Compressive Detection and Localization of Multiple Heterogeneous Events in Sensor Networks

Ruobing Jiang†, Yanmin Zhu†, Hongzi Zhu†, Qian Zhang‡, Jiadi Yu†, Lionel M. Ni‡
†Shanghai Jiao Tong University
‡ Hong Kong University of Science and Technology
†{likeice, yzhu, hongzi, jiadiyu}@sjtu.edu.cn; ‡{qianzh,ni}@cse.ust.hk

Abstract—This paper considers the crucial problem of event detection and localization with sensor networks, which not only needs to detect occurrences but also to determine the locations of detected events and event source signals. It is highly challenging when taking several unique characteristics of real-world events into consideration, such as simultaneous emergence of multiple events, event heterogeneity, and stringent requirement on energy efficiency. Most of existing studies either assume the oversimplified binary detection model or need to collect all sensor readings, incurring high transmission overhead. Inspired by sparse event occurrences within the monitoring area, we propose a compressive sensing based approach called CED, targeting at multiple heterogeneous events that may overlap with each other. With a fully distributed measurement construction process, our approach enables the collection of a sufficient number of measurements for compressive sensing based data recovery. The distinguishing feature of our approach is that it requires no knowledge of, and is adaptive to, the number of occurred events which is changing over time. We have implemented the proposed approach on a testbed of 36 TelosB motes. Testbed experiments and simulation results jointly demonstrate that our approach can achieve high detection rate and localization accuracy while incurring modest transmission overhead.

I. INTRODUCTION

Recent years have witnessed the rapid development of wireless sensor networks, in which each sensor node is able to sense many environmental parameters including temperature, humidity, sound, pressure, etc. Based on the sensor readings, a wide variety of abnormal events can be detected using wireless sensor networks [1]. A lot of real-world event detection applications have been developed, e.g., forest fire alarming [2], border intrusion detection [3], and chemical spill detection [2].

This paper considers the crucial problem of event detection and localization with sensor networks, which not only needs to detect occurrences but also to determine event locations and source signal strengths. When an event occurs, it typically stimulates some kinds of signals that propagate over the space [4] [5]. Sensor nodes close to the event can sense the signal stimulated by the event. By processing the signals received by those sensors, occurrences of the event can be detected. The sink node in the network is responsible for reporting detected events with their locations, and then appropriate measures can be taken in response to the events. Sensor nodes are usually resource constrained, having limited energy and computational power. The performance metrics for event detection in sensor networks include detection rate, localization accuracy and energy efficiency.

It is highly challenging when taking several unique characteristics of real-world events into consideration. First, multiple events may arise at the same time, and even worse, some of the events may have overlapped regions of signal propagation. A sensor located in the overlapped region of two events receives a superimposed signal instead of two separate signals of the two events, as shown in Fig. 1. Second, events are typically heterogeneous, differing in the magnitudes of signal strengths caused by the events. It is desirable to determine the nature of each occurred event, e.g., event source signal strength. Finally, sensor nodes are highly resource constrained and energy efficiency is an important design requirement. This suggests that wireless transmissions should be kept minimal for event detection and localization.

Driven by its importance, there have been a number of research efforts devoted on event detection and localization with sensor networks. A large body of approaches [3] [6] assume the binary detection model. According to this model, each sensor node has a fixed detection range within which an event can always be detected by the sensor. In the real world, however, such assumption is impractical. With such a simplified model, many sensors may repeatedly report the same event, which adds the difficulty of removing duplicated detections of the same event. On the other hand, it also leads to inaccurate event localization. Several existing studies [7] [8] [4] have adopted the more realistic model in which an event stimulates a signal whose strength decays over propagation distance. However, they usually require the sink node to collect all signal strengths of the sensors. This incurs high power consumption [9] due to multihop wireless transmissions.

![Figure 1. An example illustrating that a sensor within the overlapped region of two events does not receive two separate signals of events A and B. Instead, it can only read a superimposed signal of the two events.](image-url)
We have the important observation that event occurrences in a monitoring area are typically sparse in the real world. Inspired by this observation, we propose a compressive sensing based approach called CED to detection and localization of multiple heterogeneous events. To exploit the sparse nature of events by using compressive sensing, several key issues remain to be solved, including the gap between sparse event occurrences and constrained sensor readings, unknown number of dynamic events, and unfeasibility of single reading serving as a measurement. To address the issues, we first bridge the gap between sparse event occurrences and constrained sensor readings, and then propose a fully distributed measurement construction process enabling the sink to collect a sufficient number of measurements. We also extend the basic CED to reduce the influence of noises. With both testbed experiments and simulations, we demonstrate the efficacy of our proposed approach.

The main technical contributions are summarized as follows.

- We exploit the sparse nature of event occurrences in the real world for detection and localization of multiple heterogeneous events which may overlap with each other.
- We propose CED for detection and localization of multiple heterogeneous events. It relies only on constrained sensor readings to construct measurements on event occurrences that satisfy the data recovery condition of compressive sensing. The number of occurred events defining the sparsity level of event occurrences, is critical to compressive sensing based estimation, but is dynamic over time and unknown in advance. The distinguishing feature of our approach is that it is distributed and adaptive to the changing number of occurred events.
- We have implemented the proposed approach in a testbed of 36 TelosB motes. Testbed experiments and extensive simulations show that our approach achieves good event detection and localization performance, yet with significantly reduced transmission overhead.

The rest of the paper is organized as follows. The next section reviews related work. We present the network model and preliminaries in Section III. We explain the basic idea in Section IV, and give the design details in Section V. Section VI reports the implementation and testbed based experiments. In Section VII, we present simulation results. Section VIII concludes the paper.

