
嵌入式计算机系统

Lecture #10

MeeGo Device and Information Management

内容来自于meego.com及MeeGo相关公开教程

Outline

•  MeeGo Device and Information
Management Module Overview

•  Personal Information Management Module

•  System Module

Outline

•  MeeGo Device and Information
Management Module Overview

•  Personal Information Management Module

•  System Module

Overview

Overview

Outline

•  MeeGo Device and Information
Management Module Overview

•  Personal Information Management Module

•  System Module

Personal Info Management
Module

•  Contact

•  Versit

Personal Info Management
Module

•  Contact

•  Versit

 Why contacts is
important

•  Contact products
•  plaxo

•  SNS contacts
•  renren.com
•  twitter

•  IM contacts
•  QQ
•  MSN

•  Email contacts
•  gmail
•  126.com

•  Mobile Phone contacts

Concept in Contact
Module

•  Manager

•  Contact

•  Detail

•  Detail Definition

•  Relationships

•  Actions

Manager

•  Provides an abstraction of a datastore
which contains contact information

•  Provides methods to
•  retrieve and manipulate contact information
•  retrieve and manipulate relationship

information
•  support schema definitions

•  provides metadata and error information
reporting

QContact
•  QContact represents

•  individual contacts
•  groups
•  other types of contacts

•  Have a collection of details
•  name
•  phone numbers
•  email address

•  Have certain actions depending on details

•  Have zero or more relationships with other
contacts
•  hasMember

Contact
Example of creating a new contact in
a manager

Contact
•  Example of creating a new contact in a

manager

 QContact exampleContact;
 QContactName nameDetail;
 nameDetail.setFirstName("Adam");
 nameDetail.setLastName("Unlikely");
 QContactPhoneNumber phoneNumberDetail;
 phoneNumberDetail.setNumber("+123 4567");
 exampleContact.saveDetail(&nameDetail);
 exampleContact.saveDetail(&phoneNumberDetail);

 // save the newly created contact in the manager
 if (!m_manager.saveContact(&exampleContact))

 qDebug() << "Error" << m_manager.error()
 << “occurred whilst saving contact!”;

Contact

•  Example of retrieving all contacts in a manager

Contact

•  Example of retrieving all contacts in a
manager

 QList<QContact> results =
m_manager.contacts(QContactPhoneNumber::match("+1234
567"));

•  Example of retrieving a special contact in
a manager

 QContact existing =
m_manager.contact(exampleContact.localId());

Contact

•  Example of updating an existing contacts
in a manager

•  phoneNumberDetail.setNumber("+123 9876");
exampleContact.saveDetail(&phoneNumberDetail);
m_manager.saveContact(&exampleContact);

Contact

•  Example of removing a contact in a
manager

 m_manager.removeContact(exampleContact.localId());

Detail

•  A detail is a single, cohesive unit of
information that is stored in a contact

•  A detail is represented by class
QContactDetail

Detail
•  Example of deal with details

Detail

•  Adding a detail to a contact

 QContact exampleContact;
 QContactName nameDetail;
 nameDetail.setFirstName("Adam");
 nameDetail.setLastName("Unlikely");
 QContactPhoneNumber phoneNumberDetail;
 phoneNumberDetail.setNumber("+123 4567");
 exampleContact.saveDetail(&nameDetail);
 exampleContact.saveDetail(&phoneNumberDetail);

Detail

•  Updating a detail in a contact

 phoneNumberDetail.setNumber("+123 9876");

 // overwrites old value on save

 exampleContact.saveDetail(&phoneNumberDetail);

Detail

•  Remove a detail from a contact

exampleContact.removeDetail(&phoneNumberDetail);

Detail
•  View a specific detail from a contact

 void viewSpecificDetail(QContactManager* cm) {

 QList<QContactLocalId> contactIds = cm->contactIds();
 QContact a = cm->contact(contactIds.first());
 qDebug() << "The first phone number of"
 << a.displayLabel()
 << "is"

 <<a.detail(QContactPhoneNumber::DefinitionName).

 value(QContactPhoneNumber::FieldNumber);
 }

Relationships
•  Relationship is represented by class

QContactRelationship

•  Class QContactRelationship describes a one-
to-one relationship between two contacts

•  Each relationship is combined with
•  first contact id
•  second contact id
•  relationship type

Relationships

•  Relationships defined in QContactRelationship
•  QContactRelationship::Aggregates

•  The first contact as aggregating the second contact
•  QContactRelationship::HasAssistant

•  The second contact as being the assistant of first contact
•  QContactRelationship::HasManager

•  The second contact as being the manager of first contact
•  QContactRelationship::HasMember

•  The first contact as being a group including the second
•  QContactRelationship::HasSpouse

•  The second contact as being the spouse of first contact
•  QContactRelationship::IsSameAs

•  The first contact as being the same contact as the second

Relationships
•  Example of creating a new relationship between

two contacts

// first create the group and the group member
 QContact exampleGroup;
exampleGroup.setType(QContactType::TypeGroup);
 QContactNickname groupName;
 groupName.setNickname("Example Group");
exampleGroup.saveDetail(&groupName);

