
Map Matching by Fréchet Distance and Global Weight Optimization

Hong Wei∗ Yin Wang† George Forman† Yanmin Zhu∗

Abstract

The process of map matching takes a sequence of possibly

noisy GPS coordinates from a vehicle trace and estimates the

actual road positions—a crucial first step needed by many

GPS applications. There has been a plethora of methods for

map matching published, but a thorough comparison has

been lacking. Here we provide a unifying framework to help

make sense of the many published methods, cataloging the

different mathematical formulas they use for weighting and

aggregating the features that are common to most. In eval-

uations using both a low-noise dataset from Seattle and a

high-noise dataset from Shanghai, we find that global max-

weight and global geometrical map matching methods are

the most accurate, but each has its weaknesses. We there-

fore propose a new map matching algorithm that integrates

Fréchet distance with global weight optimization. Our new

algorithm is more accurate across all sampling intervals.

Furthermore, it requires very little tuning and the perfor-

mance is robust across datasets of different characteristics.

1 Introduction

Global Positioning System (GPS) receivers are inte-
grated into navigation devices, vehicle telematics sys-
tems, and smart phones. Due to their inherent mea-
surement error, map matching is a necessary step to pin-
point the correct location on the road network. Many
GPS related applications require map matched data,
e.g., traffic monitoring [13, 31, 33], event detection [17],
and road quality assessment [10].

Despite the large amount of work on map match-
ing, it is unclear how different algorithms compare, es-
pecially under different circumstances. Many research
works evaluate only their own proposed algorithm, and
such results are incomparable since the datasets are dif-
ferent. Some comparative analysis exists but is limited.
Quddus et al. [23,25] evaluated several early map match-
ing algorithms that are typically designed for in-device
online matching. Recent offline algorithms achieve bet-
ter accuracy through global optimization. Brakatsoulas
et al. [8] compared an online map matching algorithm
with an algorithm that minimizes the Fréchet distance.
Their evaluation was based on the same Fréchet dis-

∗Shanghai Jiao Tong Univ., {keith.collens,yzhu}@sjtu.edu.cn
†HP Labs, Palo Alto, {yin.wang,george.forman}@hp.com

tance measure and therefore favors the algorithm that
minimizes it. Both Quddus and Brakatsoulas studied
only high frequency samples, although much GPS data
is only available with sparse sampling, e.g., fleet man-
agement systems [6,15,16,28]. Lou et al. [18] compared
their proposed offline map matching algorithm with an
online algorithm and an algorithm that minimizes aver-
age Fréchet distance. However, it is unclear which on-
line algorithm was chosen, and their notion of average
Fréchet distance was not defined.

In this paper, we propose a novel framework that
encompasses most existing map matching algorithms.
These algorithms determine the most probable match
for a sample by calculating a weight for each candidate
road location. This weight integrates a common set
of factors, such as the distance between sample and
road segment, the alignment between measured bearing
and road direction, and the shortest path between
consecutive matches. The output route is the candidate
sequence with the highest score. These algorithms
differ primarily in the way they combine these factors.
We call this category of methods max-weight methods,
which can be further divided into incremental max-
weight and global max-weight methods. Incremental
methods determine the output for each point before
advancing to the next, which is suitable for online map
matching, and global methods consider the whole trace
in determining the output. The other major category
consists of global geometric methods, which determine
the best matched path solely by geometric measures
such as Fréchet distance.

Our framework enables us to compare the essential
differences among the various mathematical formulas
used by the different algorithms, using a uniform soft-
ware harness. We evaluate representative algorithms in
all three categories using a low-noise dataset from Seat-
tlle [1] and a high-noise dataset we collected from Shang-
hai [2]. Our experiments show that global methods are
more accurate than incremental methods because future
observations can often help determine previous loca-
tions. On the other hand, global max-weight and global
geometric methods have their respective strengths and
weaknesses. Global max-weight methods are accurate
and robust even with long GPS sampling intervals, but
they require substantial tuning and are sensitive to dif-

ferent data characteristics. Global geometric methods
require no tuning and the matching results are easy to
understand, but the performance is poor when there are
alternative paths with the same optimal geometric mea-
surements, which is often the case with long sampling
intervals or high-noise data.

Based on these observations, we propose to inte-
grate global weight optimization into map matching
based on Fréchet distance. Our algorithm first de-
termines the minimum Fréchet distance for an input
GPS trace, and then chooses the maximum weight path
among all minimum distance paths. Similar to most
global max-weight algorithms, we use dynamic pro-
gramming to avoid the explicit enumeration of all can-
didate paths, which can be exponential in the length
of the input trace. Our experiments show that our pro-
posed algorithm is much more accurate than both global
max-weight and global geometric algorithms across all
sampling intervals. Global max-weight algorithms can
be tuned to perform on par with our algorithm, but the
optimal parameters are different for different datasets.

The contributions of this paper are the following.

• A comprehensive survey of existing map matching
algorithms and a novel framework to incorporate
most of them.

• The implementation and comparison of top per-
forming algorithms in all three categories of map
matching methods.

• A new offline map matching algorithm that com-
bines geometric algorithms with max-weight algo-
rithms for better accuracy and robustness under
different data characteristics.

• Experiments using both low-noise and high-noise
datasets. The map matching literature is domi-
nated by low-noise GPS data, despite that real-
world GPS data is often noisy, especially in cities.
We are the first to collect a high-noise GPS dataset
with manually annotated ground truth, which we
make available to the public for future research [2].

Section 2 surveys map matching algorithms and
motivates our solution. Section 3 describes the design
and implementation of our map matching algorithm.
Section 4 shows experimental results, and Section 5
concludes the paper.