II. RELATED WORK

Event detection under binary detection model. A lot of event detection approaches assume a binary detection model under which an event is considered as detected as long as it occurs within the sensing range of a sensor node. In [6], the binary detection model is adopted and it is assumed that events only occur at some points of interest. In [10], a fault tolerant event detection approach is proposed to increase decision reliability using collaboration between neighboring nodes. In [3], once detecting an event, a sensor node transmits a single pulse instead of a data packet to the sink. The resolution of the event location is limited by the pre-defined size of sectors. Event detection based on the simplified binary detection model raises the issue of repeated detections and event localization error can be large due to the large detection range.

Event detection under realistic event model. Several existing approaches consider the more practical model for events, in which the signal strength of an event decreases with distance. In [11], an approach is developed for detecting nuclear radiation threat in an open space or a sidewalk in cities. It estimates the location and intensities of threats based on Bayesian algorithms. However, at most one threat is considered. Sheng et al. [7] propose an algorithm for determining the locations of multiple acoustic events. The algorithm requires all sensor readings be collected back to the processing server which then applies maximum likelihood methods to estimate event locations. The main drawbacks of this algorithm include high communication overhead and the requirement on the knowledge of the number of events.

Compressive sensing based event detection. The technique of compressive sensing has been utilized by only several existing schemes [4] [12] for event detection in sensor networks. However, all of them make direct use of compressive sensing. For compressive sensing to be applicable, they assume that the possible locations at which events may occur are known and the number of occurred events is also available. Such assumptions are not realistic in most real-world environments. Furthermore, they also make the impractical assumption that each node is able to monitor every possible location. This essentially means that any event covers the whole monitoring area. This is not true in reality. Therefore, these existing schemes are inapplicable for detection and localization of real-world events that may occur anywhere in the monitoring area, and cover limited region due to quick signal attenuation. More importantly, the number of occurred events is changing over time and unknown in advance. In response to the limitations of the existing schemes, this work proposes a distributed approach based on compressive sensing to address the unsolved challenges.

III. MODEL AND PRELIMINARIES

A. System Model

We consider a wireless sensor network for detecting and localizing events in a monitoring area, which is composed of a sink node, and a set of connected sensor nodes, denoted by \(N = \{1, 2, \cdots, n\} \). We assume that sensor nodes are uniformly distributed at random in the monitoring area. Sensor nodes are aware of their own locations through embedded Global Positioning System (GPS) receivers or some localization algorithms [13]. The location of a sensor node \(i \in N \) is denoted by \(l_i \). The sensor nodes share the same communication range, denoted by \(r \).

Sensor nodes constantly sense the surrounding and record their readings. The sensor network performs event detection and localization periodically. At the beginning of each period \(t \), all sensors have prepared their readings, \(y(t) = \langle y_1(t), y_2(t), \cdots, y_n(t) \rangle \). Event detection is performed for
each detection period and the same process is applied for each period. Thus, we omit the period notation \(t \) for brevity.

We make the practical assumption that the sensor network is roughly time synchronized. Note that we do not require accurate time synchronization. Many existing algorithms have been developed for practical time synchronization in large-scale sensor networks. For example, FTSP [14] can achieve clock synchronization accuracy as much as 2.24\(\mu \)s by exchanging a few bytes among neighbors every 15 minutes. Since the event detection period is normally tens of seconds to tens of minutes. Thus, FTSP is sufficient for providing the needed time synchronization accuracy.

B. Event Model

Let \(\Omega \) denote the set of all \(k \) events that have occurred in the current detection period, \(\Omega = \{ \omega_j \}_{j=1}^k \). Note that \(k \) changes over time. As widely used in prior studies such as [7] [8], we model an event \(\omega_j \) as a signal source with source signal strength \(\lambda_j \). Events are heterogenous in that the source signal strength is different from event to event. We assume that \(\{ \lambda_j \} \) are i.i.d. random variables following normal distribution \(\mathcal{N}(\mu_\lambda, \sigma_\lambda^2) \). The position of an event \(\omega_j \) is denoted by \(p_j \).

The signal strength \(\lambda_j \) of event \(\omega_j \) attenuates over the distance, as illustrated in Fig. 1. The signal strength at a point that is \(d(d > 1) \) away from the signal source is \(\frac{\lambda_j}{d^\alpha} \). \(\alpha \) is an event-dependent decay factor. When \(d \leq 1 \), the signal strength at the point is \(\lambda \). To validate the event model, we have performed real experiments on an example event caused by a heater. The experiments shown in Subsection VI-A confirm the applicability of the event model in reality. In our work, we adopt \(\alpha = 2 \). However, our design and analysis can be easily extended to other settings of \(\alpha \).

Suppose a sensor node \(i \) can sense signals from a subset \(\Omega' \) of events in \(\Omega \). Its signal reading \(y_i \) is a superimposed signal strength from events in \(\Omega' \)

\[
y_i = \beta_i \sum_{\omega_j \in \Omega'} \frac{\lambda_j}{d_{ji}^\alpha},
\]

where \(d_{ji} \) is the Euclidean distance between sensor node \(i \) and event \(\omega_j \), and \(\beta_i \) is the fixed signal gain factor of sensor node \(i \). Each sensor node \(i \) has a signal sensitivity \(\theta \) below which the sensor cannot detect any signal, i.e., \(y_i = 0 \) if \(y_i < \theta \). Based on the sensor sensitivity, an event has a coverage within which a sensor is able to sense the signal from the event.

