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Abstract—In this paper we study a social welfare maximization
problem for spectrum sharing in cognitive radio networks. To
fully use the spectrum resource, the licensed spectrum owned by
the primary user (PU) can be leased to secondary users (SUs)
for transmitting data. We first formulate the social welfare of a
cognitive radio network, considering the cost for the primary
user sharing spectrum and the utility gained for secondary
users transmitting data. The social welfare maximization is a
convex optimization, which can be solved by standard methods
in a centralized manner. However, the utility function of each
secondary user always contains the private information, which
leads to the centralized methods disabled. To overcome this
challenge, we propose an iterative distributed algorithm based
on a pricing-based decomposition framework. It is theoretically
proved that our proposed algorithm converges to the optimal
solution. Numerical simulation results are presented to show that
our proposed algorithm achieves optimal social welfare and fast
convergence speed.

Index Terms—Decomposition, social welfare maximization,
optimization, cognitive radio network.

I. INTRODUCTION

With the increasing development of wireless communica-
tions, spectrum becomes a more and more limited resource.
However, many studies [1] [2] [3] show that spectrum is
under utilized in reality. The technology of cognitive radio
(CR) [4] provides a promising mechanism for flexible usage
of spectrum. The utilization of spectrum can be improved by
sharing vacant spectrum with unlicensed users.

We consider a cognitive radio network, which consists of a
primary user (PU), the licensed owner of spectrum, and several
secondary users without licences. Each secondary user consists
of a pair of nodes, a sender and a receiver, which have the
demand of transmitting data. To fully utilize spectrum, the
primary user can lease its vacant spectrum to secondary users
with monetary rewards.

We consider the problem of spectrum sharing among sec-
ondary users in a cognitive radio network. A cost is incurred
and paid by the primary user for allocating spectrum to sec-
ondary users. Each secondary user obtains an amount of utility
for transmitting data, which contains its private information.
We first formulate the cost and the utilities, respectively. Then,
our objective of such a cognitive radio network is to maximize
the social welfare, which is defined as the sum of the utility
obtained by each secondary user minus the cost paid by the
primary user.
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Fig. 1. The illustration of spectrum allocation in a cognitive radio network.

A number of existing works [5] [6] have been done to solve
the problem of spectrum sharing in cognitive radio networks.
Some of these works [7] [8] [9] take advantage of the models
in game theory to characterize cognitive radio networks, which
cannot achieve social welfare maximization. These works
always assume that secondary users are rational and selfish.
Some other works [10] [11] [12] can really maximize the
network utility for spectrum sharing. However, the algorithms
designed in these works are executed in a centralized manner.
Therefore, the privacy of secondary users is not protected.
Different with these works, we focus on designing a distributed
algorithm to maximize the social welfare.

Such an optimal spectrum sharing problem is significantly
challenging because of unique characteristics of cognitive
radio networks. First, the utility function of each secondary
user contains the user-specific information, which is their
privacy. It means that the problem cannot be solved in a
centralized manner by the standard methods such as Newton
method. A distributed algorithm is necessary by decoupling
the problem into several subproblems, each of which can
be independently solved by a secondary user. Second, the
objective in the problem, maximizing social welfare, is coupled
with the cost function of the primary user and the utility
function of each secondary user. In other words, the objective
function cannot be directly decoupled into several independent
subproblems.

In response to the challenges mentioned above, we propose
a fully distributed algorithm for spectrum sharing in cognitive
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radio networks. As the shared spectrum is priced by the pri-
mary user, we find that the optimal social welfare is obtained
when optimal solution of an equivalent pricing problem is
achieved. Then, we propose a pricing-based decomposition
framework, which decouples the problem into several subprob-
lems. The primary user and each secondary user is responsible
for a subproblem, which only contains its own privacy.

