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Abstract
By tracking changes in electromagnetic radiation footprint
emitted from computers using a magnetometer on com-
modity mobile devices, a malicious attacker can easily
learn the secrets of the computer’s owner without physically
peeping at or hacking into the victim’s system. Targeting
at Applications and Web browsers, we present MagAttack,
which uses the built-in magnetometer on commodity mo-
bile phones to infer which App is running or which webpage
the user is browsing on a nearby computer, as well as finer-
grained information about victim’s interests, habits, etc.

Our preliminary results show that MagAttack is independent
of the earth’s magnetic filed, model of phones, and magne-
tometer sampling rates. We also conducted an in-the-wild
evaluation where an instrumented participant uses her lap-
top as usual and MagAttack can detect when she opens 10
different popular Apps. MagAttack achieves a classification
accuracy of up to 98%.

Figure 1: MagAttack
Implementation Prototype.

Author Keywords
Side Channel Attack; Magnetometer; Commodity Mobile
Device.

ACM Classification Keywords
D.4.6 [OPERATING SYSTEMS]: Security and Protection

241

UBICOMP/ISWC ’16 ADJUNCT, SEPTEMBER 12-16, 2016, HEIDELBERG, GERMANY



Introduction
Modern mobile devices have many sensors that enable rich
user experience. Being generally put to good use, they can
be sometimes used by malicious attackers as handy tools
to retrieve nearby target’s private information. While the pri-
vacy risks associated with sensors like microphones, cam-
eras, and WiFi receivers are obvious and well understood,
the other risks remained under the radar for users. In this
poster, we present MagAttack, an app on Android or iOS
phones that can capture electromagnetic radiation footprint
emitted from nearby computers to infer private information.

When an App starts to run on a computer, a set of instruc-
tions are executed by the computer’s CPU and the electric
current through the CPU circuit generates unique electro-
magnetic radiations (EMRs). Due to the low sampling rate
(up to 200Hz) on most mobile devices, it’s difficult to cap-
ture the details of the running CPU instructions. However,
we show that, by extracting both time and frequency do-
main features from EMRs, MagAttack can still learn the
footprint with a low sampling rate and can infer which App
the victim is interacting with. The learned footprint is inde-
pendent of the earth’s magnetic filed, the model of phones,
or the magnetometer sampling rate. MagAttack can distin-
guish 10 popular Apps that are available in Mac OS and
achieve up to 98% classification accuracy.

Related Work
Side Channel Attack is to extract sensitive information sur-
reptitiously from a system based on the system’s physical
implementation. Attacks can be conducted from various
channels, including timing analysis [3], power consump-
tion [2], electromagnetic radiation [7] and device motion [4].

The electromagnetic field is one of the important channels
for information leaks. In [2], the authors utilize a single-

point monitor to classify the usage of electrical alliances in
home. They find the electromagnetic radiations generated
by switch mode power supplies (SMPS) to be appliance-
dependent. Another work [6] utilizes wearable devices to
detect the electromagnetic strength around for the health
concern. Some other works [7, 1] utilize high-frequency
sensors to track the EMRs generated by different CPU op-
erations. They focus on the decryption of popular crypto-
graphic implementations in CPU, such as RSA and AES.

We differ from these works by that we are the first to use
the magnetometer on commodity mobile devices to infer
running apps or browsed web sites on nearby computers.

Methodology
We find that when opening or closing an application, the
laptop CPU emits EMRs that distinct to each application. In
order to collect the electromagnetic traces to analyze which
application the laptop is running, we put a mobile phone
near the CPU of the target laptop when it is running a back-
ground script to open and close different applications iter-
atively. In the mobile phone, we use its inside 3-axis mag-
netometer to track the surrounding EMRs. The EMRs are
measured in in unit of microtesla (μT ) along each axis and
then square rooted.

Overview
We adopt the supervised-learning approach to distinguish
among EMR traces of different applications. The classi-
fier is trained based on previously labeled traces, and then
used to identify coming traces. We intercept slices of traces
that match each application’s operation time as the test-
ing/training samples.