Definition 1 (Coverage of event). The coverage of an event is defined as the region within which a sensor senses the signal strength from the event that is larger than the sensor’s sensitivity \(\theta \).

The monitoring region has an area of \(\varsigma \) and is virtually divided into \(q \) small grids. The location of an event can be approximated by the centroid of the grid containing the event. Then, we can define a vector to represent the complete information of the events including the number of events, source signal strengths and locations.

Definition 2 (Event occurrence vector). The event occurrence vector, denoted by \(\mathbf{g} = \langle g_1, g_2, \cdots, g_q \rangle \), represents the occurrences, source signal strengths, and locations of multiple events,

\[
g_s = \begin{cases}
0, & \text{no event in grid } s \\
\lambda_j, & \text{event } \omega_j \in \Omega \text{ in grid } s, 1 \leq s \leq q.
\end{cases}
\]

Remarks: It is apparent that when there are \(k \) events, only \(k \) entries of \(\mathbf{g} \) are nonzero and the rest \(q - k \) are zeros.

With Definition 2, we can rewrite (1) as

\[
y_i = \beta_i \sum_{s=1}^q \frac{g_s}{d_{si}^\alpha},
\]

where \(d_{si} \) is the distance between sensor node \(i \) and grid \(s \).

Note that the grid size is a design parameter which strikes the tradeoff between event localization accuracy and computation complexity. We will study its impact in Subsection VII-D.

We assume that an event typically lasts for a certain duration before it disappears and the lifetime of an event is larger than the detection period.

C. Basics of Compressive Sensing

We next introduce some basics of compressive sensing [15]. A signal \(\mathbf{x} = [x_1, x_2, \cdots, x_m]^T \in \mathbb{R}^m \) can be represented on a basis of \(n \times 1 \) vectors \(\{ \psi_i \}_{i=1}^n \), which are usually orthogonal. Given an \(n \times n \) basis matrix \(\Psi = [\psi_1 | \psi_2 | \cdots | \psi_n] \), \(\mathbf{x} \) can be represented as the product of \(\Psi \) and a coefficient vector \(\mathbf{d} \),

\[
\mathbf{x} = \Psi \mathbf{d} = \sum_{i=1}^n d_i \psi_i,
\]

where \(d_i \) is the coefficient for the basis vector \(\psi_i \). \(\mathbf{x} \) is said to be \(k \)-sparse if the coefficient vector \(\mathbf{d} \) has no more than \(k \) non-zero elements and \(k \ll n \).

Compressive sensing employs a linear measurement process making projections of elements in the \(k \)-sparse vector \(\mathbf{x} \). Then, \(\mathbf{x} \) can be recovered based on the projections using algorithms such as the Basis Pursuit algorithm [16].

In the measurement process, a vector \(\mathbf{z} \) of \(m \) measurements (\(m < n \)) are collected, which are inner products between \(\mathbf{x} \) and \(m \) measurement vectors \(\{ \phi_i \}_{i=1}^m \),

\[
\mathbf{z} = \Phi \mathbf{x} = [\phi_1^T \mathbf{x}, \phi_2^T \mathbf{x}, \cdots, \phi_m^T \mathbf{x}]^T,
\]

where \(\Phi = [\phi_1, \phi_2, \cdots, \phi_m]^T \) is an \(m \times n \) measurement matrix. To allow reconstruction of \(\mathbf{x} \) from the \(m \) measurements, the \(m \times n \) matrix \(\Theta = \Phi \Psi \) should satisfy the restricted isometry property (RIP) of order \(3k \) [17].

The RIP can be satisfied with high probability either when both conditions C1 and C2 are met, or when both C1 and C3 are met.

- **C1**: The measurement matrix \(\Phi \) is a random matrix in which elements \(\phi_{i,j} \) are independent and identically distributed (i.i.d.) random variables [17].
- **C2**: If the measurement matrix does not contain zero values, then the number of measurements should be large enough, i.e., \(m = \Theta(k \log(\frac{n}{k})) \) [18].
- **C3**: If the measurement matrix is sparse (i.e., it contains many zero values), the number \(h \) of nonzero elements in
each row should be large enough. There is a tradeoff between the number \(m \) of measurements and the number \(h \) of nonzero elements in each measurement. For example, \(h = O(\log n) \) suffices if \(m = O(\text{poly}(k, \log n)) \) [19].

IV. BASIC IDEA

In this section we explain the basic idea of our compressive sensing based approach. From Definition 2, we can find that to detect and localize the set \(\Omega \) of \(k \) events, it is equivalent to determining the event occurrence vector \(\mathbf{g} \). With \(\mathbf{g} \), one can obtain the signal strengths \(\mathbf{y} = \{y_i\}_{i=1}^k \) of \(k \) events and their locations \(\mathbf{p} = \{p_j\}_{j=1}^q \). Since \(\mathbf{g} \) is sparse, according to compressive sensing [18], we can fully recover it based on \(m \) measurements over \(\mathbf{g} \). That is \(\mathbf{g} = \mathbf{Ae} \), where \(\mathbf{A} \) is usually an \(m \times q \) measurement matrix that satisfies condition C1 and C2. In another word, each entry of \(\mathbf{A} \) should be a nonzero coefficient. Note that \(m << q \), where \(q = |\mathbf{g}| \).

Unfortunately, it is difficult to construct measurements of \(\mathbf{g} \) that satisfy condition C2 using a sensor network, although it is easy to meet condition C1 [5]. This is because there is a clear gap between sparse \(\mathbf{g} \) and constrained sensor readings. This gap has two implications. First, there is no super node existing in the network, which could project all event occurrences to a single measurement such that each coefficient is nonzero (meeting condition C2). This suggests that we can only seek to construct measurements meeting condition C3. Second, a single constrained sensor reading is not feasible to serve as a measurement meeting condition C3, because it is only able to provide a superimposed strength from a limited number of events close to it. We call a measurement meeting condition C3 a qualified measurement.