2 Map Matching Survey

The input to a map matching algorithm is a sequence
of GPS samples, z0, z1, ..., zn, and a map of the road
network. The map is typically represented by a set of
roads, and each road is represented as a polyline, i.e., a
sequence of line segments. The output of the algorithm
is a sequence of estimated locations of the vehicle on

Figure 1: Max-weight map matching

specific road segments, denoted as x0, x1, ...xn.
Most existing map matching algorithms can be clas-

sified into three categories, incremental max-weight [3,
7, 11, 12, 14, 20, 24, 27, 30, 32], global max-weight [18, 19,
21, 22, 26] and global geometrical methods [4, 8]. Both
incremental and global max-weight methods consist of
the following steps:

1. For each GPS sample zi, determine a set of can-
didate locations {x0

i , x
1
i , ...}, which are typically

the perpendicular projections on road segments
{y0i , y1i , ...} within a radius or an error eclipse of
zi; see Figure 1 for an example.

2. Calculate a weight for each candidate.
3. Output the candidate sequence with the maximum

weight.

Incremental and global methods differ in the last step on
how to pick the candidate sequence. Incremental meth-
ods calculate the best candidate for each sample one at
a time. The calculation is based on either a range of
the recent samples, or a summary of all previous sam-
ples (e.g., Bayes filter). In contrast, global max-weight
methods compute an aggregated weight for each candi-
date sequence in entirety, and they output the sequence
with the maximum. Most global max-weight methods
employ a Hidden Markov Model (HMM), solving with
the Viterbi dynamic programming algorithm. The emis-
sion and transition probabilities of the HMM provide
the weights for global methods. Incremental methods
can be applied to online map matching since they rely on
previous observations only. For offline map matching,
however, we show that global methods achieve better
accuracy because future observations are often needed
to match previous samples correctly.

Weight calculations for both incremental and global
methods are based on a common set of features. Table 1
summarizes 15 map matching algorithms. The first
10 rows are incremental methods and the last 5 are
global methods. Each algorithm calculates weights
using a subset of the seven features listed in the table.
The first two features are calculated for each GPS
sample independently: Distance measures the great
circle distance between a sample zi and a candidate
location xj

i . Bearing measures the difference between
the GPS-measured heading direction of zi and the
direction of the road yji where xj

i is located. The

Table 1: Summary of incremental and global max-weight map matching algorithms

GPS sample segment of two consecutive GPS samples aggregation

method distance bearing connectivity shortest-path direction length speed sample sequence

White00 [30] d ∆θ 1 or 0 threshold

Yang05 [3] d l rules

Blazquez06 [7] d v −
vi + vi−1

2
threshold

Li07 [14] d ∆θ tie-breaker

Greenfeld02 [11] C − wdd
nd wαcos(∆α)nα sum

Quddus03 [24] wd
1

d
wθcos(∆θ) sum

Velaga09 [27] wd

(
1−

d

80

)
wθcos(∆θ) wc or −wc sum

Zheng11 [32] wd

(
1−

d

200

)
wθ|cos(∆θ)| wl

(
1−

|l − l0|
1000

)
wα|cos(∆α)| sum

Griffin11 [12] d ∆θ
l0

l
decision tree

Mazhelis10 [20]
1

d+ δ
1− 2k∆α

π

1

(d′ + ξ)2
Bayes filter

Marchal05 [19] d sum

Lou09 [18]
1

√
2πσ

e
− d2

2σ2
l0

l

v′ · v
∥v′∥ ∥v∥

multiply sum

Pink08 [22] Mahalanobis
1

n+ 1
or 0 multiply multiply

Vtrack09 [26]
1

√
2πσ

e
− d2

2σ2 ε or 0 multiply multiply

Newson09 [21]
1

√
2πσ

e
− d2

2σ2
1

β
e
− l−l0

β multiply multiply

zi is a GPS sample from the given trace, and a matching candidate xj
i of zi is the perpendicular projection of zi on a road segment

yji . Distance d = ∥zi − xj
i∥great circle, bearing ∆θ = |bearing(zi)− bearing(yji)|, connectivity n is the number of roads connected to

yji , shortest-path l = shortestPath(xk
i−1, x

j
i), l0 = ∥xk

i−1 − xj
i∥great circle, direction ∆α = |bearing(−−−−→zi−1zi) − bearing(yji)|, length

d′ = ∥zi−1 − xj
i∥great circle, speed vi = speed(zi), v = l/tinterval, v′ is the speed limit vector of the road, and the remaining

variables represent constants or tunable parameters.

remainder of the features are calculated using two
consecutive samples zi−1, zi. Connectivity depends
on whether the candidate xk

i−1 of zi−1 can reach the

candidate xj
i of zi through a path of reasonable length

or drive time, considering both map topology and
turn restrictions. Shortest-path generalizes connectivity
by calculating the length of the shortest path from
xk
i−1 to xj

i . Direction measures the angle difference

between line segment −−−−→zi−1, zi and the road segment yji
of candidate xj

i . Length is the great circle distance

between the previous sample zi−1 and candidate xj
i of

the current sample zi. Speed is the length of the shortest
path between two candidates divided by the sampling
interval. Although seldom used, we list these last two
features in the table for completeness.

In contrast to max-weight methods, global geo-
metric map matching finds the optimal path on the
map by geometric similarity measures, e.g., Fréchet dis-
tance; these methods do not calculate a candidate set
for each GPS sample. A popular intuitive definition of
the Fréchet distance between two curves is the mini-

mum length of a leash required to connect a dog and
its owner, constrained on two separate paths, as they
walk without backtracking along their respective curves
from one endpoint to the other. Map matching algo-
rithms based on Fréchet distance find the path on the
map that has a minimum Fréchet distance to the GPS
trace [4, 8].

