
嵌入式计算机系统 

Lecture #10 
 

MeeGo Device and Information Management 

内容来自于meego.com及MeeGo相关公开教程 
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 Why contacts is 
important 

•  Contact products 
•  plaxo 

•  SNS  contacts 
•  renren.com 
•  twitter 

•  IM contacts 
•  QQ 
•  MSN 

•  Email contacts 
•  gmail 
•  126.com 

•  Mobile Phone contacts 



Concept in Contact 
Module 

•  Manager 

•  Contact 

•  Detail 

•  Detail Definition 

•  Relationships 

•  Actions 



Manager 

•  Provides an abstraction of a datastore 
which contains contact information 

•  Provides methods to  
•  retrieve and manipulate contact information 
•  retrieve and manipulate relationship 

information  
•  support schema definitions 

•  provides metadata and error information 
reporting 



QContact 
•  QContact represents  

•  individual contacts 
•  groups 
•  other types of contacts 

•  Have a collection of details 
•  name 
•  phone numbers 
•  email address 

•  Have certain actions depending on details 

•  Have zero or more relationships with other 
contacts  
•  hasMember 
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Contact 
•  Example of creating a new contact in a 

manager 
  

     QContact exampleContact;  
     QContactName nameDetail;  
     nameDetail.setFirstName("Adam");             
     nameDetail.setLastName("Unlikely");  
     QContactPhoneNumber phoneNumberDetail;     
     phoneNumberDetail.setNumber("+123 4567");  
     exampleContact.saveDetail(&nameDetail);  
     exampleContact.saveDetail(&phoneNumberDetail);  

 // save the newly created contact in the manager  
     if (!m_manager.saveContact(&exampleContact))  

 qDebug() << "Error" << m_manager.error()  
  << “occurred whilst saving contact!”; 
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Contact 

•  Example of retrieving all contacts in a 
manager 

 QList<QContact> results = 
m_manager.contacts(QContactPhoneNumber::match("+1234
567")); 

•  Example of retrieving a special contact in 
a manager 

 QContact existing = 
m_manager.contact(exampleContact.localId()); 



Contact 

•  Example of updating an existing contacts 
in a manager 

•   phoneNumberDetail.setNumber("+123 9876"); 
exampleContact.saveDetail(&phoneNumberDetail); 
m_manager.saveContact(&exampleContact); 



Contact 

•  Example of removing a contact in a 
manager 

    m_manager.removeContact(exampleContact.localId()); 



Detail 

•  A detail is a single, cohesive unit of 
information that is stored in a contact 

•  A detail is represented by class 
QContactDetail 



Detail 
•  Example of deal with details 



Detail 

•  Adding a detail to a contact 
  

       QContact exampleContact;  
       QContactName nameDetail; 
       nameDetail.setFirstName("Adam");  
       nameDetail.setLastName("Unlikely");  
       QContactPhoneNumber phoneNumberDetail;  
       phoneNumberDetail.setNumber("+123 4567");  
       exampleContact.saveDetail(&nameDetail);  
       exampleContact.saveDetail(&phoneNumberDetail); 



Detail 

•  Updating a detail in a contact 

      phoneNumberDetail.setNumber("+123 9876");  

 // overwrites old value on save 

     

       exampleContact.saveDetail(&phoneNumberDetail);  



Detail 

•  Remove a detail from a contact 

exampleContact.removeDetail(&phoneNumberDetail); 



Detail 
•  View a specific detail from a contact 

  void viewSpecificDetail(QContactManager* cm) { 
  
   QList<QContactLocalId> contactIds = cm->contactIds(); 
 QContact a = cm->contact(contactIds.first()); 
  qDebug()  << "The first phone number of"  
      << a.displayLabel()  
      << "is"        
  
 <<a.detail(QContactPhoneNumber::DefinitionName). 
   
 value(QContactPhoneNumber::FieldNumber); 
  } 



Relationships 
•  Relationship is represented by class 

QContactRelationship 

•  Class QContactRelationship describes a one-
to-one relationship between two contacts 

•  Each relationship is combined with  
•  first contact id 
•  second contact id 
•  relationship type 



Relationships 

•  Relationships defined in QContactRelationship 
•  QContactRelationship::Aggregates 

•  The first contact as aggregating the second contact 
•  QContactRelationship::HasAssistant 

•  The second contact as being the assistant of first contact 
•  QContactRelationship::HasManager 

•  The second contact as being the manager of first contact 
•  QContactRelationship::HasMember 

•  The first contact as being a group including the second 
•  QContactRelationship::HasSpouse 

•  The second contact as being the spouse of first contact 
•  QContactRelationship::IsSameAs 

•  The first contact as being the same contact as the second 



Relationships 
•  Example of creating a new relationship between 

two contacts 
    
// first create the group and the group member  
      QContact exampleGroup; 
exampleGroup.setType(QContactType::TypeGroup);  
      QContactNickname groupName;  
      groupName.setNickname("Example Group"); 
exampleGroup.saveDetail(&groupName);  
       