We use the example in Fig. 2 to illustrate this situation. Suppose Sensor 1 can detect the signal from an event falling in a set of grids, \(G_1 = \{1, 4, 5, 7\} \), and for Sensor 2, \(G_2 = \{5, 6, 8, 9\} \). We find that the strength reading of Sensor 1 cannot serve as a qualified measurement for \(\mathbf{g} \) because it is a projection of only \(g_1, g_4, g_5, \) and \(g_7 \).

The basic idea of our approach is to construct \(m \) qualified measurements (meeting condition C3),

\[
\mathbf{z}_c = \mathbf{Dg} = [D_1^T \mathbf{g}, D_2^T \mathbf{g}, \ldots, D_m^T \mathbf{g}]^T,
\]

by combining multiple individual sensor readings into each single measurement. To construct a qualified measurement denoted by \(z_c, 1 \leq c \leq m \), a set \(Y_c \) of sensor readings are projected into the measurement.

\[
z_c = \sum_{i \in Y_c} y_i = \sum_{i \in Y_c} \sum_{s \in G_i} \beta_i g_s \frac{d_{ij}}{d^2_{s_j}} = \sum_{s \in \bigcup_{i \in Y_c} G_i} g_s \sum_{j \in N_s} \beta_j \frac{d_{ij}}{d^2_{s_j}},
\]

where \(G_i \) is the set of grids that can be sensed by sensor \(i \), and \(N_s \) is the set of sensors that can sense an event in grid \(s \). Then, there will be \(|\bigcup_{i \in Y_c} G_i| \) nonzero coefficients of \(\mathbf{g} \) in measurement \(z_c \). The coefficient of \(g_s \) in \(z_c \) is

\[
\mathcal{D}(c, s) = \sum_{j \in N_s} \beta_j \frac{d_{ij}}{d^2_{s_j}}.
\]

For example in Fig. 2, a measurement can be generated by projecting the reading of Sensor 1 and that of Sensor 2. To realize the projection, Sensor 1 transfers its reading to Sensor 2 and Sensor 2 does the projection. Such projection process continues in a distributed fashion. Eventually, a projected value involving a number of sensor readings becomes a qualified measurement and is collected by the sink.

To realize the basic idea described above, we have to address three key issues.

- **Unknown number \(k \) of events.** The number of occurred events as well as the sparsity level of the event occurrence vector is unknown. Without such knowledge, it is difficult to determine the sufficient number of measurements. Such number of measurements should be adaptive to the changing number of occurred events.

- **Quality of measurements.** We should determine the sufficient number of sensor readings to be projected in a single measurement which is qualified. Since the sensor network can be in large scale, the measurement constructing process should be executed in a distributed fashion.

- **Uncertain coverage of grids.** In order to apply compressive sensing to estimate \(\mathbf{g} \), the measurement matrix \(\mathcal{D} \) should be known. However, it is uncertain because the coverage of grids are uncertain. The coverage of a grid is defined as the coverage of the event that locates in the grid. Since the event to occur in the grid is unknown, the coverage of the grid is also uncertain.

V. DESIGN OF CED

A. Overview

The design of CED is in response to the key issues, realizing the basic idea presented in the previous section. It proceeds in three major stages in each detection period.

1. **In the first stage**, to address the key issue of unknown number of events, a specific number of seed nodes are generated. Each seed node initiates a measurement construction process. The generation of the seed nodes is in a distributed fashion.

2. **In the second stage**, each seed starts a measurement process which leads to a measurement. To address the issue of
ensuring the resulting measurement is qualified, the measurement process projects a sufficient number of sensor readings. Each of the measurement process terminates at the sink which collects the measurement.

(3) In the third stage, after the sink node has collected all the measurements, the sink tries to recover the event occurrence vector \(g \). To address the key issue of uncertain coverage of grids, we propose an iterative algorithm based on the Basis Pursuit algorithm. The algorithm alternates in updating the coverage of each grid by fixing \(g \) and estimating \(g \) by fixing the coverage of each grid.

B. Generating Seed Nodes

In the first stage, a specific number of seeds should be generated. Each seed node starts the measurement construction process which results in a measurement. The objective of generating the number of seeds is to ensure that a sufficient number \(m \) of measurements are eventually collected by the sink, \(m = O(poly(k,\log q)) \). With CED, the seeds are generated spontaneously and the number of seeds is adaptive to the unknown number \(k \) of events that have occurred. The basic idea of the seed generation process is to first generate \(m_p = \Theta(k) \) primary seeds, and then each primary seed selects \(m_s = \log q \) secondary seeds. As a result, the set of all seed nodes includes both the primary seeds and the secondary seeds. It is easy to know the total number \(m \) of seed nodes is \(\Theta(k) + \Theta(k) \times \log q = O(poly(k,\log q)) \).

Generating primary seed nodes. At the beginning of each detection period, the primary seeds are spontaneously generated by each node comparing its received signal strength against a threshold, denoted by \(\rho \), which is a design parameter. If \(y_i > \rho \), node \(i \) marks itself as a primary seed node.

We next explain the setting of \(\rho \) to ensure that \(\Theta(k) \) primary seeds are generated in the whole network. First, we show that the number of nodes whose signal strength is larger than \(\rho \) is normally distributed with parameters that are determined by \(\rho \). Second, we show the determination of \(\rho \) by ensuring the probability of generating at least \(k \) primary seeds with a customized probability \(\delta_p, 0.5 < \delta_p < 1 \).