2.1 Incremental Max-Weight Map Match-
ing. Incremental max-weight algorithms calculate the
matched location for each input sample one at a time.
Most incremental algorithms in Table 1 calculate the
current match using only the current and the previous
sample, as well as the previous matched location. The
only exception is Mazhelis10 [20], which uses a Bayes
filter. With each input sample, it updates the current
belief state, which is a probability distribution over the
set of candidate locations. The output match is the
location with the maximum probability.

For the example in Figure 1, incremental methods
usually pick location x0

1 as the best match for GPS
sample z1 since it is much closer to the sample than x1

1

(a) Incremental methods perform poorly at Y-split.

(b) Max-weight methods have difficulty differentiating back-
ward drifting noise from U-turn.

(c) Large Fréchet distance permits “alternative” paths. The
green path is the output matched path. It is misaligned with
the background raster map in the right-hand snippet probably

because of distortion due to map projection.

Figure 2: Examples to illustrate weaknesses of each
category of algorithms. Green line segments mark
correct matches, and red segments mark wrong matches.

(assuming roads AB and BD are connected and there is
no left-turn restriction). Figure 2a shows a real and
more serious case with our Seattle dataset. Due to
noise, the series of red samples are much closer to the
upper ramp than the lower freeway. Most incremental
methods will continue to match these samples to the
ramp until it is beyond some distance and then snap to
the correct road. Even though Bayes filters or particle
filters may attribute some small probability mass to
the correct freeway, they too will exhibit this myopic,
forward-only behavior.

2.2 Global Max-Weight Map Matching. Most
global max-weight algorithms assume HMM models.
Using the Viterbi dynamic programming algorithm,
the optimal output sequence (x0, x1, . . . , xn) has an
intuitive explanation. For example, Newson09 [21]
calculates the max-weight candidate sequence as

(2.1) argmax
(x0,x1,...,xn)

n∏
i=0

1√
2πσ

e−
d2i
2σ2

1

β
e−

li−li,0
β

which is equivalent to

(2.2) argmin
(x0,x1,...,xn)

n∑
i=0

d2i + α(li − li,0)

where α = 2σ2/β is a coefficient to be estimated. Given
an input GPS trace, li,0 is a constant. Therefore,
Newson09 essentially calculates the candidate sequence
whose weighted summation of d2i and li is the small-
est. Comparing with incremental max-weight methods,
global max-weight methods assign weights to each can-
didate the same way, but the output sequence is the one
with maximum aggregated weight. For the example in
Figure 1, global max-weight methods can match z1 to
x1
1 because the overall sequence has higher weight even

though x0
1 may have a higher weight than x1

1 locally.
Both incremental and global max-weight methods

ignore the geometric shape and continuity of the drive
path, which can hurt accuracy under noise conditions.
Figure 2b shows an example using the Seattle dataset.
The vehicle was likely waiting for a left turn at the
intersection. The GPS samples drift backward before
they move forward again. Max-weight methods that
consider either connectivity or shortest-path usually
characterize this pattern as a double U-turn because the
candidate locations of the backward drifting samples are
behind their predecessors. Some max-weight methods
include a noise filtering parameter that consider samples
too close to their predecessors as noise and match them
to the same location [21], but it is difficult to determine
the optimal threshold. The matching result in Figure 2b
already employed a threshold of 5 m to filter out random
noise when the vehicle is stopped, but it is not large
enough. On the other hand, this threshold is already
large enough to induce another type of error: The last
and the 3rd last sample in the figure were considered
noise and therefore assigned to the matched locations
of their predecessors.

2.3 Global Geometrical Map Matching. Match-
ing a GPS sample sequence to a path based on geo-
metric similarity first appeared in [30], called curve-to-
curve matching. The algorithm is based on an ad hoc
distance measure of two curves. Most global geomet-
ric map matching methods in the literature find the
matched path that minimizes the Fréchet distance to
the GPS trace.

Formally, the Fréchet distance between two curves
f, g : [0, 1] → R2 is defined as

δF (f, g) := inf
α,β:[0,1]→[0,1]

max
t∈[0,1]

∥f(α(t))− g(β(t))∥

where α and β are continuous and non-decreasing
time-warping functions with α(0) = β(0) = 0 and

α(1) = β(1) = 1. A polynomial algorithm to determine
the Fréchet distance between two polylines was first
proposed in [5]. An extension of the algorithm finds
a path in a planar map that has the minimum Fréchet
distance to a given polyline [4].

The Fréchet distance is defined by the maximum
distance between two curves. In the application of
map matching, this is often at the location where the
GPS noise is the highest, or the map is the most
inaccurate. If this maximum distance is larger than
the distance between two alternative paths at other
locations, the output path can pick either alternative,
and the Fréchet distance is the same. The standard
algorithm does not have any preference for alternative
paths, and its accuracy suffers from random choices.
Figure 2c shows an example from the Seattle dataset,
where the Fréchet distance is determined by the offset
shown in the right-hand snippet, around 25 m. Judging
by an aerial image, the error was due to having an
imprecise map. Regardless of the cause, with this large
distance the snippet shown on the left mistakenly picks
an alternative parallel road that is within 25 m from
the ground truth path. This alternative path problem
is most serious at long sampling intervals, where the
vehicle can make a few turns in-between two samples,
and therefore the GPS trajectory has a large Fréchet
distance to the ground truth path.

Variants of Fréchet distance measurements have
been proposed for map matching, such as weak Fréchet
distance and average Fréchet distance [8]. These defini-
tions do not address the alternative path problem. Sub-
sequent work on Fréchet distance based map matching
focuses on computation speed optimization [9, 29].

3 Our Algorithm

Based on the weaknesses discussed in Section 2 for
each category of methods, we propose to incorporate
global weight optimization into map matching based
on Fréchet distance. We first introduce the Fréchet
distance algorithm that our map matching algorithm
augments. We refer readers to [4] for a more complete
discussion. Compared to the original algorithm, our
implementation simplifies the principal subroutine; see
Appendix A in our supplementary file.