Based on the decomposition framework, a distributed al-
gorithm is provided, which is executed iteratively. In each
iteration, each secondary user informs the primary user its
demanded spectrum, according to the given price. The primary
user updates the price based on the collected information.
We also propose a price updating rule, under which our
iterative algorithm is rigorously proved to converge to the
optimal solution in finite steps. Extensive simulations have
been conducted to evaluate the social welfare and convergence
speed achieved by our distributed algorithm.

We have made three technical contributions in our paper.
• We model the cost paid by the primary user for spectrum

sharing and the utility obtained by secondary users. The
concept of social welfare is formally defined as the
objective of a cognitive radio network to pursue.

• To maximize the social welfare in a distributed manner,
we propose a novel pricing-based decomposition frame-
work. A distributed algorithm is designed based on the
decomposition framework, where iterative operations are
executed by the primary user and the secondary users in
turn.

• Rigorous theoretical analysis is conducted to demonstrate
that our iterative algorithm converges to the optimal
solution in finite steps. Extensive simulation results show
that our distributed algorithm can achieve the optimal
social welfare, and converge quickly.

The remainder of this paper is organized as follows. We
introduce the network model and problem formulation in
Section II. The optimal distributed approach is described in
Section III. In Section IV, simulation results are reported to
show the performance of our algorithm and compared algo-
rithms. We review related work in Section V and conclude the
paper in Section VI.

II. NETWORK MODEL AND PROBLEM FORMULATION

In this section, we first describe the model of cognitive radio
networks, and then formulate the problem solved in this paper.

A. Network Model

We consider a cognitive radio network which consists a
primary user and n secondary users. The set of secondary
users is denoted by {SU1, SU2, · · · , SUn}. Each secondary
user actually consists of a sender and a receiver. The primary
user, the owner of the spectrum, allocates its unused spectrum
to secondary users. Each secondary user is allocated with a
portion of spectrum, namely bands. Each band is associated
with a bandwidth representing a divided frequency range. The
bandwidth allocated to secondary user SUi is noted by pi, 1 ≤
i ≤ n. We assume that the primary user can communicate

with each secondary user directly. Moreover, the frequency
allocated to different secondary user is orthogonal to avoid
interference. The network model is illustrated in Fig. 1.

B. Problem Formulation

In this subsection, we formulate the social welfare of a
cognitive radio network, including two folds: the cost paid
by the primary user for spectrum allocation and the utility
obtained by the secondary users for data transmission.

Cost for spectrum allocation. The spectrum sharing with
secondary users may impact the data transmission of the
primary user. This leads to a highly increasing cost associated
with the allocated bandwidth, which is formulated as an
exponential function. We define the cost function as follows,

Definition 1. The cost function of the primary user is formu-
lated as

C (p) = βe

n∑
i=1

pi

− 1 (1)

where p = (p1, p2, · · · , pm) and β is a system parameter.

The primary user expects a payment in return from sec-
ondary users for using spectrum. The primary user provides
a price qi for the spectrum spent by the SU i. Considering
this payment, we formulate the profit of the primary user in
Definition 2.

Definition 2. The primary user obtains a profit for sharing
spectrum as

Φ(p,q) = pqT − C (p) . (2)

Utility for data transmission. It is intuitive that each sec-
ondary user obtains a utility for transmitting data. According
to the bandwidth pi allocated to the secondary user, we define
the utility function in the following,

Definition 3. The utility function of secondary user SUi is
defined as

ui (pi) = ai log (1 + pi) , (3)

where ai is a user-specific parameter.

According to the law of diminishing marginal utility in
economics [13], the log function implies that the increasing
ratio of utility gain obtained by secondary users degrades as
the allocated bandwidth increases. Note that the parameter ai
is the privacy information of secondary user SUi. which is
unknown to the primary user and other secondary users.

Thus, the payoff of SUi is formulated as follows,

Definition 4. The payoff of secondary user SUi is equal to the
utility obtained minus the payment paid to the primary user,

Pi

(
qi, pi

)
= ui (pi)− qi pi . (4)

In this paper, we consider secondary users are rational,
trying to maximize their own payoffs given a price qi by the
secondary user.