Theorem 1. The number of primary seeds is a random variable following normal distribution \(N(f(\rho)k,k\frac{(f(\rho)\pi\lambda)^2}{\rho^2}) \), \(f(\rho) = \frac{\pi n \lambda}{\rho^2} \), where \(\rho \) is the threshold to generate primary seed nodes.

Proof: Consider an event \(\omega \). There is a circular region \(o(\omega) \) centered at the event, within which the received signal strength is larger than \(\rho \). Assuming the gain factors of sensors are 1, the area of \(o(\omega) \) is \(\frac{\pi \lambda}{\rho^2} \). When \(k \) events occur, the total area of the circular regions \(\{o_j\}_{j=1}^k \) of all the events can be approximated as,

\[
\varsigma(y \geq \rho) = \frac{\pi \rho}{\rho} \sum_{j=1}^{k} \lambda_j.
\]

Because of the uniformly distributed sensor nodes, the expected number of primary seeds, \(m_p \), can be computed as,

\[
m_p = \frac{\pi n}{\rho^2} \sum_{j=1}^{k} \lambda_j.
\]

Because \(\{\lambda_j\}_{j=1}^k \) are i.i.d. random variables following normal distribution \(N(\mu, \sigma^2) \), \(m_p \) is also a random variable following the normal distribution

\[
N\left(\frac{\pi n \mu}{\rho^2} k, k\left(\frac{\pi n \mu}{\rho^2} \sigma^2\right)\right).
\]

Given the normal distribution, we want to make sure that the number of generated primary seeds is larger than \(k \) with a high probability which is application specific and can be customized by application developers. Let \(\delta_p \) denote this probability. Then, we can derive the closed form of the desired threshold \(\rho \), as shown by the following theorem.

Theorem 2. Let \(\rho = \frac{\pi n}{\lambda} \left(\mu - \sqrt{2\sigma \lambda} \text{erf}^{-1}(2\delta_p - 1)\right) \), \(0.5 < \delta_p < 1 \), then \(\Pr(m_p > k) > \delta_p \).

Proof: Denoting the cumulative distribution function (CDF) of a random variable \(X \) following normal distribution \(N(\mu, \sigma^2) \) by \(F_X(x) = \Pr(X \leq x) \), we have \(F_X(x) = \frac{1}{2}[1 + \text{erf}(\frac{x - \mu}{\sqrt{2\sigma^2}})] \) and \(\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt \) is the Gauss error function, which is a non-decreasing odd function. Because \(\rho = \frac{\pi n}{\lambda} \left(\mu - \sqrt{2\sigma \lambda} \text{erf}^{-1}(2\delta_p - 1)\right) \), we have

\[
\text{erf}^{-1}(2\delta_p - 1) = \frac{\mu - \frac{\lambda}{\sqrt{\pi n}}}{\sqrt{2\sigma \lambda}},
\]

i.e.,

\[
\text{erf}\left(\frac{\mu - \frac{\lambda}{\sqrt{\pi n}}}{\sqrt{2\sigma \lambda}}\right) = 2\delta_p - 1.
\]

Since \(\delta_p > 0.5 \), then \(\text{erf}\left(\frac{\mu - \frac{\lambda}{\sqrt{\pi n}}}{\sqrt{2\sigma \lambda}}\right) > 0 \). Because the error function is nondecreasing and \(k > 1 \), we have

\[
\text{erf}\left(\sqrt{k}\left(\mu - \frac{\lambda}{\sqrt{\pi n}}\right)\right) > \text{erf}\left(\frac{\mu - \frac{\lambda}{\sqrt{\pi n}}}{\sqrt{2\sigma \lambda}}\right) > 0.
\]

As a result, we have

\[
\text{erf}\left(\sqrt{k}\left(\mu - \frac{\lambda}{\sqrt{\pi n}}\right)\right) > 2\delta_p - 1.
\]

Because

\[
\text{erf}\left(\sqrt{k}\left(\mu - \frac{\lambda}{\sqrt{\pi n}}\right)\right) = \text{erf}\left(-\frac{k - \frac{\lambda}{\sqrt{\pi n}}}{\sqrt{2k\frac{\lambda}{\sqrt{\pi n}}}}\right),
\]

and the error function is an odd function, we have

\[
\text{erf}\left(\frac{k - \frac{\lambda}{\sqrt{\pi n}}}{\sqrt{2k\frac{\lambda}{\sqrt{\pi n}}}}\right) < 1 - 2\delta_p.
\]

As a result, we have

\[
F_{m_p}(k) < 1 - \delta_p,
\]

which means

\[
\Pr(m_p \leq k) < 1 - \delta_p.
\]
Thus, we have the conclusion
\[\Pr(m_p > k) > \delta_p. \tag{19} \]

Remarks: The Gauss error function \(\text{erf}(x) \) defines the CDF of a normally distributed random variable.

Selecting secondary seed nodes. After a sensor marks itself as a primary seed, it tries to recruit a specific number \(m_s \) of secondary seed nodes from its neighborhood. Each sensor node maintains its neighbors by periodically exchanging heartbeat messages. To recruit \(m_s \) secondary seed nodes, each primary sensor randomly selects them from its neighbors. Then, it notifies the selected nodes by broadcasting a message containing the IDs of the selected secondary seed nodes.

