Finding Similar Items: Locality Sensitive Hashing

New thread: High dim. data

- High dim. data
 - Locality sensitive hashing
 - Clustering
 - Dimensionality reduction

- Graph data
 - PageRank, SimRank

- Infinite data
 - Filtering data streams
 - Web advertising
 - Queries on streams

- Machine learning
 - SVM
 - Decision Trees
 - Perceptron, kNN

- Apps
 - Recommender systems
 - Association Rules
 - Duplicate document detection
Scene Completion Problem

[Hays and Efros, SIGGRAPH 2007]
Scene Completion Problem

10 nearest neighbors from a collection of 20,000 images

[Hays and Efros, SIGGRAPH 2007]

Scene Completion Problem

10 nearest neighbors from a collection of 2 million images

[Hays and Efros, SIGGRAPH 2007]

A Common Metaphor

- Many problems can be expressed as finding “similar” sets:
 - Find near-neighbors in high-dimensional space
- Examples:
 - Pages with similar words
 - For duplicate detection, classification by topic
 - Customers who purchased similar products
 - Products with similar customer sets
 - Images with similar features
 - Users who visited similar websites

Problem for Today’s Lecture

- Given: High dimensional data points \(x_1, x_2, \ldots \)
 - For example: Image is a long vector of pixel colors
 \[
 \begin{bmatrix}
 1 & 2 & 1 \\
 0 & 2 & 1 \\
 0 & 1 & 0
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 1 & 2 & 1 & 0 & 2 & 1 & 0 & 1 & 0
 \end{bmatrix}
 \]
 - And some distance function \(d(x_1, x_2) \)
 - Which quantifies the “distance” between \(x_1 \) and \(x_2 \)
 - Goal: Find all pairs of data points \((x_i, x_j)\) that are within some distance threshold \(d(x_i, x_j) \leq s \)
 - Note: Naïve solution would take \(O(N^2) \) \(\bigotimes \)
 where \(N \) is the number of data points
 - MAGIC: This can be done in \(O(N) \)!! How?
Last time: Finding frequent pairs

Naïve solution:
Single pass but requires space quadratic in the number of items

- \(N \) … number of distinct items
- \(K \) … number of items with support \(\geq s \)

A-Priori:
First pass: Find frequent singletons
For a pair to be a frequent pair candidate, its singletons have to be frequent!
Second pass: Count only candidate pairs!

Further improvement: PCY

Pass 1:
- Count exact frequency of each item:
- Take pairs of items \(\{i,j\} \), hash them into \(B \) buckets and count of the number of pairs that hashed to each bucket:

- Basket 1: \(\{1, 2, 3\} \)
- Pairs: \(\{1, 2\}, \{1, 3\}, \{2, 3\} \)
Relation to Previous Lecture

- **Last time:** Finding frequent pairs
- **Further improvement:** PCY

 - **Pass 1:**
 - Count exact frequency of each item:
 - Take pairs of items \(\{i,j\}\), hash them into \(B\) buckets and count of the number of pairs that hashed to each bucket:

 - **Pass 2:**
 - For a pair \(\{i,j\}\) to be a **candidate for a frequent pair**, its singletons \(\{i\}, \{j\}\) have to be frequent and the pair has to hash to a frequent bucket!

Previous lecture: A-Priori

- **Main idea:** Candidates
 - Instead of keeping a count of each pair, only keep a count of candidate pairs!

Today’s lecture: Find pairs of similar docs

- **Main idea:** Candidates
 - **Pass 1:** Take documents and hash them to buckets such that documents that are similar hash to the same bucket
 - **Pass 2:** Only compare documents that are **candidates** (i.e., they hashed to a same bucket)

Benefits: Instead of \(O(N^2)\) comparisons, we need \(O(N)\) comparisons to find similar documents
Goal: Find near-neighbors in high-dim. space

- We formally define “near neighbors” as points that are a “small distance” apart
- For each application, we first need to define what “distance” means
- Today: Jaccard distance/similarity

- The Jaccard similarity of two sets is the size of their intersection divided by the size of their union:
 \[
 \text{sim}(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}
 \]
- Jaccard distance:
 \[
 d(C_1, C_2) = 1 - \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}
 \]