Social welfare. We introduce the concept of social welfare,
which is equal to the utilities gained by secondary users
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minus the cost paid by the primary user, is formulated in the
following definition.

Definition 5. The social welfare of a cognitive radio network
is defined as

S (p) =

n∑
i=1

ui (pi)− C (p) . (5)

In this paper, we aim to maximize the social welfare of
a cognitive radio network. The problem of social welfare
maximization is defined in the following.

Definition 6. The problem of maximizing the social welfare
of a cognitive radio network is defined as

max
n∑

i=1

ui(pi)− C(p) (6)

s.t. pi ∈ [0, δi] ,∀i ∈ [1, n] , (7)

where δi is the upper bound of pi, determined by secondary
user SUi.

Note that the problem defined in Definition 6 is a convex
optimization problem. According to [14], the problem must
have an optimal solution p∗ = [p∗1, p

∗
2, · · · , p∗m].

The problem of maximizing the social welfare in a cognitive
radio network should be solved in a distributed manner. First,
if the problem is centrally solved in one point, it incurs a
huge computation load on the single point. Second, the utility
function of each secondary user is privacy, which leads to
unknowing the exact formulation of social welfare.

III. OPTIMAL DISTRIBUTED APPROACH

A. Overview

In response to the difficulties described above, we design a
distributed algorithm based on a pricing-based decomposition
method. The algorithm can achieve the maximal social welfare
and protect the private information for each secondary user at
the same time.

We first convert the original problem in (6) into an e-
quivalent pricing problem. The optimal spectrum allocation
can be obtained when the optimal prices are achieved. Then,
we propose a decomposition framework, which decouples the
optimization problem into several subproblems. In the frame-
work, each secondary user maximizes its own payoff based on
the price given by the primary user. The primary user updates
the price after collecting the returned spectrum demand from
secondary users. The above operations are executed iteratively
until the spectrum allocation converges to the optimal solution.
A price updating rule is also provided, given the insight of
the condition that the optimal prices should satisfy. At last,
we theoretically prove that our iterative algorithm converges
to the optimum in finite steps. The notations appeared in this
paper are summarized in Table I.

TABLE I
MAJOR ADOPTED NOTATIONS.

Variable Description
SUi The i-th secondary user
n The number of secondary users
pi The bandwidth of spectrum allocated to the i-th

secondary user
qi The price given to the i-th secondary user
β The system parameter in the cost function of the

primary user
ai The user-specific parameter in the utility of the i-th

secondary user
C(p) The cost function of the primary user

Φ(p,q) The profit function of the primary user
ui(pi) The utility function of the i-th secondary user

Pi(qi, pi) The payoff function of the i-th secondary user
S(p) The social welfare of a cognitive radio network
t The current number of iterations

q̃
(t)
i The price updated for the i-th secondary user in the

t-th iteration
p̃
(t)
i The value of spectrum computed by the i-th sec-

ondary user in the t-th iteration
ε The system variable in the price updating rule

Algorithm 1 Optimal Distributed Algorithm for Spectrum
Sharing
Input: A cognitive radio network consisting of many sec-

ondary users, denoted by {SU1, SU2, · · · , SUn}. The cost
function of the primary user is C(p) and the utility func-
tion of each secondary user is ui(pi), ∀i ∈ {1, · · · , n}.

Output: The optimal spectrum allocation p∗i for each sec-
ondary user.

1: t = 0 // t counts the number of iterations.
2: The primary user sets the same initial value q(0) = θ sent

to all secondary users, where θ is a little positive real
value.

3: Repeat for t = 0, 1, · · · .
4: For each secondary user, the value of p̃

(t+1)
i is

computed according to

p̃
(t+1)
i (qi) = argmax

pi∈[0,δi]

ui(pi)− qipi.

5: For the primary user, according to the returned p̃
(t+1)
i ,

the value of qi(t+1) is updated as

q(t+1)
i = (1− ε) q

(t)
i + ε

∂C (p)
∂ pi

∣∣∣∣
p=p̃(t+1)

.

