect sensing data, either

periodically or randomly.

In this paper we propose a distributed algorithm for maxi-

mizing the utility of sensing data collection in a mobile crowd

sensing system. To tackle the aforementioned challenges, we

take advantage of the stochastic network optimization tech-
nique developed in [8] and the idea of distributed correlated
scheduling [9] to design a distributed online scheduling algo-
rithm. It does not require any priori knowledge of smartphone

contexts in the future, and hence sensing decisions can be

made by individual smartphones. The algorithm first trans-

forms the satisfaction of cost constraints to the stability of

virtual queues. By defining a quadratic Lyapunov function,

the algorithm continuously minimizes a drift-minus-utility
expression to make sensing decisions.

Our major contributions are summarized as follows:

• It is the first attempt, to the best of our knowledge, to

explore the crucial problem of utility maximization of

sensing data collection in a mobile crowd sensing system

when the cost of smartphones is constrained.

• We formulate the cost-constrained utility maximization

problem as an online optimization problem in which the

sensing action of individual smartphones is the online

decision. We propose a distributed algorithm for solv-

ing the online optimization problem which allows each

smartphone to make its own sensing decisions.

• We perform rigorous theoretical analysis to show that

our algorithm can achieve a time average utility that is

within O(1/V ) of the optimum with tradeoffs on the

time required to converge to the cost constraints, for

any V > 0 and can adapt to the mobility of mobile

smartphones very well.

The remainder of this paper is organized as follows. We

formulate the system model and define the problem formally

in Section II. In Section III, we present the details of our

distributed optimal online scheduling algorithm. We evaluate

the performance of the algorithm based on simulations in

Section IV. Related work is discussed in Section V. Finally,

a brief conclusion of this work is given in Section VI.

II. PROBLEM DEFINITION

First, we summarize the key notations in Table I.

TABLE I
KEY NOTATIONS

N The number of smartphones in the target region

si(t) Phone context of the i-th smartphone in time slot t
ci Time average cost constraint on the i-th smartphone

ai(t) Sensing decision for the i-th smartphone in time slot t
pi(t) Cost of the i-th smartphone in time slot t
u(t) Utility produced for the target region in time slot t
Ri The trust of the i-th smartphone

We consider a typical opportunistic sensing scenario in

which each smartphone automatically performs sensing tasks

and reports sensing data to a remote server without user

involvement. In large-scale sensing applications, smartphones

are usually organized into target regions according to their ge-

ographic locations [3][4][7], for efficient data management. A

target region is the area around a sensing target. For example,

in the noise mapping application Ear-Phone [3], a physical

area is divided into small regions with size of 100m× 100m.

Sensing targets are the noise of each region and smartphones

in the same region sense the noise of that region together.

For another example, in road traffic monitoring applications,

sensing targets are the traffic conditions of each road. Then the

target region is the road. All smartphones on the road sense the

traffic condition of that road. It is easy to understand that there

is redundancy with sensing data from different smartphones in

the same target region since they all collect sensing data for

same sensing target. Since the scheduling problems in different



regions are similar, we only need to focus on the scheduling

algorithm in one target region which can be easily extended

to the others.

Consider that the mobile crowd sensing system operates

over discrete time with unit time slots t ∈ {0, 1, 2, ...}. There

are N smartphones in the target region. Let si(t) ∈ S denote

the phone context of the i-th smartphone in time slot t, where

S is the set of possible phone context. Suppose si(t) is

independent and identically distributed over time slots ∗. As

explained in Section I, the phone context is random and can

impact the utility of the sensing data. We use a large value

of si(t) to indicate that the phone context leads to a higher

utility of the sensing data. Take the noise map application as

an example: The application wants to take a sound sample

when the phone is out of the pocket. Then S = {0, 1} and

si(t) can be a binary value that si(t) = 1 means the phone is

out of the pocket and si(t) = 0 represents the phone is in the

pocket.