Given a constant ε, the free space of two curves
f, g : [0, 1] → R2 is defined as Fε(f, g) :={
(s, t) ∈ [0, 1]2 | ∥f(s)− g(t)∥ ≤ ε

}
. Region [0, 1]2 is

therefore partitioned into free space and non-free space,
called the free space diagram. For example, the free
space of two line segments is a full or partial ellipse,
and the free space diagram of two polylines of m and
n segments is a m× n segment-segment free space dia-
gram. It has been shown that δF (f, g) ≤ ε if and only

(a) Free space diagram FD(u,v) for edge (u, v) and GPS trace Z.

(b) Free space surface consists of free space diagrams glued
together according to the topology of G. Grey dashed paths are
monotone paths in the free space, which may not be unique.

Figure 3: Free space surface illustration, based on the
example in [4]

if there exists a path within Fε(f, g) from the lower left
corner (0, 0) to the upper right corner (1, 1), which is
monotone in both coordinates [5]. This path induces
functions α and β in the definition of δF (f, g). Con-
structing the free space diagram and determining the
existence of a monotone path for two polylines takes
polynomial time. The Fréchet distance of two polylines
is calculated by a parametric or binary search that finds
the minimum ε.

The definition of the free space between two poly-
lines generalizes to the free space between a planar
graph G = (V,E) of the road network and a polyline
Z = (z0, . . . , zn) of GPS samples. With slight abuse of
definition, we consider the free space diagram between
a vertex v ∈ V and Z. The result is a one-dimensional
free space line, denoted as FDv. The free space diagram
between an edge (u, v) ∈ E and Z is a 1 × n segment-
segment diagram, denoted as FD(u,v); see Figure 3a
for an example. Notice that the free space diagrams
of all edges adjacent to a vertex v share the free space
line FDv. We therefore construct free space diagrams
FD(u,v) for all (u, v) ∈ E, and “glue” them together
along shared free space lines, according to the topol-
ogy of G. The resulting three-dimensional structure is
called a free space surface of graph G and polyline Z.
Figure 3b gives an example graph G and its free space
surface; the trace is omitted for simplicity. There is a
path in G with Fréchet distance at most ε to Z if and
only if there is a monotone path on the free space sur-
face [4]. Finding the minimum Fréchet distance to Z is
achieved by parametric or binary search.

When there are multiple monotone paths on the
free space surface, we apply a Viterbi-like dynamic

Figure 4: A problem with long sampling intervals.

programming algorithm to assign weights to these paths
and output the one with the maximum weight. More
specifically, for each free space line segment on the free
space surface, corresponding to either an edge in G or
a segment in Z, we store the intermediate value that
is the maximum accumulated weight a monotone path
ending at the segment can achieve. For the purpose
of path reconstruction, we also store a pointer that
indicates the immediate free space line segment where
the max-weight path comes from. After the forward
calculation, we find the max-weight line segment at the
end of the free space surface, and backtrack to recover
the path. Appendix A in our supplementary file includes
the implementation details.

Finally, our algorithm allows a choice for the tun-
able weight function to use when scoring the paths of
minimum Fréchet distance. Using the weight function of
either Newson09 or Lou09, our algorithm outperforms
them, respectively. However, Newson09 is not robust
against varying sampling intervals, and Lou09 is gener-
ally less accurate. The example map matching error in
Figure 4 illustrates how Newson09 degrades at longer
sampling intervals. The term α(li − li,0) in (2.2) in-
creases when the sampling interval is longer. Since α
is a constant, whenever there is a long delay between
consecutive samples, Newson09 has a bias for “shorter”
connecting paths over “closer” matches to the actual
GPS points, leading to the mistaken output shown by
the green path.

Therefore, we designed a weight function that im-
proves upon Newson09 and Lou09:

(3.3) argmin (x0, x1, . . . , xn)

n∑
i=0

tid
2
i + αli

where ti is the time interval between zi and zi−1. The
rationale of our design is the following. The summation
of li for a candidate sequence is exactly the length
of the shortest path that links it, which does not
change with the sampling interval. In addition, the
expected value of the summation of tid

2
i does not depend

on the sampling interval either. Therefore, the ratio

between these two terms remains the same for differing
sampling intervals, and a constant α should perform
consistently across all sampling intervals. Since (3.3)
takes into account the time elapsed between consecutive
samples, our algorithm is also robust against input
traces with variable sampling rates or with occasionally
missing GPS points, such as within long tunnels. Our
experiments use this new weight function. Notice that
at a 1 s sampling interval, (3.3) is equivalent to (2.2)
for the same α because ti = 1 and the summation of li,0
is a constant. We applied (3.3) to the Viterbi algorithm
alone and its accuracy is on par with Newson09 and
as robust as Lou09 across all sampling intervals; i.e.,
roughly the maximum of the two.

4 Experiments

We first discuss our evaluation methodology and then
show experimental results for each dataset.

4.1 Evaluation Methodology. We use both Seat-
tle and Shanghai datasets for performance comparison.
Both datasets were collected with a one second sam-
pling interval. We subsample the traces to evaluate the
performance at longer sampling intervals. For a given
sampling interval of m seconds, we generate one sub-
sequence starting with the first sample (z0, zm, z2m, ...),
another subsequence starting with the second sample
(z1, zm+1, z2m+1, ...), etc. Thus, there are m sets of
traces used for each subsampling experiment. This way
we fully utilize our datasets at long sampling intervals
and reduce the variance in our results caused by differ-
ent starting locations.