6: Until if
∥∥∥p̃(t+1) − p̃(t)

∥∥∥
∞

≤ ζ, where ζ is a tunable little
real number.

7: p∗ = p̃(t+1),q∗ = q(t+1).

B. Equivalent optimal pricing problem

As mentioned above, the primary user gives a price qi
to each secondary user for leasing spectrum. According to
the price, each secondary user decides the bandwidth of the
spectrum pi it demands. Based on the pricing mechanism, the
social welfare can be rewritten as follows,
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Fig. 2. The pricing-based decomposition framework

S (p) =
n∑

i=1

ui (pi)− C (p)

=

n∑
i=1

(ui (pi)− piqi) + pqT − C (p)

=
n∑

i=1

Pi (qi, pi) + Φ (p,q) (8)

Considering secondary users are rational, they will choose
the bandwidth of allocated spectrum by maximizing their own
payoffs given a spectrum price,

p̃i (qi) = argmax
pi∈[0,δi]

ui (pi)− qipi. (9)

We denote p̃i (qi) as p̃i for short in the next context.
Therefore, the social welfare maximization problem (6) can
be transformed into an equivalent optimal pricing problem,
which determines the optimal price vector q =

[
q1,··· , qn

]
by

maximizing the social welfare as follows,

max
q

Φ(p̃,q) +

n∑
i=1

Pi (qi, p̃i) (10)

We illustrate why the pricing problem is equivalent to the
original problem briefly. Assume that the optimal solution
of problem (10) is q∗. The secondary user chooses p̃i (q

∗
i )

depending on the optimal price qi
∗ by maximizing the payoff

(9). After knowing p̃i (q
∗
i ) and qi

∗, the social welfare is
maximized depending on (8). Therefore, the optimal solution
of p can be obtained when finding the optimal price vector
q∗ = [q∗1 , · · · , q∗n] .

C. Pricing-based decomposition framework

In this subsection, we introduce a pricing-based decompo-
sition framework, which is shown in Fig.2.

Each secondary user computes the value of p̃i as shown in
(9) locally and sends the result to the primary user. According
to the collected value of p̃i, the primary user updates the price
qi according to a updating rule, which is given in the coming

context. The alternate operations are executed iteratively by
the primary user and secondary users in turn until the optimal
solution q∗ and p∗ is achieved.

Intuitively, the price updating rule is significant to guarantee
the iterative operations eventually converge to the optimal
solution. Here, we propose a pricing updating rule according
to the the Karuth-Kuhn-Tucker (KKT) condition. According
to the convex optimization theory [15], the optimal solution
q∗ = [q∗1 , · · · , q∗n] of (10) must satisfy the KKT condition as
shown in the following proposition.

Proposition 1. An optimal price vector q∗ =
[
q∗
1 , · ··, q∗n

]
should satisfy

q∗
i =

∂C (p)
∂ pi

∣∣∣∣
p=p̃

,∀i, (11)

where p̃ = [p̃1 , · ··,p̃n]T with p̃i = p̃i (q
∗
i ) given in (9).

Proof: First, according to the first order condition, there
exists ∂ Pi

(
pi, qi

)/
∂ pi = 0 for (2). Therefore, we obtain

qi = u′
i (p̃i) . (12)

Moreover, applying the KKT condition ∂S (p)/∂ qi = 0 to

(5), there is
(
u′

i (p̃i)− ∂C(p)
∂pi

∣∣∣
p=p̃

)
∂p̃i

∂qi
= 0 since ∂p̃i

∂qi
< 0,

we have
u′

i (p̃i)−
∂C (p)

∂pi

∣∣∣∣
p =p̃

= 0. (13)

The proposition is proved by combining the (12) and (13).
Given the insight of Proposition 1, we propose a price

updating rule as follows,

qi = (1− ε) qi +ε
∂C (p)

∂ pi

∣∣∣∣
p=p̃,

∀i, (14)

where ε ∈ (0, 1] is a tunable parameter.
Note that in our decomposition framework, updating price

is unnecessary to be executed after all p̃i, ∀i ∈ {1, · · · , n}
are returned. The primary user can update qi for secondary
user SUi arbitrary times before qj (j ̸= i) is updated. It means
that our decomposition framework can be realized in an
asynchronous way so that the number of iterations can be
largely degraded as different secondary users have different
communication delay with the primary user.