Suppose that the phone context can be detected automat-

ically by sensors (e.g., accelerometer and gyroscope) [1]. In

every slot, each smartphone detects the current phone context

automatically and decides whether or not to perform a sensing

task and report to the remote server. We use binary variable

ai(t) ∈ {0, 1} to represent the sensing decision for the i-
th smartphone in time slot t. Then, ai(t) = 1 if the i-th
smartphone performs a sensing task in slot t, and ai(t) = 0
otherwise. Define the vectors s(t) = (s1(t), s2(t), ..., sN (t))
and a(t) = (a1(t), a2(t), ..., aN (t)). Then, the utility produced

by smartphones in the target region in slot t is denoted by u(t):

u(t) = û(s(t),a(t)) = min[
N∑
i=1

si(t)ai(t)Ri, U
∗] (1)

where U∗ is a constant and Ri represents how much the

system trusts in the i-th smartphone according to its hardware

level. Such utility function is a special case of marginal effect

and can model the realistic scenario of information saturation
which means once a certain amount of utility U∗ (e.g., 1) is

achieved by one or more smartphones on slot t, there is no

advantage in having other smartphones perform sensing tasks

and report for the target region on that slot. Suppose each

sensing task and report incurs one unit of cost (e.g., power

and data traffic consumption) at smartphones. Let pi(t) be the

cost of the i-th smartphone on slot t, being 1 if it performs

a sensing task and report, and 0 otherwise. Then the cost for

smartphone i ∈ {1, 2, ..., N} in slot t is:

pi(t) = ai(t). (2)

Each smartphone can choose not to sense and report in order

to save cost. The time average expected utility and cost are

∗Context of each smartphone is possibly correlated in each time slot. The
assumption is realistic if the size of time slot is appropriate. We will show
that our algorithm doesn’t require any knowledge of the probabilities and can
adapt if they change.

denoted by u and pi:

u = lim
t→∞

1

t

t−1∑
τ=0

E[u(τ)]

pi = lim
t→∞

1

t

t−1∑
τ=0

E[pi(τ)]

We then define the cost-constrained utility maximization prob-

lem as follows:

Maximize : u (3)

s.t. : pi ≤ ci, ∀i ∈ {1, 2, ..., N} (4)

where ci are a given set of real numbers which specify

constraints on time average cost of smartphones.

We see that it is challenging to achieve the maximal time

average utility considering the time average cost constraint

at each smartphone, since the phone context is random and

time-varying which makes it infeasible to precisely calculate

optimal solution in an offline manner. And the current decision

is coupled with future decision by the constraint. What’s more,

it is significantly more challenging to solve in a distributed

method. The difficulty is that neither smartphone knows the

phone context of others in the target region. Thus, a distributed

scheduling algorithm may have redundant smartphones to

sense and send reports which incurs costs without increasing

utility. In the next section, we will provide a distributed online

algorithm which is able to make the optimal sensing decision

by each smartphone.

III. ONLINE SCHEDULING ALGORITHM

The problem (3)-(4) is a stochastic network optimization

problem which can be solved by the Lyapunov optimization
technique [8] in a centralized manner. Such a centralized

method requires the remote server as the coordinator to make

sensing decisions for all smartphones in each region based on

a full knowledge of phone contexts, in every time slot. This

method is not scalable when the number of small regions be-

comes larger, since the server needs to make sensing decisions

for every small region. Therefore, in this section, we propose

a distributed approach that enables sensing decisions to be

made by each smartphone, based on the idea of distributed
correlated scheduling [9].

A. Distributed Optimal Scheduling Algorithm

In each time slot, each smartphone detects its phone context

automatically and decides whether or not to perform a sensing

task and report sensing data. Let âi(si) ∈ {0, 1}, si ∈ S
denote the pure strategy of the i-th smartphone. And define

a vector-valued function â(s) = (â1(s1), â2(s2), ..., âN (sN ))
specifying a distributed decision rule where each smartphone

i chooses sensing decision ai as a deterministic function of

si, that is ai = âi(si). The total number of pure strategy

functions â(s) is
∏N

i=1 2
|S|. Actually, the set of pure strategy

functions can be pruned to a smaller set. Intuitively, most of

the strategies are not efficient, since they may choose ai = 1



if si is small but choose ai = 0 if si is large. Therefore, the

strategy function of each smartphone i can be restricted to the

following threshold form:

âi(si) =

{
0, if si ≤ s∗i
1, if si > s∗i

(5)

for some thresholds s∗i ∈ S. Since there are |S| such threshold

functions for each smartphone i, the number of pure strategy

functions â(s) is reduced to M =
∏N

i=1 |S| †. It can be

proved by [9] that only considering the smaller set of strategy

functions will not incur loss of optimality. Enumerate these

functions using â[m](s) for m ∈ {1, 2, ...,M}. The idea of

distributed correlated scheduling is that, in each time slot,

smartphones in the target region choose a strategy function

in the set {â[1](s), â[2](s), ..., â[M ](s)}, via a distributed but

correlative approach.

