
嵌入式计算机系统

Lecture #7

MeeGo Communications

内容来自于meego.com以及MeeGo相关公开教程

Communication API

•  Communications services consists of APIs related to
social and human interaction, connectivity, and
networking

•  Communications API can be grouped into four parts
according to services:
•  Qt WebKit
•  Messaging
•  Qt Network
•  Qt DBus

Qt WebKit

•  QtWebKit provides a Web browser engine that makes it
easy to
•  embed content from www into Qt application
•  enhance web content with native controls

•  To include the definitions of QtWebKit, use :

 #include <QtWebKit>

•  To link against the module, add this line to qmake .pro
file:

 QT += webkit

11-8-18 Embedded Computer Systems 3

Qt WebKit Classes

•  QWebView
•  Widget that is used to view and edit web documents

11-8-18 Embedded Computer Systems 4

QWebView *view = new QWebView(parent);

view->load(QUrl("http://www.sjtu.edu.cn"));

view->show();

Qt WebKit Classes

•  QWebPage
•  Object to view and edit web documents

11-8-18 Embedded Computer Systems 5

m_page.mainFrame()->load(url);

m_page.mainFrame()->setScrollBarPolicy(Qt::Vertical,
Qt::ScrollBarAlwaysOff);

m_page.mainFrame()->setScrollBarPolicy(Qt::Horizontal,
Qt::ScrollBarAlwaysOff);

m_page.setViewportSize(QSize(1024, 768));

Qt WebKit Classes

•  QWebFrame
•  Represents a frame in a web page

•  Each QWebPage object contains at least one frame, the
main frame, obtained using QWebPage::mainFrame().

11-8-18 Embedded Computer Systems 6

m_page.mainFrame()->load(url);

m_page.mainFrame()->setScrollBarPolicy(Qt::Vertical,
Qt::ScrollBarAlwaysOff);

m_page.mainFrame()->setScrollBarPolicy(Qt::Horizontal,
Qt::ScrollBarAlwaysOff);

m_page.setViewportSize(QSize(1024, 768));

Qt WebKit Classes

•  QWebElement
•  Convenient access to DOM elements in a QWebFrame

•  The root of the tree is called the document element and can
be accessed using QWebFrame::documentElement().

11-8-18 Embedded Computer Systems 7

frame->setHtml("<html><body><p>First Paragraph</p><p>Second
Paragraph</p></body></html>");

QWebElement doc = frame->documentElement();

QWebElement body = doc.firstChild();

QWebElement firstParagraph = body.firstChild();

QWebElement secondParagraph = firstParagraph.nextSibling();

Examples

•  previewer

•  fancybrowser

11-8-18 Embedded Computer Systems 8

Qt Messaging

•  The QtMessaging module enables access to
messaging services to
•  search and sort messages

•  send messages

•  retrieve message data

•  launch the preferred messaging client.

11-8-18 Embedded Computer Systems 9

Qt Messaging Classes

•  Qmessage
•  The QMessage class provides a convenient interface for

working with messages.

•  QMessage supports a number of types including
internet email messages, and the telephony types SMS
and MMS.

11-8-18 Embedded Computer Systems 10

Qt Messaging Classes

•  QMessageAccount
•  The QMessageAccount class represents a messaging

account in the messaging store.

•  The QMessageAccount class is used for accessing
properties of the account related to dealing with the
account's folders and messages, rather than for
modifying the account itself.

11-8-18 Embedded Computer Systems 11

Qt Messaging Classes

•  QMessageAddress
•  The QMessageAddress class provides an interface for a

message address.

•  A message address consists of an addressee string and a
type.
•  Systme

•  Phone

•  Email

•  InstantMessage

11-8-18 Embedded Computer Systems 12

Qt Messaging Classes

•  QMessageManager
•  The QMessageManager class represents the main

interface for storage and retrieval of messages, folders
and accounts in the system message store.

•  QMessageManager provides the interface for adding,
updating and deleting messages in the system's message
store.

11-8-18 Embedded Computer Systems 13

Qt Messaging Classes

•  QMessageService
•  The QMessageService class provides the interface for

requesting messaging service operations.

•  QMessageService provides the mechanisms for
messaging clients to request services, and to receive
information in response.

•  All requestable service operations present the same
interface for communicating status, and progress
information.

11-8-18 Embedded Computer Systems 14

An example：write message

•  This example demonstrates using the Qt Mobility
Messaging API to create and send a simple message.