D. Distributed Algorithm

In this subsection, we propose a distributed algorithm to
maximize the social welfare of a cognitive radio network. In
the distributed algorithm, the primary user and all secondary
users should participate as follows,

• For each secondary user SUi, it maximizes the payoff
Pi(pi, qi) = ui(pi) − qipi locally to obtain the value
of p̃i based on the price qi given by the primary user.
Each secondary user only needs to know its own utility
function.

• For the primary user, it updates the value of qi based on
p̃i returned from each secondary user. The price updating
rule is given in (14).
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The primary user generates a new price based on an original
price and partial derivative ∂C(p)

∂ pi

∣∣∣
p=p̃

, which pushes the price

qi towards the optimal value q∗
i = ∂C(p∗)

∂ pi
. The details of the

distributed algorithm are described in algorithm 1.

E. Convergence Analysis

Contraction Mapping. Many iterative algorithms can be
expressed as x (l + 1) = φ(x (l)),l = 0,1, · ··, where x (·) ∈ X
and l denotes the number of iterations. Mapping φ is called a
contraction if

∥φ (x)− φ (y)∥ ≤ κ∥x− y∥,∀x,y ∈ X, (15)

where ∥·∥ is a norm and κ ∈ [0,1) is called a modulus of
φ. Moreover, the mapping φ is called a pseudo-contraction if
there exists a fixed point x∗ ∈ X (means x∗ ∈ φ (x∗)) and

∥φ (x)− x∗∥ ≤ ∥x− x∗∥,∀x ∈ X. (16)

The convergence property of contraction or pseudo-
contractions is given in Theorem 1.

Theorem 1 (Geometric Convergence). Supposing the mapping
or the pseudo-contraction and the modulus of φ is κ ∈ [0,1).
Then, φ has an unique fixed point x∗ and a sequence{
x(l),l = 0,1, · ··

}
generated by x (l + 1) = φ (x (l)) satisfies

∥x (l)− x∗∥ ≤ κl∥x (0)− x∗∥,∀l ≥ 0, (17)

for every choice of initial x (0) ∈ X . In particular, x (l)
converges to x∗ geometrically.

In this section, we analyze the convergence of our algorithm
under the condition of ε = 1 and ε < 1 in Proposition 2 and
Proposition 3, respectively. For simplicity, the second order
partial derivatives of C(p) is denoted by ∂pjpiC (p) = ∂C(p)

∂pj∂pi
.

Convergence of Algorithm 1 with ε = 1. We first define
a notation [λ]

+
i to denote the projection of λi ∈ ℜ onto the

range [0,τi],

[λ]
+
i = arg max

z=[0,τi]
|z − λi| .

Briefly, a solution to (9) is equivalent to

p̃i (qi) = [arg maxpi
ui (pi)− qipi]

+
i =

[
u−1
i (qi)

]+
i
.

Therefore, when ε = 1, the price updating rule turns to
qi = ci (p̃). Substituting it into p̃i (qi) obtains

p̃i = φi (p̃) =
[
u−1
i (ci (p̃))

]+
i
. (18)

Algorithm 1 applied with ε = 1 eventually achieves conver-
gence under a certain condition which is given in the following
proposition.

Proposition 2. Supposing ε = 1, if we have
n∑

j=1

∣∣∂pjpiC (p)
∣∣ < min

pi

|u′
i (pi)| , ∀p ∈

∏
i

[0, δi], (19)

{
p̃i

(
q
(t)
i

)}
generated by Algorithm 1 converges geometrical-

ly [16] to the optimal solution p∗i of (6), giving an initial value
q
(0)
i .