Suppose all smartphones receive feedback message speci-

fying the values of s1(t), s2(t), ..., sN (t) and p1(t), p2(t), ...,
pN (t) before the end of time slot t+D, where D represents

a system delay of at least one time slot. This assumption is

realistic for distributed implementation and any mechanism for

delivering this feedback message can be utilized, e.g, through

piggybacking. Then virtual queue Qi(t) is defined and updated

by:

Qi(t+ 1) = max[Qi(t) + pi(t−D)− ci, 0] (6)

for each slot t ∈ {0, 1, 2, ...} and i ∈ {1, 2, ..., N}, where

Qi(0) = 0 and pi(−1) = pi(−2) = ... = pi(−D) = 0.

Each smartphone can repeat updating the above virtual queues

based on information available at the end of each time slot t.
Therefore, all smartphones in the target region know the value

of Qi(t) at the beginning of each time slot t. It can be proved

according to [8] that stabilizing all virtual queues guarantees

the time average cost constraints (4) are satisfied. Define the

virtual queue vector Q(t) = (Q1(t), Q2(t), ..., QN (t)).
First, we define the Lyapunov function as follows:

L(t)
Δ
=

1

2

N∑
i=1

Qi(t)
2 (7)

Then define Lyapunov drift as Δ(t)
Δ
= L(t + 1) − L(t).

Based on the techniques in [8] and [9], the algorithm is

to choose strategy function in each time slot to greedily

minimize an upper bound of the drift-minus-utility expression

E{Δ(t + D) − V u(t)|Q(t)}. The control parameter V ≥ 0
represents an importance weight on how much we emphasize

the utility maximization compared to cost constraints satis-

faction at smartphones. The term Δ(t + D) differs from the

standard Lyapunov optimization technique [8] and is utilized

because the virtual queues are updated by the delayed feedback

message by (6). A natural explanation of the algorithm is

that we make Δ(t + D) small to maintain queue stability

while adding the weighted utility to make decisions towards

a large utility. We have the following lemma regarding the

†This number is acceptable because, generally, there will be only a small
number of smartphones participating in one target region.

drift-minus-utility expression:

Lemma 1: In each time slot t, we have:

E{Δ(t+D)− V u(t)|Q(t)} ≤ B(1 + 2D)−
N∑
i=1

ciQi(t)

+E{
N∑
i=1

Qi(t)pi(t)− V u(t)|Q(t)} (8)

where B = 1
2

∑N
i=1 ci

2 is a finite constant.

Proof: First, squaring both sides of (6), and using the fact

that max[x, 0]2 ≤ x2, we have:

Qi(t+D + 1)2 −Qi(t+D)2 ≤ (pi(t)− ci)
2

+2Qi(t+D)(pi(t)− ci)

Summing over i ∈ {1, 2, ..., N} and dividing by 2 yields:

Δ(t+D) ≤ 1

2

N∑
i=1

(pi(t)− ci)
2

+

N∑
i=1

Qi(t+D)(pi(t)− ci)

=
1

2

N∑
i=1

(pi(t)− ci)
2
+

N∑
i=1

Qi(t)(pi(t)− ci)

+

N∑
i=1

(Qi(t+D)−Qi(t))(pi(t)− ci) (9)

Moreover, by defining B = 1
2

∑N
i=1 ci

2 we have:

1

2

N∑
i=1

E{(pi(t)− ci)
2|Q(t)} ≤ B (10)

From (6), we can obtain:

|Qi(t+ 1)−Qi(t)| ≤ |pi(t−D)− ci|, ∀i, ∀t
Therefore,

|Qi(t+D)−Qi(t)| ≤
D∑

d=1

|Qi(t+ d)−Qi(t+ d− 1)|

≤
D∑

d=1

|pi(t+ d− 1−D)− ci|

Thus,

N∑
i=1

(Qi(t+D)−Qi(t))(pi(t)− ci) ≤
N∑
i=1

D∑
d=1

|pi(td)− ci||pi(t)− ci|

where td = t− d− 1−D. Taking expectations and using the



Cauchy-Schwartz inequality leads to:

E{
N∑
i=1

(Qi(t+D)−Qi(t))(pi(t)− ci)}

≤
N∑
i=1

D∑
d=1

√
E[|pi(td)− ci|2]

√
E[|pi(t)− ci|2]

≤
D∑

d=1

√√√√ N∑
i=1

E[|pi(td)− ci|2]
√√√√ N∑

i=1

E[|pi(t)− ci|2]

≤ 2BD

Taking conditional expectations on both sides of (9), applying

the above inequality and (10), we can see that lemma 1 holds.