      QContact exampleGroupMember;  
      QContactName groupMemberName; 
groupMemberName.setFirstName("Member"); 
exampleGroupMember.saveDetail(&groupMemberName);  



Relationships 

•  Example of creating a new relationship 
between two contacts 

   // second save those contacts in the manager 

 QMap<int, QContactManager::Error> 
errorMap;  

      QList<QContact> saveList;  

      saveList  <<  exampleGroup  <<  
exampleGroupMember; 
m_manager.saveContacts(&saveList, &errorMap);  



Relationships 
•  Example of creating a new relationship between 

two contacts 

 // third create the relationship between those contacts 

      QContactRelationship groupRelationship; 
groupRelationship.setFirst(exampleGroup.id()); 
groupRelationship.setRelationshipType(QContactRelationship::
HasMember); 
groupRelationship.setSecond(exampleGroupMember.id()); 
 

 // finally save the relationship in the manager 
m_manager.saveRelationship(&groupRelationship);  



Relationships 
•  Example of retrieving relationships between contacts 

 QList<QContactRelationship> groupRelationships = 
m_manager.relationships(QContactRelationship::HasMember, 
exampleGroup.id(), QContactRelationship::First); 
QList<QContactRelationship> result; 

 for (int i = 0; i < groupRelationships.size(); i++) {  

  if (groupRelationships.at(i).second() == 
exampleGroupMember.id()) {  

 result.append(groupRelationships.at(i));  

  }  

 } 



Relationships 
•  Example of removing relationships between 

contacts 

m_manager.removeRelationship(groupRelationship); 



Personal Info Management 
Module 

•  Contact 

•  Versit 



Versit 
•  Convert QCatacts to and from vCards files 

•  Convert QOrganizerItems to and from 
iCalendar files 

QVersitDocume
nt 

vCard 

iCalenda
r 

QCatact 

QOrgani
zerItem 



vCard 
•  vCard is a file standard for electronic business 

cards 

•  vCard file contains 
•  name 
•  address 
•  phone number 
•  e-mail 
•  url 



iCalendar 

•  A computer file format which allows 
Internet users to send meeting requests 
and tasks to other Internet users, via email 



Versit 
•  Main classes in versit module 

•  QVersitProperty 
•  QVersitDocument 
•  QVersitReader 
•  QVersitWriter 
•  QVersitContactImporter 
•  QVersitContactExporter 
•  QVersitOrganizerImporter 
•  QVersitQrganizerExporter 



QVersitDocument 

•  A container for a list of versit properties 

•  Abstraction of vCard and iCalendar 



QVersitProperty 

•  A QVersitProperty consists of  
•  a list of groups 
•  a name 
•  a list of parameters (key/value pairs) 
•  a value 

•  Example 
 QVersitDocument document;  

 QVersitProperty property; 
 property.setName(QString::fromAscii("N")); 
 property.setValue("Citizen;John;Q;;"); 
 document.addProperty(property);  



QVersitReader 
•  Parse a vCard or iCalendar from an I/O device 

to produce a list of QVersitDocuments 

•  Example 

 QVersitReader reader;  
 reader.setDevice(&input); 
 reader.startReading();  
 reader.waitForFinished();  
 QList<QVersitDocument> inputDocuments = 

reader.results(); 

QVersitDocume
nt 

vCard 

iCalendar QVersitReade
r 



QVersitWriter 
•  Writes Versit documents such as vCards to a 

device 

•  Example 
 QBuffer output;  
 output.open(QBuffer::ReadWrite);  
 QVersitWriter writer;  
 writer.setDevice(&output);  

          writer.startWriting(outputDocuments);  
 writer.waitForFinished(); 

QVersitDocume
nt 

vCard 

iCalendar QVersitWriter 



QVersitContactImporter 

•  Convert QVersitDocuments to QContacts 

•  Example 

QVersitContactImporter importer;  
if (!importer.importDocuments(inputDocuments))  

 return;  
QList<QContact> contacts = importer.contacts();  

QVersitDocume
nt QContact 

QVersitConta
ctImporter 



QVersitContactImporter 
•  Convert QVersitDocuments to QContacts 

•  Example 

 QVersitContactExporter exporter;  
 If (!exporter.exportContacts(contacts,   
  QVersitDocument::VCard30Type))  
  return;  
 QList<QVersitDocument> outputDocuments = 

exporter.documents(); 

QContact QVersitDocume
nt 

QVersitConta
ctExporter 
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Sensor 

•  Some types of Sensor 
•  Accelerometer 
•  Gyroscope 
•  Light Sensor 
•  Orientation Sensor 
•  Magnetometer 
•  Proximity Sensor 
•  Compass 