Proof: For each i, a function gi is defined as follows.

gi (r) = u−1
i (ci (z (r))) = u−1

i (ci (rx+ (1− r) y)),

where gi (r) is differentiable and r ∈ [0,1]. We have

∥φi (x)− φi (y)∥ =
∣∣[u−1

i (ci (x))
]∣∣+

i
−
∣∣[u−1

i (ci (y))
]∣∣+

i

≤ |gi (1)− gi (0)| =
∣∣∣∣∫ 1

0

dgi (r)

dr

∣∣∣∣
≤

∫ 1

0

∣∣∣∣dgi (r)dr

∣∣∣∣ ≤ max
r∈[0,1]

∣∣∣∣dgi (r)dr

∣∣∣∣ ,
where the first inequality is because

∣∣∣[xi]
+
i − [yi]

+
i

∣∣∣ ≤
|xi − yi| for all xi − yi ∈ ℜ. Furthermore, applying a chain
rule, we have

dgi(r)
dr =

∣∣∣∑n
j=1 ∇jc

−1
i (ci (rx+ (1− r) y) · (xj − yj))

∣∣∣
≤

∣∣∣(u−1
i

)′
(ci (z (r)))

∣∣∣ ·∑n
j=1 |∇jci (z (r))| · |xj − yj | .

If condition (19) holds, we have
n∑

j=1

|∇jci (x)| < min
xi

(u′
i (xi)) ≤

∣∣u′
i

(
u−1
i (c′i (x))

)∣∣
for all x ∈

∏
i [0,τi]. Therefore, there exists a number κ < 1

which enables that∣∣∣∣dgi (r)dr

∣∣∣∣ ≤ κmax
j

|xj − yj | = κ∥x− y∥∞, ∀r ∈ [0, 1]

Therefore, we have

∥φi (x)− φi (y)∥∞ ≤ κ∥x− y∥∞,
∀x,y ∈

∏
i

[0,τi],

which shows φi is a contraction with modulus κ respect to a
maximum norm. Therefore, a proposition is proved.

Convergence of Algorithm 1 with ε < 1. We relax a value
of ε by considering a convergence condition with ε < 1. In
this situation, we suppose that p̃

(
q(l)

)
generated with each

iteration l is always within a range
∏

i [0,τi]. Therefore, we
can rewrite a solution to (9) as p̃i (qi) = u−1

i (qi), which has
a little difference from ε = 1 situation. Combining it with
qi = (1− ε) qi + εci (p̃), we can obtain

p̃i = φi (p̃) = u−1
i ((1− ε)ui (p̃i) + εci (p̃)) (20)

Applied with (20), the Algorithm 1 can achieve optimal
under a convergence condition in the following proposition.

Proposition 3. Set p̃i(q
(0)
i ) to be 0 for all i or δi for all i. If

we have 0 ≤ ε ≤
(
1 +

∂pjpi
C(p)

c′i(pi)

)−1

,∑
j ̸=i ∂pjpiC(p) ≥ 0

∀p ∈
∏
i

[0,δi], (21)

{
p̃i

(
q
(t)
i

)}
generated by our algorithm 1 converges geomet-

rically [16] to the optimal solution p∗i of (6).
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Proof: For each i a function gi is defined as follows.

gi (r) = u−1
i ((1− ε)ui (z (r))) + εci(z (r)),,

where z (r) = rx+ (1− r) y.
Supposing x < x∗, we will show xi < φi (x) ≤ x∗

i . We
have

φi (x)− φi (x
∗) = gi (1)− gi (0) =

∫ 1

0

dgi (r)

dr
dr,

where dgi(r)
dr is given by (22).

dgi(r)
dr =

(
u−1
i

)′ (
(1− ε)ui (z (r)) + εci (z (r))

)
· (1− ε)u′

i (z (r)) · (xi − x∗
i ) + ε

∑
j

∇jci (z (r)) ·
(
xj − x∗

j

)
= (u′

i (φi (z (r))))
−1·(

((1− ε)u′
i (z (r)) + ε∇ici (z (r))) · (xi − x∗

i )
+ε

∑
j ̸=i ∇jci (z (r)) ·

(
xj − x∗

j

) )
(22)

Applying h−1
i (·) to both sides yields xi < φi (x). There-

fore, there exists a number κ < 1 enables that |φi (x)− x∗
i | ≤

κ |x− x∗|, which is equivalent to

∥φi (x)− x∗∥∞ ≤ κ∥x− x∗∥∞,
∀xi ∈ [0,x

∗
i ] .