The drift-minus-utility algorithm is to choose a pure strategy

function â[m](s) from the set {â[1](s), â[2](s), ..., â[M ](s)}
to greedily minimize an upper bound of the expression

E{Δ(t + D) − V u(t)|Q(t)}, that is to minimize term (8),

in each time slot t. Since each smartphone doesn’t have the

knowledge of phone contexts of others in slot t (i.e., s(t)), the

value of term (8) under a certain candidate strategy â[m](s)
cannot be calculated. But the delayed information s(t−D) is

available at the end of time slot t. Based on the idea in [10],

the expectations of pi(t) and u(t) under strategy â[m](s) can

be approximated as follows:

p̃
[m]
i (t) =

1

W

W∑
w=1

â
[m]
i (si(t−D − w))

ũ[m](t) =
1

W

W∑
w=1

û(s(t−D − w), â[m](s(t−D − w)))

where W is a positive integer which represents a moving

average window size.

Then we can derive the distributed scheduling algorithm for

each smartphone i ∈ {1, 2, ..., N}, as illustrated by Algorithm

1 in details.

Algorithm 1 Distributed Optimal Scheduling Algorithm

Initialization: Set the parameters V and W . Initialize the

virtual queue vector Q(0) = 0.

In each time slot t:
1: Smartphone i detects its phone context si(t) and observes

the queue vector Q(t);
2: Smartphone i chooses the pure strategy function â[m](s)

from the set {â[1](s), â[2](s), ..., â[M ](s)} that minimizes

the following expression:

N∑
i=1

Qi(t)p̃
[m]
i (t)− V ũ[m](t) (11)

3: Smartphone i applies the sensing decision ai(t) =

â
[m]
i (si(t));

4: Receive the delayed feedback specifying the values of

s1(t−D), s2(t−D), ..., sN (t−D) and p1(t−D), p2(t−
D), ..., pN (t−D) and update all virtual queues by (6).

B. Performance Analysis

We analyze the performance of the distributed optimal

scheduling algorithm by the following theorem 1.

Theorem 1:For arbitrary phone contexts s1(t), s2(t), ...,
sN (t), under Algorithm 1 with V ≥ 0 and W > 0, we have:

a) The the gap between time average utility achieved by

Algorithm 1 and the optimal time average utility that

can be achieved by any other distributed algorithms is

within O(1/V ):

1

t

t−1∑
τ=0

E[u(t)] ≥ uOPT −O(1/
√
W )

− {B(1 + 2D)

V
+

E[L(D)]

V t
} (12)

b) The time average cost constraint on each smartphone

i ∈ {1, 2, ..., N} satisfies:

1

t

t−1∑
τ=0

E[pi(t)] ≤ ci +O(

√
V

t
) (13)

Proof: It is proved in [9] that the optimal utility can

be achieved by correlated scheduling with a knowledge of

the probability distribution of phone contexts. The optimal

algorithm satisfies E{pOPT
i (t)} ≤ ci, ∀i. The drift-minus-

utility algorithm is to minimize the upper bound of drift-

minus-utility expression in every time slot. Therefore:

E{Δ(τ +D)− V u(τ)|Q(τ)} ≤ B(1 + 2D)− V uOPT

Taking expectations of both sides and using iterated expecta-

tions leads to:

E{Δ(τ +D)} − V E{u(τ)} ≤ B(1 + 2D)− V uOPT

Summing the above over time slots τ ∈ {0, 1, ..., t − 1}, we

have:

E{L(t+D)} − E{L(D)} − V

t−1∑
τ=0

E{u(τ)}

≤ B(1 + 2D)t− V uOPT t (14)

Dividing both sides by V t, considering the fact that E{L(t+
D)} ≥ 0 yields:

1

t

t−1∑
τ=0

E[u(t)] ≥ uOPT − {B(1 + 2D)

V
+

E[L(D)]

V t
}

It can be proved by [10] that the gap between Algorithm

1, which utilizes approximations without the knowledge of

probability distribution of phone contexts, and the exact drift-

minus-utility algorithm is within O(1/
√
W ). Thus, (12) holds.