Of the max-weight algorithms listed in Table 1, we
focus on those using the two key features: distance and
shortest-path. Bearing and speed are not available in
the Seattle dataset. Direction and length of line seg-
ments drawn between consecutive samples are useless
at long sampling intervals. Connectivity can be de-
rived from shortest-path, e.g., threshold filter. There-
fore, we compare Yang05, Zheng11, and Griffin11 for in-
cremental methods, and Lou09 and Newson09 for global
methods. Lou09 does not use an HMM and aggregates
weights by summation rather than multiplication. For
our evaluation, we use an HMM variant that essentially
replaces l − l0 in (2.2) with l0/l, denoted as Lou09* to
avoid confusion. Our variant is more accurate than the
original algorithm in our experiments. For each max-
weight algorithm we compare, we tune its constant pa-
rameters in the weight function to maximize its accu-
racy for the Seattle dataset at the one second sampling
interval. Then we fix the values for the rest of exper-
iments. In addition to the weight function, there are
two other important parameters for all max-weight al-

0 10 20 30 40 50+
0

500

1000

1500

N
um

be
r

of
 s

am
pl

es

Distance to ground−truth road (m)

(a) Noise histogram

1 2 4 8 16 32 64
80

82

84

86

88

90

92

94

96

98

sampling interval (s)

ac
cu

ra
cy

 (
%

)

Yang05
Zheng11
Griffin11
Straw man
Newson09
Lou09*
Frechet distance
Our algorithm

(b) Accuracy comparison

1 2 4 8 16 32 64
10

0

10
2

sampling interval (s)

sp
ee

d
(#

 s
am

pl
e

/ s
ec

)

Straw man
Newson09
Frechet distance

(c) Computation speed

Figure 5: Experiments using the Seattle dataset.

gorithms. The first is the search radius to find candi-
dates for each sample. A small radius may miss the
ground truth location, and a large radius significantly
slows down the algorithm because the number of can-
didates grows quadratically. Another parameter is the
noise filtering threshold discussed in Section 2.2. We
discuss these two parameters later in more detail for
each dataset.

4.2 Seattle Dataset. Our first dataset is from the
SIGSPATIAL Cup 2012, which contains 14,436 samples
collected from the Seattle area [1]. Each sample consists
of a timestamp and a longitude-latitude pair. The

ground truth indicates the ID of the road each sample
matches to. We discovered five sections of wrong
matches in the ground truth, for a total of 78 samples
affected; see Appendix B for discussion. We manually
corrected these errors for our experiments. The road
map is exported from OpenStreetMap (OSM), which
represents roads as polylines. The ground-truth of
the dataset matches each sample to a road ID, which
typically represents a section of road in-between two
adjacent intersections. Figure 5a shows a histogram of
the distance between each sample and its ground-truth
road. The maximum error is 25.5 m and the median
is 4.47. Therefore we set the candidate search radius
for max-weight methods to be 50 m, roughly twice the
maximum error.

Figure 5b shows the accuracy of each algorithm
as we increase the number of seconds between GPS
samples. For reference, we include a straw-man algo-
rithm that simply matches each sample to the near-
est road. The incremental methods (each shown using
long-dashed lines) are not substantially better than the
straw-man algorithm, and they are much less accurate
than global methods (upper cluster). We found they
suffer from numerous freeway Y-splits, such as the one
in Figure 2a.

The top curve shows that our algorithm dominated
in accuracy across different sampling intervals. The
global algorithms each degrade at long sampling inter-
vals. The Fréchet distance algorithm degrades due to
the alternative path problem we discussed with respect
to Figure 2c. Newson09 degrades because of the weight
function design, as we illustrated with Figure 4. The
accuracy of max-weight methods is very sensitive to the
choice of the noise filtering parameter, as explained in
Section 2.2. We tested different values using our Seat-
tle dataset, and used the optimal value 10 m for our
experiments. This value is sufficient to classify the red
samples in Figure 2b as noise and match them correctly.
However, it is too large for normal but slowly moving
samples, which are considered noise and matched to the
previous road segments. We use the value for the over-
all best accuracy. Without this noise filtering, the accu-
racy of both Newson09 and Lou09* drops to only 92%
at one second sampling interval. The Fréchet distance
algorithm and our algorithm do not need noise filtering.

Figure 5c shows the computation speed of repre-
sentative algorithms from different categories. The fig-
ure is only meant to roughly compare their speeds and
to show their trends as the GPS sampling interval in-
creases. The exact performance numbers are specific
to our implementation. In general, incremental max-
weight methods are faster than global max-weight meth-
ods, and the latter is in turn faster than global geometric

methods. Nearest match identifies the nearest road for
each sample independently, and therefore its process-
ing throughput is not affected by the sampling inter-
val. Global max-weight methods slow down linearly as
the interval increases, because the shortest-path calcula-
tion takes longer as consecutive samples become further
apart. Finally, the computation speed of map matching
based on Fréchet distance is almost three orders of mag-
nitude slower than nearest match, but its speed is not
significantly affected by the sampling interval. The com-
putation time of our algorithm is essentially the sum-
mation of Fréchet distance and Newson09, where the
former dominates the overall computation. There are
various techniques to accelerate Fréchet distance calcu-
lation [9, 29]. We focus on map matching accuracy in
this paper and do not exploit these optimization tech-
niques.

4.3 Shanghai Dataset. We collected the second
dataset ourselves from Shanghai, including a total of
19,080 samples [2]. There is a large concentration
of high-rise buildings, elevated roads, and tunnels in
Shanghai, which leads to substantial GPS noise. The
Shanghai road network is also complex, including nar-
row streets, tight curves, close parallel roads, 5-way and
6-way intersections, and double-layered roads [28]. All
these problems lead to a noisy real-world test dataset
that is substantially more challenging than existing pub-
lic datasets. Figure 6a shows the histogram of GPS
noise; the large variation in comparison with the Seat-
tle dataset in Figure 5a is evident. The maximum er-
ror is 133 m and the median is 8.97 m. We therefore
set the candidate search radius to 250 m, roughly twice
the maximum and five times the value for the Seattle
dataset.