In other words, φi is a pseudo-contraction in [0,x
∗
i ]. Simi-

larly, if x > x∗, we can get φi, which is a pseudo-contraction
in

[
x∗
i ,τ

∗
i

]
. Therefore, the proposition is proved.

IV. PERFORMANCE EVALUATION

A. Methodology and Simulation Setup

We perform simulations to evaluate the performance of
our optimal distributed algorithm, compared with a baseline
algorithm as follows.

Distributed weighted allocation scheme (DWAS). First,
the primary user provides an initial value q0 for all secondary
users. Each secondary user SUi returns the value of p̃i(q0)
by maximizing P (qi, pi). Next, the primary user decides the
final value of qi, ∀i ∈ {1, · · · , n} by maximizing Φ(q,p),
assuming that ui(pi) is a linear function of pi, i.e., ui(pi) =
bipi. bi represents the weight of secondary user SUi, which
is computed as p̃i(q0)/q0. After receiving qi, each secondary
user computes its optimal p̃i(qi).

In addition to the DWAS, we also compare our algorithm
with the optimal value. The optimal value is obtained by
maximizing the social welfare directly.

The evaluation of our algorithm is performed from two
aspects, including the network performance and the conver-
gence speed. The metrics of network performance are the
social welfare and the total allocated spectrum. We perform the
simulations with varying two factors: the number of secondary
users and the value of β. The metric of convergence speed
is the number of iterations. The simulations are performed
under different numbers of secondary users and values of ε.
The initial values of qi,∀i ∈ {1, 2, · · · , n} in our proposed
algorithm and the DWAS are set to 1. The default values of
β and ε are 0.2 and 0.1, respectively. The values of ai are
standard uniformly distributed in the open interval (0.5, 1).

5 10 15 20 25 30
125

130

135

140

145

150

155

Number of iterations

S
o
ci
a
l
w
el
fa
re

 

 

Algorithm 1(ε =0.1)
Algorithm 1(ε =0.15)

Fig. 3. Social welfare achieved with the number of iterations

B. Impacts of the number of secondary users

We first study the social welfare and allocated spectrum of
our algorithm and the DWAS under the condition of different
numbers of secondary users, compared with the optimum. The
results are shown in Fig. 4 and Fig. 7.

Fig. 4 shows that the social welfare obtained by our algo-
rithm performs as well as the optimum, and much better than
the DWAS. The social welfare obtained by our algorithm and
the DWAS increases with the increasing number of secondary
users. When there are 20 secondary users, the social welfare
obtained by our algorithm is 50.34% higher than the DWAS.

In Fig. 7, the spectrum allocated by our algorithm is the
same as the optimum, and more than the DWAS. The spectrum
obtained by our algorithm and the DWAS increases with the
increasing number of secondary users. However, the spectrum
allocated by DWAS is always less than the spectrum allocated
by our algorithm. When there are 20 secondary users, the
allocated spectrum obtained by our algorithm is 96.23% more
than the DWAS.

C. Effects of the value of β

We next study the performance of our algorithm and the
DWAS under the condition of different values of β, compared
with the optimum. The results are shown in Fig. 5 and Fig. 8.

Fig. 5 shows that the social welfare achieved by our algo-
rithm performs as well as the optimum, and more than the
DWAS. The social welfare obtained by our algorithm and the
DWAS decreases with the increasing value of β. When there
are 20 secondary users, the social welfare obtained by our
algorithm is 40% more than the DWAS.