We next show the determination of the important number \(m_s \) of the secondary seeds that a primary seed recruits. Since wireless links in sensor networks are unreliable, measurement processes may fail before they reach the sink node. To account such failures caused by unreliable links, each primary seed node should select a sufficient number of secondary seeds. We assume that the average link reliability of each link is \(P \) (after taking into account the maximum number of per-hop retransmissions). With the number \(h \) of hops that a measurement process will travel (to be explained in the next subsection), the success probability of a measurement process is \(p^h \). The objective is to guarantee that the number of successful measurements arriving at the sink per primary seed is larger than \(\log q \) with a high probability \(\delta_s \), which is an application-specific constant. We know that the number of measurements successfully arriving at the sink is a random variable that is binomially distributed with parameter \((m_s, p^h) \). Then, by solving the following equation, we can derive \(m_s \).
\[\Pr(m_s > \log q) > \delta_s. \tag{20} \]

C. Constructing Measurements

In the second stage, qualified measurements are constructed and collected at the sink. To construct a measurement, the measurement process determines a measurement constructing path along which the sensor readings on the path are projected into the measurement. To ensure the resulting measurement is qualified, the number \(h \) of hops of the path should be sufficiently large.

Projecting sensor readings. Suppose the measurement constructing path is already determined. Each node along the path produces an intermediate measurement by projecting all sensor readings of the nodes proceeding itself along the path and its own reading. Then, the eventual measurement is simply the linear projection of all sensor readings. Consider the example shown in Fig. 3. The measurement is initiated at the seed node and the measurement constructing path is \(\text{Seed} \rightarrow 1 \rightarrow 2 \rightarrow \text{Sink} \). The seed node produces the first intermediate measurement \(\varpi_0 = y_0 \). Then, it sends \(\varpi_0 \) to Sensor 1 which then produces the second intermediate measurement \(\varpi_1 = \varpi_0 + y_1 = y_0 + y_1 \). This measurement process continues along the path and terminates at the sink. Eventually, the sink node produces the resulting measurement \(z = \sum_{i=0}^2 y_i \).

In order to support the recovery of \(q \), each measurement is associated with a metadata which includes node IDs and locations of all the sensor nodes involved in the measurement.

Determining path length \(h \) (hops). To ensure a measurement is qualified, \(h \) should be sufficiently large. We show the determination of \(h \) in the following theorem.

Theorem 3. When \(h = \frac{\varsigma_1 \log q \sqrt{\frac{q}{\mu_s^q \varsigma}}} {q r^q \sqrt{\frac{\mu_s^q \varsigma}}}, \) the expected number of nonzero coefficients of \(g \) in a measurement is \(\gamma_1 \log q \), meeting condition C2, where \(\gamma_1 \) is a constant.

Proof: In order to ensure that \(O(\log q) \) grids can be sensed in a measurement process, \(h \) should be determined which is the expected number of sensor nodes along a measurement constructing path. Considering the sensing area \(\varsigma(h) \) covered by \(h \) nodes along the path, the expected path length can be computed as \(h \times \frac{\varsigma}{2} \). The width of \(\varsigma(h) \) is the expected sensing range of a sensor which is determined by the expected source signal strength \(\mu_s \) and can be computed as \(2\sqrt{\frac{\mu_s^q \varsigma}{q}} \).

Then the expected number of grids that is covered by \(\varsigma(h) \) can be computed as \(\frac{1}{2} h r \times 2\sqrt{\frac{\mu_s^q \varsigma}{q}} h = \frac{1}{2} h r \times 2\sqrt{\frac{\mu_s^q \varsigma}{q}} \), where \(\varsigma' = \varsigma(q) \) is the area of a grid. Thus, we have \(h = O(\log q) \varsigma/\sqrt{q} \). Using a constant \(\gamma_1 \) to represent \(O(\log q) \), we have \(h = \frac{\varsigma_1 \log q} {q r^q \sqrt{\frac{\mu_s^q \varsigma}}} \).

Remarks: From Theorem 3, we can see that \(h \) can be locally computed by each sensor node.

Selecting relays. To ensure that a measurement constructing path travels \(h \) hops and finally reaches the sink node, each relay along the path should select the next relay. We assume that each node has established the hop distance to the sink node through some existing methods (e.g., [20]). We next explain how a relay node is selected. Consider node \(i \) with hop distance \(\eta_i \) is on the measurement constructing path of measurement \(z_c, 1 \leq c \leq m \). There are two main steps. In the first step, node \(i \) determines the hop distance \(\eta \) of the next relay. The determination of \(\eta \) is dependent on \(\eta_i \) and the number \(h' \) of signal readings having been projected into \(z_c \).
\[\eta \in \{ \{ \eta_i - 1 \}, \text{ if } h - h' = \eta_i, \{ a | a \leq \eta_i - 1 \}, \text{ if } h - h' < \eta_i, \{ a | a \geq \eta_i \}, \text{ if } h - h' > \eta_i \} \tag{21} \]

In the second step, a node with its hop distance equaling \(\eta \) is selected. Node \(i \) broadcasts its intermediate measurement...
with the required η. On receiving it, all the nodes whose hop distance is equal to η starts a backoff timer. The backoff time of node j is inversely proportional to the number of intermediate measurements that it has relayed. As a result, the neighbor having relayed the least number of measurements will first reply an ACK to i. On receiving the ACK, i further notifies the completion of relay selection by a broadcast, muting other competing nodes.

D. Estimating Event Occurrence Vector

In the third stage, the sink node detects the occurrences and the locations of the occurred events by estimating the event occurrence vector with all the received measurements. We first construct the measurement matrix D based on the metadata of the collected measurements. Then, we propose an iterative algorithm to estimate the event occurrence vector with z and D. Finally, the information about the occurred events is extracted from the estimated event occurrence vector.