Under high-noise data, the performance differences
among different algorithms are magnified. Incremen-
tal methods perform much worse compared with global
methods. Nearest match achieves only 79% accuracy,
and other incremental methods perform similarly. To
simplify the presentation and fit the page limit, we
omit the results for incremental methods and show only
global methods in Figure 6b. Again, our algorithm per-
forms the best, followed by Newson09, Lou09*, and the
Fréchet distance algorithm. Interestingly, both global
max-weight methods achieve their best accuracy at a
four second interval, because it eliminates some of the
random GPS noise, such as we showed in Figure 2b.
We used the same noise filtering threshold 10 m for our
Shanghai dataset. We found the optimal threshold is
15 m, which brings the accuracy of Newson09 closer
to the result of our algorithm. Without the filtering,
Newson09 drops to only 83%. In general, the perfor-

0 10 20 30 40 50+
0

500

1000

N
um

be
r

of
 s

am
pl

es

Distance to ground−truth road (m)

(a) Noise histogram

1 2 4 8 16 32 64

90

92

94

96

98

sampling interval (s)

ac
cu

ra
cy

 (
%

)

Our algorithm
Newson09
Lou09*
Frechet distance

(b) Global methods

Figure 6: Experiments using the Shanghai dataset.

mance of max-weight methods is very sensitive to the
choice of various parameters, whose optimal values can
vary from dataset to dataset. In contrast, the Fréchet
distance calculation of our algorithm is parameter-free.
The global weight optimization step requires the tuning
of the weight function, which is relatively robust.

5 Conclusion

Using the framework we developed to make sense of
the extensive literature on map matching, we have
been able to test and compare a variety of methods
empirically using two diverse test datasets. With our
understanding of where and how different algorithms
fail, we have been able to develop a new algorithm that
enjoys the benefits of global max-match methods as well
as global geometric methods. In testing, it dominated
accuracy across the spectrum of sampling intervals—
particularly under higher noise situations. This makes
it the leading candidate for use on much real-world
GPS data, such as volumes of fleet-management data,
where the sampling interval is necessarily lower to make
the data and transmission costs manageable. The
improvement in accuracy comes at the cost of additional
computation effort. Such trade-offs are commonplace
in computer science generally, and each application
may choose based on the relative value of runtime vs.
accuracy, with the optimal decision boundary moving
ever toward higher accuracy as computing hardware
improves exponentially.

References

[1] ACM SIGSPATIAL Cup 2012. http://depts.

washington.edu/giscup/home.
[2] Shanghai GPS dataset. http://grid.sjtu.edu.cn/

mapmatching/data/.
[3] The map matching algorithm of GPS data with rela-

tively long polling time intervals. Journal of the East-
ern Asia Society for Transportation Studies, 6:2561–
2573, 2005.

[4] H. Alt and et al. Matching planar maps. Journal of
Algorithms, 49(2):262–283, 2003.

[5] H. Alt and M. Godau. Computing the Fréchet dis-
tance between two polygonal curves. Int. J. Comput.
Geometry Appl., 5:75–91, 1995.

[6] A. Biem and et al. IBM Infosphere streams for scalable,
real-time, intelligent transportation services. In ACM
SIGMOD, 2010.

[7] C. A. Blazquez and A. P. Vonderohe. Simple map-
matching algorithm applied to intelligent winter main-
tenance vehicle data. Transportation Research Record,
1935(1):68–76, 2006.

[8] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On
map-matching vehicle tracking data. In VLDB, 2005.

[9] D. Chen and et al. Approximate map matching with
respect to the Fréchet distance. In Workshop on
Algorithm Engineering and Experiments, 2011.

[10] J. Eriksson and et al. The pothole patrol: using a
mobile sensor network for road surface monitoring. In
MobiSys, 2008.

[11] J. S. Greenfeld. Matching GPS observations to loca-
tions on a digital map. In Transportation Research
Board, 2002.

[12] T. Griffin and et al. Routing-based map matching
for extracting routes from GPS trajectories. In Inter-
national Conference on Computing for Geospatial Re-
search & Applications, 2011.

[13] B. Hoh and et al. Virtual trip lines for distributed
privacy-preserving traffic monitoring. In MobiSys,
2008.

[14] X. Li and et al. A practical map-matching algorithm
for GPS-based vehicular networks in Shanghai urban
area. In IET Conference on Wireless, Mobile and
Sensor Networks, 2007.

[15] Z. Liao. Real-time taxi dispatching using global posi-
tioning systems. Commun. ACM, 46(5):81–83, 2003.

[16] K. Liu and et al. Feasibility of using taxi dispatch sys-
tem as probes for collecting traffic information. Jour-
nal of Intelligent Transportation Systems: Technology,
Planning, and Operations, 13(1):16–27, 2009.

[17] S. Liu and et al. Towards mobility-based clustering. In
ACM KDD, 2010.

[18] Y. Lou and et al. Map-matching for low-sampling-rate
GPS trajectories. In SIGSPATIAL GIS, 2009.

[19] F. Marchal and et al. Efficient map matching of large
global positioning system data sets. Transportation
Research Record, 1935(1):93–100, 2005.

[20] O. Mazhelis. Using recursive Bayesian estimation
for matching GPS measurements to imperfect road
network data. In IEEE Conference on Intelligent
Transportation Systems, 2010.

[21] P. Newson and J. Krumm. Hidden markov map match-
ing through noise and sparseness. In SIGSPATIAL
GIS, 2009.