Feature Selection
Our classifier is trained on two feature types: the time-
domain and the frequency-domain. For time-domain, the
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Learner ID Features Distance Metric
1 time-series correlation coefficient
2 time-series DTW cost
3 frequencies correlation coefficient

Table 1: Learner Information.

EMR traces need to go through three preprocessing steps
before training and classifying: normalization, cross-correlation
and interpolation. For frequency-domain, we use FFT to ex-
tract their frequency distributions.

Training and Classification
We build three learners adopting the same nearest-centroid
strategy but different classifying metrics, and use ensemble
learning to generate the final label based on each learner’s
decision. First, we adopt the average DTW method [5] to
generate a centroid for each class utilizing all the training
samples that belong to that class. Then in each learner, we
compare the coming testing sample with those centroids
to find a centroid that is closest to that sample. The feature
selection and distance metric of each learner is shown in
Table 1. We use voting strategy to choose the label cho-
sen by most of the learners. If three learners make con-
tradictory decisions, the classifier will trust the most robust
learner (learner 1).

Evaluation
We use three mobile phones with 3-axis magnetometer (Ta-
ble 2) to collect the EMRs that belong to 10 applications on
two Mac OS laptops. In general, the classification accuracy
is up to 98% when the training/testing traces are collected
from the same laptop using the same sensor, 98% when
traces are collected from the same laptop using different
sensors, and 61%when traces are collected from different
laptops using different sensors, as shown in Figure 2.

Sensor ID Model Sampling Frequency
1 iphone SE 100Hz
2 Nexus 5 50Hz
3 iphone 5S 50Hz

Table 2: Sensor Information.

(a) Self Classification.
Accuracy: 98%.

(b) Cross-sensor
Classification.

Accuracy: 98%.

(c) Cross-machine
Classification.

Accuracy: 61%.

Figure 2: MagAttack Classification Performance.

Robust Features
We find that each application generates distinct EMR traces
that are consistent through various sensor models or sam-
pling rates. We conduct experiments in three cities: Hong
Kong, Nanjing and Shenzhen respectively. We find the
EMR traces to be independent of the earth’s magnetic filed
as well. Some of the traces are shown in Figure 3. The cor-
relation matrix of these applications is shown in Figure 5,
where the metric adopted is the correlation coefficient of
time-domain features.
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(a) App: Safari
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(b) App: Word
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(c) App: Excel
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(d) App: iTunes
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(e) App: VLC

Figure 3: Electromagnetic
Traces Collected from Different

Laptops using Different
Magnetometers.

Impacts of Ensemble Learning
We train three learners and use voting strategy during clas-
sification so that the decision accuracy can be better than
any single learner (Table 1). The performance compari-
son of each learner is shown in Figure 4. Note that in Fig-
ure 4 we collect EMR traces when other background pro-
cesses are running so as to compare the robustness of
each learner on noisy samples.
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(a) Learner1 Accuracy=93.3%. (b) Learner2 Accuracy=73.3%.

(c) Learner3 Accuracy=91.1%. (d) Voting Accuracy=95.6%.

Figure 4: Comparison of Learner Performance.

Figure 5: Correlation Matrix
of Ten Apps: PowerPoint,

Word, Excel, Chrome,
Fire-Fox, Safari, Skype,
iTunes, VLC, MPlayer.

Conclusion and Future Work
In this poster, we present MagAttack which uses a built-in
magnetometer on a commodity mobile phone to sniff which
App is running on a nearby computer by tracking changes
in EMRs generated from the CPU of that computer. Our
preliminary results show that MagAttack is independent of
the attacker’s mobile devices and the target’s laptops, and
can achieve a classification accuracy of up to 98%. Our
future work will focus on decomposing EMR footprints while
opening multiple applications at the same time as well as
classifying webpages that the victim is browsing to explore
more about the victim’s habits and interests.
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