Constructing D_0. Since the measurement matrix D in (7) is necessary to estimating g but it is unknown, we construct the initial measurement matrix D_0 by estimating the expected coverage of grids. Suppose the set of sensor nodes involved in measurement $z_i \in Y_i$, in which a subset N_s of nodes are in the coverage of grid s. Then, we have $D_0(c,s) = \sum_{i \in N_s} \frac{1}{s_i}$. To compute it, we first determine the subset N_s by initializing the signal strength in grid s as the expected source signal strength μ_s. Then, $D_0(i \in N_s)$ can be computed using the location information in the metadata.

Designing iterative algorithm. The iterative algorithm alternates in two main steps: updating the measurement matrix D by fixing g and estimating g by fixing D.

Estimating g with D. With a given D, g can be recovered with the Basis Pursuit algorithm [16] by solving,

$$\hat{g} = \arg \min_{g'} \|g'\|_1, \text{s.t. } z = Dg'. \tag{22}$$

Updating D with g. Given g computed in the previous step, the signal strength for each grid is updated. Then, the coverage of each grid can be adjusted. Next, D is updated.

The algorithm terminates until the difference between the new computed D and the previous one is smaller than a tiny positive value which is application specific. The pseudo codes are in Algorithm 1.

E. Dealing with Noisy Signals

In reality, received signals of sensor nodes usually contain noises. Two factors account for such noises, including environmental turbulence and cheap hardware of a low cost sensor. Without considering such noises in sensor readings, our proposed algorithm may suffer degraded performance of event detection and localization.

Algorithm 1: Iterative Estimation Algorithm

Input:
z: measurement vector
D_0: initialized measurement matrix
q: the dimension of the sparse vector g
M: the maximum number of iterations customized by users

Output:
\hat{g}: the estimated sparse event occurrence vector
1: $D \leftarrow D_0$, $\hat{g} \leftarrow 0$;
2: for $\text{iter}=1, \text{iter}< M$ do
3: \hspace{1em} $\hat{g} \leftarrow$ find a solution using Basis Pursuit algorithm given D, z, and q;
4: \hspace{1em} Update D' with \hat{g};
5: \hspace{1em} if $\|D' - D\|_2$ is very small then
6: \hspace{2em} break;
7: \hspace{1em} else
8: \hspace{2em} $D \leftarrow D'$;
9: \hspace{1em} end if
10: end for
11: return \hat{g};

In this subsection, we propose noise-aware CED, which extends the basic CED, to reduce the influence of noises in sensor readings. We first model noises in sensor readings and then revise our iterative estimation algorithm by leveraging the Basis Pursuit Denoising algorithm [16].

Modeling noises. We model a noise as a normally distributed random variable $\epsilon_i \sim \mathcal{N}(\mu_s, \sigma^2_e)$ [16] for node i in its signal reading, $y_i = y_i + \epsilon_i$. Then, measurements z is now presented as $z = z_c + \sum_{i \in Y_i} \epsilon_i = z_c + \epsilon$, where Y_i is the set of sensor nodes involved in measurement z_i. Because $|Y_i| = h$ and $\epsilon_i \sim \mathcal{N}(\mu_s, \sigma^2_e)$, we have $\epsilon \sim \mathcal{N}(h\mu_s, h\sigma^2_e)$.

Revising iterative estimation algorithm. We revise the iterative estimation algorithm by changing the main step of estimating g with D. The key optimization problem (22) is modified to take the added noises into consideration as follows,

$$\tilde{g} = \arg \min_{g'} \|g'\|_1 + \frac{1}{2} \|z - Dg'\|_2^2, \tag{23}$$

where γ_2 is an application-specific constant. Then, we employ the Basis Pursuit Denoising algorithm [16] to solve the modified problem, which explicitly allows existence of differences between z and Dg.

VI. TESTBED IMPLEMENTATION AND EXPERIMENTS

We have implemented our approach CED on a small scale testbed of 36 TelosB motes embedded with a temperature sensor, as shown in Fig. 4. The sink node is connected to a ThinkPad R400 laptop computer. We developed TinyOS based code for sensor nodes, which is responsible for signal sampling, generating seeds, constructing measurements and forwarding intermediate measurements. We also developed Java code at the laptop side to estimate event occurrence vectors, detecting and localizing events. We generated events with electrical heaters as shown in Fig. 5. Two heaters of different rate powers, one is 700 W and the other is 1,000 W.

A. Validation of Signal Attenuation Event Model

We first conduct experiments to validate the signal attenuation model for events generated by heaters and derive the attenuation parameter α. In the experiments, a linearly
Case 3.

The performance of our approach slightly decreases when the grid size is smaller. The main reason is that the number of deployed nodes is limited. As the grid size is smaller, there are more grids, indicating more unknown variables should be estimated.

VII. SIMULATIONS

A. Methodology and Simulation Setup

We conduct extensive simulations to evaluate the basic CED (B-CED) and noise-aware CED (NA-CED) in larger scale settings. They are compared with two existing schemes.

- **Complete data collection based scheme (CPLT)** [7]: This scheme collects all sensor readings that are beyond sensor sensitivity. After the sink has collected all data readings, it applies the Closest Point Approach (CPA) [7] to estimate the event occurrence vector. It first identifies all local maxima among all received signals and then selects the closest grid to each local maximum sensor as the location of one occurred event.

- **Compressive data collection based scheme (CPRS)** [9]: This scheme uses compressive data collection to recover sensor readings and CPA [7] to detect events. We assume that this scheme knows the priori knowledge about the number k of events (Note it is impractical in reality). Then, the number of required measurements to recover sensor readings is \(gk \log n \), where \(g \) denotes the average number of sensors within the coverage of an event.