[22] O. Pink and B. Hummel. A statistical approach to
map matching using road network geometry, topology
and vehicular motion constraints. In IEEE Conference
on Intelligent Transportation Systems, 2008.

[23] M. A. Quddus. High Integrity Map Matching Al-
gorithms for Advanced Transport Telematics Applica-
tions. PhD thesis, Imperial College, London, 2006.

[24] M. A. Quddus and et al. A general map matching
algorithm for transport telematics applications. GPS
Solutions, 7(3):157–167, 2003.

[25] M. A. Quddus, R. Noland, and W. Ochieng. The
effects of navigation sensors and spatial road network
data quality on the performance of map matching
algorithms. GeoInformatica, 13:85–108, 2009.

[26] A. Thiagarajan and et al. Vtrack: accurate, energy-
aware road traffic delay estimation using mobile
phones. In SenSys, 2009.

[27] N. R. Velaga and et al. Developing an enhanced
weight-based topological map-matching algorithm for
intelligent transport systems. Transportation Research
Part C: Emerging Technologies, 17(6):672–683, 2009.

[28] Y. Wang and et al. Challenges and opportunities
in exploiting large-scale GPS probe data. Technical
Report HPL-2011-109, HP Labs, 2011.

[29] C. Wenk and et al. Addressing the need for map-
matching speed. In Scientific and Statistical Database
Management Conference, 2006.

[30] C. E. White and et al. Some map matching algorithms
for personal navigation assistants. Transportation Re-
search Part C, 8(1–6):91–108, 2000.

[31] J. Yoon, B. Noble, and M. Liu. Surface street traffic
estimation. In MobiSys, 2007.

[32] Y. Zheng and M. A. Quddus. Weight-based shortest
path aided map-matching algorithm for low frequency
GPS data. In Transportation Research Board, 2011.

[33] H. Zhu and et al. Seer: Metropolitan-scale traffic
perception based on lossy sensory data. In INFOCOM,
2009.

A Implementation

Compared to the original map matching algorithm
based on Fréchet distance [4], our algorithm simplifies
the principal subroutine and also adds an additional
step that finds the max-weight path among all minimum
Fréchet distance paths, which we discuss next.

A.1 Fréchet distance calculation. We introduce
a few more notions for the convenience of explanation.
Given a free space diagram, we call the region of free
space white, and the region of non-free space black. The
free space diagram of two line segments is called a cell,
which contains at most one full or partial white ellipse.
Each of the four edges of a cell has at most one white
interval. The free space diagram of an edge (u, v) in
graph G and a polyline Z = (z0, . . . , zn) is a sequence of
n cells. In the i-th cell, the lower white interval on FDu

(corresponding to vertex u and line segment (zi−1, zi))
is denoted as Iui−1, and the upper white interval on FDv

(corresponding to vertex v and (zi−1, zi)) is denoted as
Ivi−1. The left white interval (corresponding to edge

(u, v) and sample zi−1) is denoted as I
(u,v)
i−1 , and the

right interval (corresponding to (u, v) and zi) is denoted

as I
(u,v)
i .
Given a free space surface of graph G = (V,E) and

polyline Z = (z0, . . . , zn), we orient it such that seg-
ments corresponding to Z are horizontal and segments
corresponding to E inG are vertical, i.e., Ivi is horizontal

and I
(u,v)
i is vertical. The free space surface therefore

can be viewed as n+ 1 vertical copies of G, denoted as
G0, . . . , Gn, connected by |V | horizontal lines.

Given a distance ε, the following procedure deter-
mines whether there is a path on G with Fréchet dis-
tance at most ε to Z.

1. Construct the free space surface and identify the
white space by calculating all white intervals of all
cells.

2. Calculate the sub white space that is monotone
according to the topology of G (following the
direction of edges in E) and montone from G0 to
Gn (following the direction of Z).

3. The path exists if and only if there exists a white
interval on Gn.

With the above procedure that solves the decision prob-
lem, the optimization problem of finding the minimum
ε is solved by parametric or binary search. The most
challenging step is the calculation of the monotone white
space, which is exactly the region reached by all mono-
tone paths starting from white intervals on G0. Using
the analogy of a man walking a dog along two different

Algorithm 1 Calculating the monotone white space

Input: A free space surface for trace (z0, . . . , zn) and
graph G = (V,E), with all (non-monotone) white
intervals calculated

Output: Updated white intervals marking the mono-
tone white space

1: for i = 0, . . . , n− 1 do
2: for all edge (u, v) ∈ E do

3: if vertical interval I
(u,v)
i is not empty then

4: mark horizontal interval Ivi as visited
5: end if
6: end for
7: sweep from Gi to Gi+1 and update horizontal

intervals not visited yet from already visited
horizontal intervals, according to the topology of
G, and mark them as visited.

8: for all vertex u ∈ V do
9: if horizontal interval Iui is not visited then

10: empty Iui
11: end if
12: for all vertex v ∈ V , (u, v) ∈ E do

13: update vertical interval I
(u,v)
i+1 from vertical

interval I
(u,v)
i and horizontal interval Iui

14: end for
15: end for
16: end for

curves, a path is monotone if and only if neither the
man nor the dog moves backward. Algorithm 1 is our
simplified procedure that calculates the monotone white
space.

The white intervals onG0 do not need to be updated
since monotone paths start from there. For each step
from Gi to Gi+1, we first find all non-empty vertical
intervals on Gi and mark their adjacent horizontal
intervals as visited because they can be reached for the
vertical intervals directly via monotone paths. We also
need to update horizontal intervals that can be reached
from horizontal intervals only. We use a sweep line
algorithm here to avoid circular updates. Finally, with
all horizontal intervals between Gi and Gi+1 updated,
we can update the vertical intervals at Gi+1 by these
horizontal intervals and the vertical intervals at Gi.
Unlike a horizontal interval that can be shared by many
adjacent cells, a vertical interval corresponds to exactly
one cell and therefore can only be reached from either
the bottom or the left edge of the cell.