Task: Finding Similar Documents

- **Goal:** Given a large number \(N \) in the millions or billions) of documents, find “near duplicate” pairs
- **Applications:**
 - Mirror websites, or approximate mirrors
 - Don’t want to show both in search results
 - Similar news articles at many news sites
 - Cluster articles by “same story”
- **Problems:**
 - Many small pieces of one document can appear out of order in another
 - Too many documents to compare all pairs
 - Documents are so large or so many that they cannot fit in main memory

3 Essential Steps for Similar Docs

1. **Shingling:** Convert documents to sets
2. **Min-Hashing:** Convert large sets to short signatures, while preserving similarity
3. **Locality-Sensitive Hashing:** Focus on pairs of signatures likely to be from similar documents
 - **Candidate pairs!**
The Big Picture

Step 1: Shingling: Convert documents to sets

Signatures: short integer vectors that represent the sets, and reflect their similarity

Candidate pairs: those pairs of signatures that we need to test for similarity

Shingling

The set of strings of length k that appear in the document
Documents as High-Dim Data

- **Step 1: Shingling:** Convert documents to sets

- **Simple approaches:**
 - Document = set of words appearing in document
 - Document = set of “important” words
 - Don’t work well for this application. Why?

- **Need to account for ordering of words!**
- A different way: **Shingles!**

Define: Shingles

- A *k*-shingle (or *k*-gram) for a document is a sequence of *k* tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples

- **Example:** *k*=2; document $D_1 = abcab$
 - Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$
 - **Option:** Shingles as a bag (multiset), count ab twice: $S'(D_1) = \{ab, bc, ca, ab\}$
Compressing Shingles

- **To compress long shingles**, we can **hash** them to (say) 4 bytes
- **Represent a document by the set of hash values of its** k-**shingles**
 - **Idea**: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared
- **Example**: $k=2$; document $D_1=\text{abcab}$
 - Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$
 - Hash the singles: $h(D_1) = \{1, 5, 7\}$

Similarity Metric for Shingles

- **Document D_1 is a set of its k-shingles $C_1=S(D_1)$**
- Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- **A natural similarity measure is the Jaccard similarity**:
 $$\text{sim}(D_1, D_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$$
Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order

- **Caveat:** You must pick k large enough, or most documents will have most shingles
 - $k = 5$ is OK for short documents
 - $k = 10$ is better for long documents

Motivation for Minhash/LSH

- Suppose we need to find near-duplicate documents among $N = 1$ million documents

- Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs
 - $N(N - 1)/2 \approx 5 \times 10^{11}$ comparisons
 - At 10^5 secs/day and 10^6 comparisons/sec, it would take 5 days

- For $N = 10$ million, it takes more than a year...
MinHashing

Step 2: **Minhashing**: Convert large sets to short signatures, while preserving similarity

Encoding Sets as Bit Vectors

- Many similarity problems can be formalized as finding subsets that have significant intersection
- Encode sets using 0/1 (bit, boolean) vectors
 - One dimension per element in the universal set
 - Interpret set intersection as bitwise AND, and set union as bitwise OR
- **Example**: $C_1 = 10111$, $C_2 = 10011$
 - Size of intersection = 3; size of union = 4,
 - Jaccard similarity (not distance) = $3/4$
 - Distance: $d(C_1, C_2) = 1 - \text{(Jaccard similarity)} = 1/4$

From Sets to Boolean Matrices

- **Rows** = elements (shingles)
- **Columns** = sets (documents)
 - 1 in row \(e\) and column \(s\) if and only if \(e\) is a member of \(s\)
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - **Typical matrix is sparse!**
 - **Each document is a column:**
 - **Example:** \(\text{sim}(C_1, C_2) = \) ?
 - Size of intersection = 3; size of union = 6, Jaccard similarity (not distance) = 3/6
 - \(d(C_1, C_2) = 1 – (\text{Jaccard similarity}) = 3/6\)

Aside

- We might not really represent the data by a boolean matrix.
- Sparse matrices are usually better represented by the list of places where there is a non-zero value.
- But the matrix picture is conceptually useful.
When Is Similarity Interesting?

1. When the sets are so large or so many that they cannot fit in main memory.
2. Or, when there are so many sets that comparing all pairs of sets takes too much time.
3. Or both.