This completes the proof of part a).

From (14), we also have:

E{L(t+D)} ≤ E{L(D)}+ [B(1 + 2D) + V U ]t

where U is a constant that stratifies U ≥ E{u(τ)}−uOPT , ∀t.
Using the definition of L(t+D) and Jensen’s inequality leads
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Fig. 2. Time average utility vs. V
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Fig. 3. Time average utility vs. V (D = 100)
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(V = 10,W = 50)
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Fig. 7. Time average cost up to t (pi(t)) vs. time
(V = 10,W = 50)

to:

E{||Q(t+D)||}
t

≤
√

2E{L(D)}
t2

+ 2
B(1 + 2D) + V U

t
(15)

It can be easily proved by the idea in [8] that the following

inequality holds:

1

t

t−1∑
τ=0

E{pi(τ −D)} ≤ ci +
E{Qi(t)}

t
− E{Qi(0)}

t

Combining with (15), we see that (13) holds. This completes

the proof of part b).

Theorem 1 shows that, fixing the window size W , our

distributed scheduling algorithm can achieve a time average

utility that is within O(1/V ) of the optimal value. Larger

values of V will push the time average utility closer to the

optimum. But the tradeoff is that more time is needed for

the time average cost of each smartphone to get close to the

required cost constraint. What’s more, large value of W can

increase the time average utility. But it will result in long

computation time and large storage on smartphones.

IV. PERFORMANCE EVALUATION

In this section, we conduct simulations to evaluate our dis-

tributed online scheduling algorithm for mobile crowd sensing.

Consider a target region which has N = 5 smartphones

in it. The random phone context si(t) of each smartphone

i ∈ {1, 2, 3, 4, 5} takes values from the set S = {0, 1, 2}. That

is to say each smartphone has three possible contexts: si(t) =
2 means that smartphone i meets the sensing application’s

request very well in time slot t while si(t) = 0 means that it

doesn’t meet the request. Assume si(t), i ∈ {1, 2, 3, 4, 5} are

uniformly and randomly distributed over S. The trust of each

smartphone Ri is set to [0.4, 0.3, 0.2, 0.1, 0.1] respectively.

The time average cost constraints ci are set to 1/4 for all

smartphones. We use U∗ = 1 for the utility function (1). The

default system delay for the feedback messages is D = 10.

And the default value of W is 50. Each simulation is run for

1, 000 time slots.

A. Verification of Optimality

First, we verify the utility optimality achieved by our

algorithm. Fig. 2 shows how the parameter V affects the time

average utility with different values of W . We see that the

utility improves significantly and converges quickly towards

the optimum as the value of V increases. The impact of W
is not such obvious. The utility just improves a little when W
varies from 10 to 50. The improvement can even be negligible

when W is further increased. Fig. 3 shows similar results with

a much larger system delay D = 100. Compared to Fig. 2, we

see that the time average utility may decrease if the system

suffers a large delay for delivering feedback messages. Fig.

4 illustrates the impact of U∗ in the utility function (1) on

time average utility. It means that more utility can be achieved

if the problem of information saturation is not very serious.

The curves for U∗ = 1.5 and U∗ = 2 look identical because

there are cost constraints at smartphones so that they can not

perform more sensing tasks.

Second, we verify whether the cost constraints at smart-

phones are satisfied. In Fig. 5, the curves plot time average cost

up to time slot t of each smartphone (1-5). We can see that the

time average cost of each smartphone satisfies the constraint

ci ≤ 1/4. The time average cost of smartphone 1 and 2 is

larger than that of others because they have higher trust so

that the algorithm tends to schedule them to perform sensing



task if their phone contexts meet the application’s request. Fig.

6 demonstrates how the parameter V affects the time required

to converge to the desired constraints. The curves plot the

maximal time average cost among smartphones. This verifies

the fact that larger values of V push the time average utility

closer to the optimum with the tradeoff in the amount of time

required for the time average cost to converge to the required

constraint. Fig. 7 shows that the constraints are still satisfied

when we reduce the constraints of smartphone 1 and 3 to 1/5
and increase the constraints of smartphone 2 and 4 to 1/3.