In Fig. 8, the spectrum allocated by our algorithm is the
same as the optimum, and more than the DWAS. For our
algorithm and the DWAS, the allocated spectrum decreases,
when the value of β increases. When there are 20 secondary
users, the allocated spectrum obtained by our algorithm is
97.43% more than the DWAS.

D. Convergence Speed

In this subsection, we study the convergence speed of our
algorithm under different numbers of secondary users and
values of ε. The results are shown in Fig. 3, Fig. 6 and Fig. 9.
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Fig. 4. Social welfare comparison of different
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algorithms with varying β
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Fig. 6. Convergence of Algorithm 1 with different
number of secondary users
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Fig. 7. Allocated spectrum comparison of different
algorithms with varying number of secondary users

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

Value of β

A
ll
o
ca
te
d
sp
ec
tr
u
m

 

 

Optimum
Algorithm 1
DWAS

Fig. 8. Allocated spectrum comparison of different
algorithms with varying β
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Fig. 9. Convergence of Algorithm 1 with different
value of parameter ε

Fig. 3 plots the social welfare achieved by our algorithm in
each iteration, when the value of system parameter ε is 0.1
and 0.15, respectively. Under the two settings, we can see that
99.9% of the optimal social welfare is achieved in the first ten
iterations, which implies our algorithm converges quickly.

In Fig. 6, We study simulations of our algorithm when
the number of secondary users is 20, 40, 60, 80 and 100,
respectively. The value of parameter ε is 0.1 and 0.15. The
numbers of iterations under different numbers of secondary
users and different values of ε are close, which illustrates our
algorithm is adapted to large-scale cognitive radio networks.

Fig. 9 shows that the convergence speed of our algorithm
under the condition of the value of ε varying from 0.1 to 0.15.
The number of secondary users is 60 and 100. The number
of iterations under different values of ε is less than 32. The
higher value of system parameter ε, the faster the convergence
speed. Our algorithm converges fast under varying values of
ε.

V. RELATED WORK

Increasing works focus on the problems in cognitive radio
networks. Some works focus on estimation of interference
temperature of the radio environment and detection of spec-
trum holes. such as [17] [18]. Works in [19] [20] [21] focus
on estimation of channel-state information and prediction of
channel capacity for using by the transmitter. Some other

works [5] [6] focus on transmit-power control and dynamic
spectrum management.

The spectrum allocation in cognitive radio networks has
been extensively studied. By taking advantage of the models
in game theory, some of existing works solve the spectrum
sharing problem by achieving Nash Equilibrium. Niyato et al.
[7] formulate the problem of spectrum sharing as an oligopoly
market competition and use a Cournot game to obtain the
spectrum allocation. However, the static Cournot game only
adapts to some special environment. Han et al. [9] propose a
correlated equilibrium concept for users to have the distributive
opportunistic spectrum access. Wang et al. [8] propose a
competitive spectrum-sharing scheme according to auction
theorem without achieving social welfare maximization.

Some centralized algorithms in some other works can actu-
ally achieve the social welfare maximization. However, these
algorithms could not protect the privacy of each user. Ileri et al.
[12] propose a framework under the regulation of a spectrum
policy server for spectrum sharing. Peng et al. [10] propose
a framework that defines the spectrum sharing problem for
some definitions of overall system utility. The central sever is
designed for allocation assignments. Raman et al. [11] propose
a centralized spectrum server that coordinates users to sharing
a common spectrum.
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VI. CONCLUSION

The problem of maximizing social welfare for spectrum
sharing in cognitive radio networks is studied in this paper.
We first define the concept of social welfare by formulating
the cost of the primary user and the utility of each secondary
user. To protect the private information of secondary users,
we propose a distributed algorithm based on a pricing-based
decomposition framework. The distributed algorithm is exe-
cuted iteratively by the primary user and each secondary user
in turn. Theoretical analysis is conducted to demonstrate that
the algorithm converges to the optimal solution. Extensive
simulation results show that our proposed achieves maximal
social welfare and converges quickly.
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