Outline: Finding Similar Columns

- **So far:**
 - Documents → Sets of shingles
 - Represent sets as boolean vectors in a matrix
- **Next goal:** Find similar columns while computing small signatures
 - Similarity of columns == similarity of signatures
Outline: Finding Similar Columns

- **Next Goal:** Find similar columns, Small signatures
- **Naïve approach:**
 - 1) **Signatures of columns:** small summaries of columns
 - 2) **Examine pairs of signatures** to find similar columns
 - **Essential:** Similarities of signatures and columns are related
 - 3) **Optional:** Check that columns with similar signatures are really similar
- **Warnings:**
 - Comparing all pairs may take too much time: **Job for LSH**
 - These methods can produce false negatives, and even false positives (if the optional check is not made)

Hashing Columns (Signatures)

- **Key idea:** “hash” each column \(C \) to a small **signature** \(h(C) \), such that:
 - (1) \(h(C) \) is small enough that the signature fits in RAM
 - (2) \(\text{sim}(C_1, C_2) \) is the same as the “similarity” of signatures \(h(C_1) \) and \(h(C_2) \)

- **Goal:** Find a hash function \(h(\cdot) \) such that:
 - If \(\text{sim}(C_1, C_2) \) is high, then with high prob. \(h(C_1) = h(C_2) \)
 - If \(\text{sim}(C_1, C_2) \) is low, then with high prob. \(h(C_1) \neq h(C_2) \)

- Hash docs into buckets. Expect that “most” pairs of near duplicate docs hash into the same bucket!
Min-Hashing

- **Goal:** Find a hash function \(h(\cdot) \) such that:
 - if \(\text{sim}(C_1, C_2) \) is high, then with high prob. \(h(C_1) = h(C_2) \)
 - if \(\text{sim}(C_1, C_2) \) is low, then with high prob. \(h(C_1) \neq h(C_2) \)

- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function
 - There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation \(\pi \)
- Define a “hash” function \(h_\pi(C) = \text{the index of the first (in the permuted order } \pi) \text{ row in which column } C \text{ has value } 1: \)
 \[
 h_\pi(C) = \min_\pi \pi(C)
 \]
- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column
Min-Hashing Example

Input matrix (Shingles x Documents)

Signature matrix M

$\begin{array}{ccc}
2 & 4 & 3 \\
3 & 2 & 4 \\
7 & 1 & 7 \\
6 & 3 & 2 \\
1 & 6 & 6 \\
5 & 7 & 1 \\
4 & 5 & 5 \\
\end{array}$

\[\begin{bmatrix}
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
\end{bmatrix} \]

\[\begin{bmatrix}
2 & 1 & 2 & 1 \\
2 & 1 & 4 & 1 \\
1 & 2 & 1 & 2 \\
\end{bmatrix} \]

The Min-Hash Property

- Choose a random permutation π
- Claim: $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Why?
 - Let X be a doc (set of shingles), $y \in X$ is a shingle
 - Then: $\Pr[\pi(y) = \min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the min element
 - Let y be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
 - Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$
 - So the prob. that both are true is the prob. $y \in C_1 \cap C_2$
 - $\Pr[\min(\pi(C_1)) = \min(\pi(C_2))] = |C_1 \cap C_2| / |C_1 \cup C_2| = sim(C_1, C_2)$
Four Types of Rows

- Given cols C_1 and C_2, rows may be classified as:

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- $a = \#\text{ rows of type A}$, etc.

- Note: $\text{sim}(C_1, C_2) = a/(a + b + c)$
- Then: $\Pr[h(C_1) = h(C_2)] = \text{Sim}(C_1, C_2)$

- Look down the cols C_1 and C_2 until we see a 1
- If it’s a type-A row, then $h(C_1) = h(C_2)$
 - If a type-B or type-C row, then not

Similarity for Signatures

- We know: $\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2)$
- Now generalize to multiple hash functions

- The similarity of two signatures is the fraction of the hash functions in which they agree

- Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures
Min-Hashing Example

Input matrix (Shingles x Documents)

<table>
<thead>
<tr>
<th>Permutation π</th>
<th>2</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature matrix M</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Similarities:

<table>
<thead>
<tr>
<th>Col/Col</th>
<th>Sig/Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>2-4</td>
</tr>
<tr>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>0.67</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Min-Hash Signatures

- Pick $K=100$ random permutations of the rows
- Think of $\text{sig}(C)$ as a column vector
- $\text{sig}(C)[i] = \text{ according to the } i\text{-th permutation, the index of the first row that has a 1 in column } C$

 \[
 \text{sig}(C)[i] = \min (\pi_i(C))
 \]
- **Note:** The sketch (signature) of document C is small ~100 bytes!