The simulation results above verify Theorem 1.

B. Adaption to Changes

Next, we demonstrate that our algorithm can adapt to

changes robustly. The simulation time is increased to 1, 500
slots which is divided into three phases. Each phase is of

500 time slots. Note that the phone context processes si(t)
are uniformly distributed over {0, 1, 2} for all smartphones in

the above simulations. We keep that probability distribution in

phase 1 and phase 3, but abruptly change the probabilities for

smartphone 1-4 in phase 2, according to the following table.

Pr[si(t) = 0] Pr[si(t) = 1] Pr[si(t) = 2]
i=1,3 0.8 0.1 0.1
i=2,4 0.5 0.5 0

Fig. 8 and Fig. 9 show the average utility and the average

cost of smartphone 1 over 1, 500 time slots. Values at each

time slot t are obtained by averaging the utility and cost in

that slot over 300 independent simulation runs. We see that the

system can adapt to the changes in probability distribution of

smpartphone context quickly by adjusting to the new optimal

average utility. And the cost constraint is still stratified with

only small disturbance in a short time.

We also demonstrate adaption to smartphone’s mobility. The

mobile smartphones may leave or enter a target region over

time. We simulate the mobility by making smartphone 1 and

smartphone 2 leave the target region in phase 2, and have

another smartphone with a trust of 0.4 join in phase 3. Fig. 10

and Fig. 11 show the results. We see that the algorithm can

quickly adapt to the changes incurred by mobility. The average

utility adjusts fast to the new optimal value when changes

occur. The average cost of smartphone 3 is always satisfied

despite small disturbance.

V. RELATED WORK

Due to the fast increasing of usage of smartphones, mobile

crowd sensing is becoming more and more popular in recent

years and has attracted extensive research attention from

both academia and industry. The research trend started with

the notion of participatory sensing which requires the user

interaction to sense particular events. Then research evolved

into opportunistic sensing which enlarges the vision of mobile

crowd sensing by allowing the cooperation of multiple smart-

phones without requiring the explicit interaction with users.

A great number of opportunistic sensing applications have

been designed and implemented. For example, GeoServ [7]
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is a scalable sensor networking platform where millions of

users can participate in urban sensing and share location-

aware information using always-on cellular data connections.

Nericell [11] is a system that performs rich sensing by

piggybacking on mobile phones that users carry with them

in normal course. The system could be used to annotate

traditional traffic maps with information such as the bumpiness

of roads, and the noisiness and level of chaos in traffic. The

recent work [12] presents Sensor Mobile Enablement (SME),

which is a lightweight standard for efficiently identifying,

coding and decoding heterogeneous sensing information on

mobile devices. More examples can be found in a recent survey

paper [13]. But most of these applications don’t consider the

problem of limited mobile phone resources or information

saturation.

Little existing work has studied the problem of efficient

scheduling to achieve optimal utility considering the marginal

effect with limited resource of smartphones. And most of

the related work requires sufficient statistical knowledge and

perform in offline manner or prediction-based approach. For

example, in [14], the authors study an energy efficient problem

in mobile crowd sensing and propose prediction-based algo-

rithms to minimize the energy consumptions at smartphones.

In [15], the authors develops a novel smartphone based vehic-

ular crowd sensing system that achieves efficient utilization

of limited 3G budgets to improve system performance. They

propose heuristic algorithm based on the statistic data to esti-

mate whether a WiFi encounter is approaching so as to make

decisions. Their feasibility heavily depends on the the accuracy

of the prediction of future patterns and can not guarantee

the optimal performance. In comparison, our optimal online

scheduling algorithm does not require any priori knowledge

of the future patterns and can achieve a time average utility

that could be arbitrarily close to the optimum, in a distributed

manner.



VI. CONCLUSION

This paper has presented a distributed algorithm for maxi-

mizing the utility of sensing data collection in a mobile crowd

sensing system. The algorithm leverages both the stochas-

tic network optimization technique and distributed correlat-

ed scheduling. It does not require any priori knowledge of

smartphone contexts in the future, and supports individual

smartphones to make their own sensing decisions. We have

performed rigorous theoretical analysis to show that the pro-

posed algorithm can achieve a time average utility that is with-

in O(1/V ) of the optimum. Extensive simulations have been

carried out, and the results show that the proposed algorithm

achieves high time average utility of collected sensing data.
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