The performance metrics we use for performance evaluation include detection rate, number of false alarms, localization error, source signal strength error, and transmission overhead. An event is considered as detected if its detected location is within the tolerated location error. Both the localization error and the source signal strength error are calculated as the average difference between the real value and the estimated value for successfully detected events. The transmission overhead counts all transmissions excluding control packets for MAC and routing maintenance.

The default settings of system parameters are as follows. The number \(k \) of events is 10 and they are uniformly distributed at random in the monitoring area. There are 1,000 sensor nodes uniformly distributed in the monitoring area of size 100 m \(\times \) 100 m. The default size of a virtual grid is 5 m \(\times \) 5 m. The sensor communication range is 10 m. The tolerated location error is 5 m. Both \(\delta_p \) and \(\delta_s \) are 0.7. \(\gamma_1 \) and \(\gamma_2 \) are set to 3 and 0.5, respectively. The signal gain factors \(\beta_i, 1 \leq i \leq n \) are set as 1. The source signal strengths of events follow the normal distribution, \(\mathcal{N}(9, 3) \).
\(\theta \) of sensor nodes is set as 0.05. We add Gaussian white noise \(N(0, 0.01) \) to sensor readings. The average transmission success rate of a link is 0.9 and the maximum number of retransmission is 3. Each data point is the average value of 20 independent runs with the same configuration.

B. Impact of Number of Sensor Nodes

We first study the performance of all the schemes as the number of nodes increases from 200 to 1,200. We report the results in Fig. 8 to Fig. 12. We can find that the noise-aware CED consistently achieves the best detection rate, the least false alarms, the lowest transmission overhead, and the modest event localization error and source signal strength error. This confirms that the noise-aware CED successfully leverages the sparsity of event occurrences in the monitoring area.

Compared with the noise-aware CED, the basic CED produces considerably worse detection rate, more false alarms, lower localization error and source signal strength error, and similar transmission overhead. The results demonstrate that the extension for dealing with noises is effective. Signal readings of sensors are associated with noises. Not taking such noises in consideration results in degraded detection rate and increased number of false alarms.

Even granted with the impractical knowledge of number \(k \) of occurred events, CPRS still has the worst detection rate, and the highest transmission overhead. It achieves the lowest localization error, and modest number of false alarms and signal strength error because it only detects less than 2 events. It is assumed by CPRS that the sensor readings are sparse but it is usually not true because a single event can cause many nonzero sensor readings. As a result, using a compressive sensing collection approach fails to accurately recover all sensor readings. This immediately leads to the poor performance of CPRS.

Compared with CPRS, CPTL has a better detection rate, and a lower transmission overhead, but more false alarms, larger localization error and signal strength estimation error. The main reasons for the poor performance of CPTL are two folds. On the one hand, it is not able to determine the number \(k \) of the occurred events. On the other hand, applying the technique of selecting the closest grid to each local maximum sensor as an event suffers low detection accuracy, especially when there are multiple overlapping events.

C. Impact of Number of Events

We next investigate the impact of the number of actually occurred events on the performance of different schemes. In this set of simulations, we vary the number of the occurred events from 2 to 22. We report the results of detection rate and number of false alarms in Fig. 13 and Fig. 14.

We can see that as \(k \) increases, both the basic and the noise-aware CED can maintain high detection rate. When \(k = 22 \), the detection rates of the basic and the noise-aware CED are 81.1% and 94.3%, respectively. The main reason is that our approach produces a sufficient number of measurements that is adaptive to the number of events. In contrast, CPTL produces decreasing performance of detection rate with increasing \(k \). This is because more overlapping events result in more local maxima readings that do not respond to true event locations. As a result, CPTL produces more false alarms as \(k \) increases, from 4.1 to 15.4 false alarms.
D. Impact of Grid Size

We finally study the impact of grid size. In this set of simulations, we vary the grid side length from 2 m to 12 m. In Fig 15, we show the performance of detection rate against the varying grid size for all schemes.

We make two observations. First, all the schemes generally produce worse detection rates as the grid size increases. The main reason is as follows. The centroid of each grid is used to represent the location of an occurred event. When the grid size is larger, the real event location is further from the grid center. As a consequence, the recovery accuracy of the event occurrence vector based on virtual grids becomes worse, leading to a worse detection rate. Second, when the grid size is too small (e.g., 2 m), the detection rate of our approach decreases. As the grid size decreases, the number of virtual grids quickly grows. This essentially requires a larger number of measurements. However, the number of sensors is limited. As a result, the detection performance of our approach slightly decreases.

VIII. Conclusion and Future Work

We have presented a compressive sensing based approach to detection and localization of multiple heterogeneous events with sensor networks. A fully distributed measurement construction process has been developed to produce a sufficient number of measurements. An interactive estimation algorithm has also been proposed for recovering event occurrence vector, which overcomes the issue of uncertain coverage of grids. Our approach requires no knowledge of the unknown number of occurred events and is adaptive to it. We have implemented our approach on a testbed of 36 TelosB motes. Results of testbed experiments and extensive simulations have demonstrated its efficacy.

Based on the current work, we will carry out future work along the following directions. First, locations of sensor nodes may not be accurate. We will extend our work to handle the impact of inaccurate locations. Second, some real-world event may stimulate several different types of signals. Detection of such events can leverage matching of composite patterns. We will extend our work to support detection of thus events. Third, some events may stimulate directional signals other than omnidirectional signals. We shall extend CED for detection of directional-signal events.