- We achieved our goal! We “compressed” long bit vectors into short signatures

Implementation Trick

- **Permuting rows even once is prohibitive**
- **Row hashing!**
 - Pick $K = 100$ hash functions k_i
 - Ordering under k_i gives a random row permutation!
- **One-pass implementation**
 - For each column C and hash-func. k_i keep a “slot” for the min-hash value
 - Initialize all $\text{sig}(C)[i] = \infty$
- **Scan rows looking for 1s**
 - Suppose row j has 1 in column C
 - Then for each k_i:
 - If $k_i(j) < \text{sig}(C)[i]$, then $\text{sig}(C)[i] \leftarrow k_i(j)$

How to pick a random hash function $h(x)$?

Universal hashing:

$h_{a,b}(x) = ((a \times x + b) \mod p) \mod N$

where:

- a, b ... random integers
- p ... prime number ($p > N$)

Implementation — (1)

- Suppose 1 billion rows.
- Hard to pick a random permutation from 1...billion.
- Representing a random permutation requires 1 billion entries.
- Accessing rows in permuted order leads to thrashing.
Implementation — (2)

- A good approximation to permuting rows: pick 100 (?) hash functions.
- For each column c and each hash function h_i, keep a “slot” $M(i, c)$.
- **Intent:** $M(i, c)$ will become the smallest value of $h_i(r)$ for which column c has 1 in row r.
 - I.e., $h_i(r)$ gives order of rows for i th permutation.

Implementation — (3)

Initialize $M(i, c)$ to ∞ for all i and c

for each row r
 for each column c
 if c has 1 in row r
 for each hash function h_i **do**
 if $h_i(r)$ is a smaller value than $M(i, c)$
 then
 $M(i, c) := h_i(r)$;

43

44
Example

<table>
<thead>
<tr>
<th>Row</th>
<th>C1</th>
<th>C2</th>
<th>Sig1</th>
<th>Sig2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

\[h(x) = x \mod 5 \]
\[g(x) = 2x + 1 \mod 5 \]

Implementation — (4)

- Often, data is given by column, not row.
 - E.g., columns = documents, rows = shingles.

- If so, sort matrix once so it is by row.

- And *always* compute \(h_i(r) \) only once for each row.
Step 3: **Locality-Sensitive Hashing**
Focus on pairs of signatures likely to be from similar documents

Locality Sensitive Hashing

Candidate pairs: those pairs of signatures that we need to test for similarity

Finding Similar Pairs

- Suppose we have, in main memory, data representing a large number of objects.
 - May be the objects themselves.
 - May be signatures as in minhashing.

- We want to compare each to each, finding those pairs that are sufficiently similar.
Checking All Pairs is Hard

- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns.

- Example: 10^6 columns implies 5*10^{11} column-comparisons.

- At 1 microsecond/comparison: 6 days.

LSH: First Cut

- Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., $s=0.8$)

- LSH – General idea: Use a function $f(x,y)$ that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated

- For Min-Hash matrices:
 - Hash columns of signature matrix M to many buckets
 - Each pair of documents that hashes into the same bucket is a candidate pair
Pick a similarity threshold \(s (0 < s < 1) \)

Columns \(x \) and \(y \) of \(M \) are a candidate pair if their signatures agree on at least fraction \(s \) of their rows:

\[
M(i, x) = M(i, y) \text{ for at least } \frac{s}{1}
\]

We expect documents \(x \) and \(y \) to have the same (Jaccard) similarity as their signatures

Big idea: Hash columns of signature matrix \(M \) several times

Arrange that (only) similar columns are likely to hash to the same bucket, with high probability

Candidate pairs are those that hash to the same bucket
Partition M into b Bands

- Divide matrix M into b bands of r rows
- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible
- *Candidate* column pairs are those that hash to the same bucket for ≥ 1 band
- Tune b and r to catch most similar pairs, but few non-similar pairs
Hashing Bands

Columns 2 and 6 are probably identical (candidate pair)

Columns 6 and 7 are surely different.