To find the Fréchet distance, we need to calculate
all candidate values and apply parametric or binary
search. With complex road networks and long GPS
traces, there can be trillions of potential values. Both

the value calculation and binary search can be very
time consuming. Our implementation saves a great deal
of time by stopping early, without finding the exact
Fréchet distance. Instead, we start with a large enough
distance and binary search the space of real numbers.
The procedure stops when the remaining interval is
shorter than a threshold. We set the threshold to 1m,
since roads are at least 10m apart in all the maps
we have seen. In our experiments, this approximation
always produces the same path as the exact algorithm
does.

A.2 Finding Max-Weight Path on Free Space
Surface. After the binary search finds an approximate
minimum Fréchet distance, there can still be multiple
monotone paths on the free space surface with equal
Fréchet distance to the polyline Z. We apply a Viterbi-
like dynamic programming algorithm to compute a
weight for each path and return the one with the
maximum weight.

For the purpose of illustration, our weight function
uses only distance d and shortest-path l among all
features in Table 1. It can be extended to include
other features. For generality, we assume the weight
function to be maximized is

∑n
i=0 (x(di) + y(li)), where

functions x(·) and y(·) are user specified. Algorithm 2
shows the procedure.

We first set the weight for each white interval I
(u,v)
0

on G0, which is calculated from the distance between

z0 and the edge corresponding to I
(u,v)
0 , denoted as

d
(u,v)
0 in Line 2 of the algorithm. The weight is set to

negative infinity if I
(u,v)
0 is an empty interval. The main

forward loop from Lines 4 to 12 assigns the maximum
weight to each white interval via dynamic programming.
Lines 5 to 7 assign the initial weight to a horizontal
interval Ivi−1 by comparing all the adjacent cells of Ivi−1,
corresponding to adjacent edges of v in G. We add the
weight calculated from the length of (u, v) to the cell
corresponding to (u, v) since the path has moved from
vertex u to v. Line 8 updates the weights of horizontal
intervals from other horizontal intervals using the initial
weights and following the topology of G, similar to
Dijkstra’s shortest-path algorithm. This is because the
maximum weight may be achieved by a path coming
from an adjacent horizontal interval rather than the
previous vertical interval. Lines 9 to 11 update a vertical
interval on Gi from the parallel vertical interval and
the bottom horizontal interval of the cell it belongs to.
Finally, Line 13 reconstruct the paths backward, from
the max-weight interval on Gn to the interval on G0,
following the pointer stored at each interval, which we
omitted in the pseudocode.

Algorithm 2 Finding the max-weight path on a free
space surface via dynamic programming

Input: A free space surface for trace (z0, . . . , zn) and
graph G = (V,E), with the monotone white space
calculated, and the global weight function to maxi-
mize

∑n
i=0 (x(di) + y(li))

Output: The max-weight path on the surface
1: for all edge (u, v) ∈ E do

2: I
(u,v)
0 .weight = x(d

(u,v)
0)

3: end for
4: for i = 1, . . . , n do
5: for all vertex v ∈ V do
6: Ivi−1.weight =

max
{u|(u,v)∈E}

(
I
(u,v)
i−1 .weight+ y((u, v).length)

)
7: end for
8: update Ivi−1.weight for all v ∈ V from each other

based on the topology of G using a procedure
similar to Dijkstra’s shortest-path algorithm

9: for all edge (u, v) ∈ E do

10: I
(u,v)
i .weight =

max
{
Iui−1.weight, I

(u,v)
i−1 .weight

}
+ x(d

(u,v)
i)

11: end for
12: end for
13: return max-weight path reconstruction

Recovering the matched location for each GPS sam-
ple from the reconstructed monotone path is straightfor-
ward. A monotone path goes through G0, . . . , Gn. As-
sume at Gi, the vertical interval the path goes through
is I(u, v)i, then sample zi is matched to road (u, v). The
sequence of white horizontal intervals (corresponding to
vertices in G) that the monotone path goes through
forms a path in G, which is the highest weight path
with Fréchet distance no more than ε to trace Z.

B Ground-truth errors in SIGSPATIAL Cup
dataset

There are five sections of wrong matches in the ground
truth of the Seattle dataset from the SIGSPATIAL
Cup 2012, for a total of 78 samples affected, which
amounts to an 0.5% error penalty for a perfect map
matching output. Figure 7a shows an error due to
the inaccurate map. In this figure, ramp (yellow) is
mistakenly disconnected from the local road (blue) it
leads to. This local road contains only one line segment
and the ramp leads to the middle of it. Apparently
an intersection is missing. For our experiments we
split the trace into two parts at the disconnection.
The remaining four errors are due to mislabeling in
the ground truth. Figure 7b shows an example where

(a) Yellow & blue roads are mistakenly disconnected.

(b) Red samples match to the upper road in actuality, but the

dataset assigns them to the lower road in the reverse direction.

(c) Red samples to the left of the tunnel are mistakenly assigned
to the lower road, which is disconnected from the upper parallel
road where samples before and after are correctly matched.

Figure 7: Ground truth errors in the SIGSPATIAL Cup
dataset

the GPS points have been mislabeled as matching
the lower road. However, this is a one-way road in
reverse direction. The upper road should be the match.
Figure 7c shows another ground truth mismatch. The
three red samples to the left of the tunnel are matched
to a road that is disconnected and parallel to the
road continuing to the left where adjacent samples are
correctly matched. We manually corrected the ground
truth for these errors for our experiments. We have
reported the errors to the curators of the SIGSPATIAL
Cup data for future correction.