Sensor 

•  Some applications of sensor 
•  Image Sensor 

•  Face identification 
•  Business card identification 

•  Light Sensor 
•  Change backlight automatically 

•  Accelerometer Sensor 
•  Game 
•  Pedometer 
•  Alarming 



Sensor 

•  Main Classes in Sensor Module 
•  QSensor 
•  QSensorFilter 
•  QSensorReading 



Sensor 
•  The QSensor class represents a single 

hardware sensor 



QSensorReading 

•  Holds the readings from the sensor 

•  Accessed by reading() function in Qsensor 

•  Example: 

 QAccelerometerReading *reading = 
sensor.reading();  

 qreal x = reading->x(); 



Sensor 

•  The life cycle of a sensor is typically 
•  Create a sub-class of QSensor on the 

stack or heap 
 QAccelerometer sensor; 

•  Setup as required by the application 
 connect(sensor, 
SIGNAL(readingChanged()), this, 
SLOT(checkReading()));  

•  Start receiving values 
    sensor.start(); 



Sensor 

•  The life cycle of a sensor is typically 
•  Sensor data is used by the application 
 void MyClass::checkReading() {  
   sensor->reading()->x(); 
 } 

•  Stop receiving values 
 sensor.stop(); 



System Module 

•  Sensors 

•  System Information 



System Information 

•  Provides system related information and 
capabilities 



System Information 
Categories 

•  Version 
•  Contains version information for supporting 

software on the device e.g. OS, firmware, Qt 

•  Features Supported 
•  This lists the supported hardware on the 

device  
    e.g. camera, bluetooth, GPS, FM radio 

•  Network 
•  State of network connection 
•  Type of network e.g. gsm, cdma, ethernet 



System Information 
Categories 

•  Display Information 
•  ColorDepth 
•  Brightness 

•  Storage Information 
•  The presence of various storage device 

•  Device Information 
•  Battery Status 
•  Power State 
•  Profile(silent, vibrating, normal) 
•  Sim 
•  Input Method(key, single touch screen etc) 



Main Classes in System 
Information 

•  QSystemInfo 

•  QSystemDeviceInfo 

•  QSystemBatteryInfo 

•  QSystemNetworkInfo 

•  QSystemStorageInfo 



QSystemInfo 

•  Provides access to various general 
information from the system 
•  Feature supported 
•  Version 



QSystemInfo 

•  Example of using QSystemInfo 
     
          QSystemInfo s; 

 //print the current country code 
 qDebug() << s.currentCountryCode(); 
 //print whether camera is supported 
 qDebug() << 

s.hasFeatureSupported(QSystemInfo::CameraFeature); 
 //print the version of QtMobility 
 qDebug << s.version(QSystemInfo::QtMobility); 



QSystemDeviceInfo 

•  Provides access to device information from 
the system 
•  BatteryStatus 
•  InputMethod 
•  SimStatus 
•  Profile 
•  PowerState 
•  etc 



QSystemDeviceInfo 
•  Example of using QSystemDeviceInfo 

 QSystemDeviceInfo deviceInfo; 
 qDebug << “battery status” << deviceInfo.batteryStatus(); 
 qDebug << “power state” << 

deviceInfo.currentPowerState(); 
 qDebug << “current profile” << deviceInfo.currentProfile (); 
 qDebug << “input method type ” << 

deviceInfo.inputMethodType (); 
 qDebug << “sim status” << deviceInfo.simStatus(); 

 



QSystemBatteryInfo 

•  Provides access to battery and power 
information from the system 
•  BatteryStatus 
•  ChargerType 
•  ChargingState 
•  EnergyUnit 



QSystemBatteryInfo 

•  Example of using QSystemBatteryInfo 
  

          QSystemBatteryInfo batteryInfo; 
 qDebug() << batteryInfo.batteryStatus(); 
 qDebug() << batteryInfo.chargerType (); 
 qDebug() << batteryInfo.chargingState(); 
 qDebug() << batteryInfo.energyMeasurementUnit(); 
 qDebug() << batteryInfo.maxBars(); 
 qDebug() << batteryInfo.nominalCapacity (); 

 
  



QSystemNetworkInfo 

•  Provides access to various networking 
status and signals 
•  NetworkMode 
•  NetworkStatus 



QSystemNetworkInfo 

•  Example of using QSystemNetworkInfo 
  

          QSystemNetworkInfo networkInfo; 
 qDebug() << 

networkInfo.currentMobileCountryCode(); 
 qDebug() << 

networkInfo.currentMobileNetworkCode(); 
 qDebug() << networkInfo.currentMode(); 



Resource 
•  Website 

•  http://meego.com/developers 
•  http://doc.qt.nokia.com 
•  http://doc.qt.nokia.com/qtmobility-1.2.0-

beta1/contacts.html 
•  http://doc.qt.nokia.com/qtmobility-1.2.0-

beta1/versit.html 
•  http://doc.qt.nokia.com/qtmobility-1.2.0-

beta1/sensors-api.html 
•  http://doc.qt.nokia.com/qtmobility-1.2.0-

beta1/systeminfo.html 
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