Simplifying Assumption

- There are **enough buckets** that columns are unlikely to hash to the same bucket unless they are **identical** in a particular band

- Hereafter, we assume that “**same bucket**” means “**identical in that band**”

- Assumption needed only to simplify analysis, not for correctness of algorithm
Assume the following case:
- Suppose 100,000 columns of \(M \) (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose \(b = 20 \) bands of \(r = 5 \) integers/band

Goal: Find pairs of documents that are at least \(s = 0.8 \) similar

\(C_1, C_2 \) are 80% Similar

- **Find pairs of \(\geq s = 0.8 \) similarity, set \(b = 20, r = 5 \)**
- **Assume:** \(\text{sim}(C_1, C_2) = 0.8 \)
 - Since \(\text{sim}(C_1, C_2) \geq s \), we want \(C_1, C_2 \) to be a **candidate pair:** We want them to hash to at least 1 common bucket (at least one band is identical)
- **Probability \(C_1, C_2 \) identical in one particular band:** \((0.8)^5 = 0.328\)
- Probability \(C_1, C_2 \) are **not** similar in all of the 20 bands: \((1-0.328)^{20} = 0.00035\)
 - i.e., about 1/3000th of the 80%-similar column pairs are **false negatives** (we miss them)
- We would find 99.965% pairs of truly similar documents
Find pairs of \(s \geq 0.8 \) similarity, set \(b = 20 \), \(r = 5 \)

Assume: \(\text{sim}(C_1, C_2) = 0.3 \)
 - Since \(\text{sim}(C_1, C_2) < s \) we want \(C_1 \), \(C_2 \) to hash to NO common buckets (all bands should be different)
 - Probability \(C_1 \), \(C_2 \) identical in one particular band: \((0.3)^{5} = 0.00243 \)
 - Probability \(C_1 \), \(C_2 \) identical in at least 1 of 20 bands: \(1 - (1 - 0.00243)^{20} = 0.0474 \)
 - In other words, approximately 4.74% pairs of docs with similarity 0.3 end up becoming candidate pairs
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold \(s \)

LSH Involves a Tradeoff

- **Pick:**
 - The number of Min-Hashes (rows of \(M \))
 - The number of bands \(b \), and
 - The number of rows \(r \) per band
to balance false positives/negatives

- **Example:** If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up
Similarity \(t = \text{sim}(C_1, C_2) \) of two sets

Probability of sharing a bucket

No chance if \(t < s \)

Similarity threshold \(s \)

Probability = 1 if \(t > s \)

What 1 Band of 1 Row Gives You

Probability of sharing a bucket

Remember:
Probability of equal hash-values = similarity

Similarity \(t = \text{sim}(C_1, C_2) \) of two sets
b bands, r rows/band

- Columns C_1 and C_2 have similarity t
- Pick any band (r rows)
 - Prob. that all rows in band equal = t^r
 - Prob. that some row in band unequal = $1 - t^r$
- Prob. that no band identical = $(1 - t^r)^b$
- Prob. that at least 1 band identical = $1 - (1 - t^r)^b$

What b Bands of r Rows Gives You

- Similarity $t = \text{sim}(C_i, C_j)$ of two sets
- $s \sim (1/b)^{1/r}$
- $1 - (1 - t^r)^b$
- At least one band identical
- No bands identical
- Some row of a band unequal
- All rows of a band are equal
Example: \(b = 20; \ r = 5 \)

- **Similarity threshold** \(s \)
- **Prob. that at least 1 band is identical:**

<table>
<thead>
<tr>
<th>(s)</th>
<th>(1-(1-s)^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>.006</td>
</tr>
<tr>
<td>.3</td>
<td>.047</td>
</tr>
<tr>
<td>.4</td>
<td>.186</td>
</tr>
<tr>
<td>.5</td>
<td>.470</td>
</tr>
<tr>
<td>.6</td>
<td>.802</td>
</tr>
<tr>
<td>.7</td>
<td>.975</td>
</tr>
<tr>
<td>.8</td>
<td>.9996</td>
</tr>
</tbody>
</table>

Picking \(r \) and \(b \): The S-curve

- **Picking \(r \) and \(b \) to get the best S-curve**
 - 50 hash-functions \((r=5, b=10)\)
LSH Summary

- Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.
- Check in main memory that candidate pairs really do have similar signatures.
- **Optional:** In another pass through data, check that the remaining candidate pairs really represent similar documents.

Summary: 3 Steps

- **Shingling:** Convert documents to sets
 - We used hashing to assign each shingle an ID.
- **Min-Hashing:** Convert large sets to short signatures, while preserving similarity
 - We used similarity preserving hashing to generate signatures with property $Pr[h_n(C_1) = h_n(C_2)] = \text{sim}(C_1, C_2)$
 - We used hashing to get around generating random permutations.
- **Locality-Sensitive Hashing:** Focus on pairs of signatures likely to be from similar documents
 - We used hashing to find candidate pairs of similarity $\geq s$.