11-8-18 Embedded Computer Systems 15

Qt Network

•  The QtNetwork module provides classes to make
network programming easier and portable.
•  Classes for networking programming
•  Opening, maintaining and closing of network session

using various protocols
•  Servers for accepting connections

11-8-18 Embedded Computer Systems 16

QtNetwork

•  Some important classes included in QtNetwork module
•  QNetworkAccessManager
•  QNetworkRequest
•  QNetworkReply
•  QTcpServer
•  QTcpSocket
•  QFtp

•  Steps to use this module
•  #include <QtNetwork>
•  Add QT += network to .pro file

QNetworkAccessManager

•  Send network request and receive replies

•  Holds common configuration and settings for the
request

•  Contains the proxy and cache configuration

•  Reply signals to monitor the progress of a network
operation

QNetworkAccessManager
•  example of download using QNetworkAccessManager

 QNetworkAccessManager *manager = new QNetworkAccessManager(this);

 connect(manager,SIGNAL(finished(QNetworkReply*)),

 this, SLOT(replyFinished(QNetworkReply*)));

 Manager->get(QNetworkRequest(Qurl(“http://qt.nokia.com”)));

QNetworkRequest

•  Hold the information necessary to send a request over
the network

•  Contains a URL and some ancillary information that
can be used to modify the request

QNetworkReply

•  Contain the data and headers for a request sent with
QNetworkAccessManager

•  QNetworkReply is a sequential-access QIODevice,
whenever more data is received from the network, the
readyRead() signal is emitted.

•  The downloadProcess() signal is also emitted when
data is received

QAbstractSocket

•  The QAbstractSocket class provides the base
functionality common to all socket types

•  QAbstractSocket is the base class for QTcpSocket
and QUdpSocket and contain all common
functionality of these two classes

•  There are two way to create socket:
•  Instantiate QTcpSocket or QUdpSocket
•  Create a native socket descriptor, instantiate

QAbstractSocket, and call setSocketDescriptor() to
wrap the native socket

QAbstractSocket

UnconnectedStat
e

HostLookupState

Connec1ngState
Emit	
 hos8ound()	

signal

ConnectedState
Emit	
 connected()	

signal

Calling	
 connectHost()

Host	
 is	
 found

Connec1on	
 established

State change in QAbstractSocket

QAbstractSocket

•  In QAbstractSocket read and write data by calling
read() and write()

•  The readyReady() signal is emitted every time a new
chunk of data has arrived. bytesAvailable() returns the
number of bytes that are available for reading

•  The bytesWritten() signal is emitted when the data has
written to the socket

QTcpServer

•  The QTcpSerer class provides a TCP-based server

•  Call listen() to have the server listen for incoming
connections. The newConnection() signal is
emitted each time a client connects to the server.

•  If port is 0, a port is chosen automatically. If
address is QHostAddress::Any, the server will
listen on all network interfaces.

Examples

•  network-chat

•  broadcast-sender/receiver

11-8-18 Embedded Computer Systems 26

QtDBus

•  What is D-Bus

•  D-Bus is a system for interprocess
communication(IPC)
•  Low latency: it is designed to avoid round trips and allow

asynchronous operation
•  Low head: it use a binary protocol and does not have to

convert to and from a text format such as XML
•  Easy to use: it works in terms of message rather than byte

stream and automatically handles lots of the hard IPC
issues

QtDBus

•  Three layers in D-Bus
•  Library libdbus that allows two application to connect to

each other and exchange messages
•  Message bus daemon executable built on libdbus can route

messages from one application to other ones
•  Wrapper libraries or bindings on particular application

framework such as libdbus-glib and libdbus-qt

QtDBus

•  Concepts in D-Bus

•  Services Names
•  Services name is how that application choose to be known

by other application on the same bus
•  The format of a D-Bus service name is dot-separate

sequence of letters and digits. The example of a service
nam is:
 org.freedesktop.DBus

QtDBus

•  Concepts in D-Bus

•  Object Paths
•  An object path is that higer-level bindings can name native

object instances and allow remote application to refer to
them

•  The format of the object path looks like filesystem path
 /com/mycompany/test

QtDBus

•  Concepts in D-Bus

•  Interface
•  Interfaces are similar to C++ abstract classes and Java’s

interface keyword and declare the contracts that is
established between caller and callee

•  DBus identifies interfaces with a simple namespaced
string something like

 org.freedesktop.Introspectable

QtDBus
•  Concepts in D-Bus

•  Messages

•  D-Bus works by sending messages between processes.
There are four message types:
•  Method call message ask to invoke a method on an object
•  Method return message return the results of invoking a

method
•  Error message return an exception caused by invoking a

method
•  Signal message are notifications that a given signal has been

emitted

QtDBus

•  Some important classes included in QtDBus
module
•  QDBusMessage
•  QDBusConnection
•  QDBusInterface
•  QDBusObjectPath
•  QDBusAbstractAdaptor

•  Steps to use this module
•  #include <QtDBus>
•  Add QT += dbus to .pro file

QDBusConnection

•  The QDBusConnection class represents a
connection to the D-Bus deamon which is used to
get access to remote objects, interfaces; connect
remote signals to object’s slots; register object, etc

•  D-Bus connections are created using the
connectToBus() function which opens a connection
to the server daemon

•  The sessionBus() and systemBus() return open
connections to the session server daemon and the
system server daemon

QDBusMessage
•  The QDBusMessage represents one message sent or

received over the D-Bus bus

•  Four different types of message in class QDBusMessage:
•  QDBusMessage::MethodCallMessage
•  QDBusMessage::SignalMessage
•  QDBusMessage::ReplyMessage
•  QDBusMessage::ErrorMessage
•  QDBusMessage::InvalidMessage
Objects of this type are created with static createError(),

createMethodCall() and createSignal() function