 QContact exampleGroupMember;
 QContactName groupMemberName;
groupMemberName.setFirstName("Member");
exampleGroupMember.saveDetail(&groupMemberName);

Relationships

•  Example of creating a new relationship
between two contacts

 // second save those contacts in the manager

 QMap<int, QContactManager::Error>
errorMap;

 QList<QContact> saveList;

 saveList << exampleGroup <<
exampleGroupMember;
m_manager.saveContacts(&saveList, &errorMap);

Relationships
•  Example of creating a new relationship between

two contacts

 // third create the relationship between those contacts

 QContactRelationship groupRelationship;
groupRelationship.setFirst(exampleGroup.id());
groupRelationship.setRelationshipType(QContactRelationship::
HasMember);
groupRelationship.setSecond(exampleGroupMember.id());

 // finally save the relationship in the manager
m_manager.saveRelationship(&groupRelationship);

Relationships
•  Example of retrieving relationships between contacts

 QList<QContactRelationship> groupRelationships =
m_manager.relationships(QContactRelationship::HasMember,
exampleGroup.id(), QContactRelationship::First);
QList<QContactRelationship> result;

 for (int i = 0; i < groupRelationships.size(); i++) {

 if (groupRelationships.at(i).second() ==
exampleGroupMember.id()) {

 result.append(groupRelationships.at(i));

 }

 }

Relationships
•  Example of removing relationships between

contacts

m_manager.removeRelationship(groupRelationship);

Personal Info Management
Module

•  Contact

•  Versit

Versit
•  Convert QCatacts to and from vCards files

•  Convert QOrganizerItems to and from
iCalendar files

QVersitDocume
nt

vCard

iCalenda
r

QCatact

QOrgani
zerItem

vCard
•  vCard is a file standard for electronic business

cards

•  vCard file contains
•  name
•  address
•  phone number
•  e-mail
•  url

iCalendar

•  A computer file format which allows
Internet users to send meeting requests
and tasks to other Internet users, via email

Versit
•  Main classes in versit module

•  QVersitProperty
•  QVersitDocument
•  QVersitReader
•  QVersitWriter
•  QVersitContactImporter
•  QVersitContactExporter
•  QVersitOrganizerImporter
•  QVersitQrganizerExporter

QVersitDocument

•  A container for a list of versit properties

•  Abstraction of vCard and iCalendar

QVersitProperty

•  A QVersitProperty consists of
•  a list of groups
•  a name
•  a list of parameters (key/value pairs)
•  a value

•  Example
 QVersitDocument document;

 QVersitProperty property;
 property.setName(QString::fromAscii("N"));
 property.setValue("Citizen;John;Q;;");
 document.addProperty(property);

QVersitReader
•  Parse a vCard or iCalendar from an I/O device

to produce a list of QVersitDocuments

•  Example

 QVersitReader reader;
 reader.setDevice(&input);
 reader.startReading();
 reader.waitForFinished();
 QList<QVersitDocument> inputDocuments =

reader.results();

QVersitDocume
nt

vCard

iCalendar QVersitReade
r

QVersitWriter
•  Writes Versit documents such as vCards to a

device

•  Example
 QBuffer output;
 output.open(QBuffer::ReadWrite);
 QVersitWriter writer;
 writer.setDevice(&output);

 writer.startWriting(outputDocuments);
 writer.waitForFinished();

QVersitDocume
nt

vCard

iCalendar QVersitWriter

QVersitContactImporter

•  Convert QVersitDocuments to QContacts

•  Example

QVersitContactImporter importer;
if (!importer.importDocuments(inputDocuments))

 return;
QList<QContact> contacts = importer.contacts();

QVersitDocume
nt QContact

QVersitConta
ctImporter

QVersitContactImporter
•  Convert QVersitDocuments to QContacts

•  Example

 QVersitContactExporter exporter;
 If (!exporter.exportContacts(contacts,
 QVersitDocument::VCard30Type))
 return;
 QList<QVersitDocument> outputDocuments =

exporter.documents();

QContact QVersitDocume
nt

QVersitConta
ctExporter

Outline

•  MeeGo Device and Information
Management Module Overview

•  Personal Information Management Module

•  System Module

System Module

•  Sensors

•  System Information

System Module

•  Sensors

•  System Information

Sensor

•  Some types of Sensor
•  Accelerometer
•  Gyroscope
•  Light Sensor
•  Orientation Sensor
•  Magnetometer
•  Proximity Sensor
•  Compass

Sensor

•  Some applications of sensor
•  Image Sensor

•  Face identification
•  Business card identification

•  Light Sensor
•  Change backlight automatically

•  Accelerometer Sensor
•  Game
•  Pedometer
•  Alarming

Sensor

•  Main Classes in Sensor Module
•  QSensor
•  QSensorFilter
•  QSensorReading

Sensor
•  The QSensor class represents a single

hardware sensor

QSensorReading

•  Holds the readings from the sensor

•  Accessed by reading() function in Qsensor

•  Example:

 QAccelerometerReading *reading =
sensor.reading();

 qreal x = reading->x();

Sensor

•  The life cycle of a sensor is typically
•  Create a sub-class of QSensor on the

stack or heap
 QAccelerometer sensor;

•  Setup as required by the application
 connect(sensor,
SIGNAL(readingChanged()), this,
SLOT(checkReading()));

•  Start receiving values
 sensor.start();

Sensor

•  The life cycle of a sensor is typically
•  Sensor data is used by the application
 void MyClass::checkReading() {
 sensor->reading()->x();
 }

•  Stop receiving values
 sensor.stop();

System Module

•  Sensors

•  System Information

System Information

•  Provides system related information and
capabilities

System Information
Categories

•  Version
•  Contains version information for supporting

software on the device e.g. OS, firmware, Qt

•  Features Supported
•  This lists the supported hardware on the

device
 e.g. camera, bluetooth, GPS, FM radio

•  Network
•  State of network connection
•  Type of network e.g. gsm, cdma, ethernet

System Information
Categories

•  Display Information
•  ColorDepth
•  Brightness

•  Storage Information
•  The presence of various storage device

•  Device Information
•  Battery Status
•  Power State
•  Profile(silent, vibrating, normal)
•  Sim
•  Input Method(key, single touch screen etc)

Main Classes in System
Information

•  QSystemInfo

•  QSystemDeviceInfo

•  QSystemBatteryInfo

•  QSystemNetworkInfo

•  QSystemStorageInfo

QSystemInfo

•  Provides access to various general
information from the system
•  Feature supported
•  Version

QSystemInfo

•  Example of using QSystemInfo

 QSystemInfo s;

 //print the current country code
 qDebug() << s.currentCountryCode();
 //print whether camera is supported
 qDebug() <<

s.hasFeatureSupported(QSystemInfo::CameraFeature);
 //print the version of QtMobility
 qDebug << s.version(QSystemInfo::QtMobility);

QSystemDeviceInfo

•  Provides access to device information from
the system
•  BatteryStatus
•  InputMethod
•  SimStatus
•  Profile
•  PowerState
•  etc

QSystemDeviceInfo
•  Example of using QSystemDeviceInfo

 QSystemDeviceInfo deviceInfo;
 qDebug << “battery status” << deviceInfo.batteryStatus();
 qDebug << “power state” <<

deviceInfo.currentPowerState();
 qDebug << “current profile” << deviceInfo.currentProfile ();
 qDebug << “input method type ” <<

deviceInfo.inputMethodType ();
 qDebug << “sim status” << deviceInfo.simStatus();

QSystemBatteryInfo

•  Provides access to battery and power
information from the system
•  BatteryStatus
•  ChargerType
•  ChargingState
•  EnergyUnit

QSystemBatteryInfo

•  Example of using QSystemBatteryInfo

 QSystemBatteryInfo batteryInfo;
 qDebug() << batteryInfo.batteryStatus();
 qDebug() << batteryInfo.chargerType ();
 qDebug() << batteryInfo.chargingState();
 qDebug() << batteryInfo.energyMeasurementUnit();
 qDebug() << batteryInfo.maxBars();
 qDebug() << batteryInfo.nominalCapacity ();

QSystemNetworkInfo

•  Provides access to various networking
status and signals
•  NetworkMode
•  NetworkStatus

QSystemNetworkInfo

•  Example of using QSystemNetworkInfo

 QSystemNetworkInfo networkInfo;
 qDebug() <<

networkInfo.currentMobileCountryCode();
 qDebug() <<

networkInfo.currentMobileNetworkCode();
 qDebug() << networkInfo.currentMode();

Resource
•  Website

•  http://meego.com/developers
•  http://doc.qt.nokia.com
•  http://doc.qt.nokia.com/qtmobility-1.2.0-

beta1/contacts.html
•  http://doc.qt.nokia.com/qtmobility-1.2.0-

beta1/versit.html
•  http://doc.qt.nokia.com/qtmobility-1.2.0-

beta1/sensors-api.html
•  http://doc.qt.nokia.com/qtmobility-1.2.0-

beta1/systeminfo.html

[Mark] is a trademark or registered trademark of Intel Corporation or its
subsidiaries in the United States or other countries

Intel® Academic Community

Copyright © 2011, Intel Corporation. All rights reserved.
Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
or other countries. * Other brands and names are the property of their respective owners.

•  INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH
INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECUTAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF
SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT
INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS.

•  Intel may make changes to specifications and product descriptions at any
time, without notice.

•  All products, dates, and figures specified are preliminary based on current
expectations, and are subject to change without notice.

•  Intel, processors, chipsets, and desktop boards may contain design defects or
errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

•  Intel and the Intel logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

•  *Other names and brands may be claimed as the property of others.
•  Copyright © 2010 Intel Corporation.

Legal Disclaimer

