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Abstract—NarrowBand-IoT (NB-IoT) is a radio access tech-
nology standardized by 3GPP to support a large set of use cases
associated with the rapid deployment of massive machine-type
communications. NB-IoT facilitates the connection of devices
in inaccessible areas, extends battery life, and reduces device
complexity. Unfortunately, the opacity of the underlying schema
(i.e., the way that these benefits are achieved) makes it very
difficult for most users and developers to manage deployment
scenarios. In this study, we built an embedded system comprising
a Raspberry Pi with an NB module, referred to as NBPilot,
which interacts with NB networks to identify essential signalling
messages transmitted by a Qualcomm NB modem. This system
gives researchers and developers an unprecedented understand-
ing of network behaviour as well as the ability to adjust them
to their particular requirements. We employed the-state-of-art
machine learning techniques for modeling and the analysis of
NB performance. The efficacy of the proposed NBPilot system
was established by applying it to a metropolitan NB-IoT network
with over 2,000 NB sites for the collection and testing of data
trace as well as the validation of a cellular station prior to going
online.

I. INTRODUCTION

The Internet of Things (IoT) is constantly being expanded
to include an ever growing range of devices, such as sensors,
actuators, meters (water, gas, electric), cars, and appliances.
Essentially, the IoT comprises an enormous number of net-
works that vary in their design objectives. For example, some
networks were designed for local-area coverage (e.g., a single
home), whereas others were designed for wide-area coverage.

NB-IoT is an access technology defined in the 3rd Gener-
ation Partnership Project (3GPP) for massive Machine Type
Communications (mMTC). According to [4], there were 83
Nb-IoT launches as of December 2018. NB-IoT includes a
number of mMTC-oriented enhancements that are not found
in mobile technologies, including (i) narrow-band transmission
and the use of repeaters to reach devices in inaccessible
locations, such as underground basements; (ii) the ability to
differentiate the performance of user equipment (UE) accord-
ing to coverage area, and the ability to tune parameters of
the physical channels and network procedures; (iii) enhanced
power saving mechanisms to improve the battery life; (iv)
simplification of network procedures to reduce UE complexity.
NB-IoT can be scaled down and/or implemented in a greatly
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simplified form for low-throughput, delay-tolerant applica-
tions, thereby allowing data rates in the tens of kbps within a
bandwidth of 200 kHz. NB-IoT can also be deployed within
existing LTE bands, in the guard-band between two regular
LTE carriers, or in standalone mode, thereby providing easy
migration paths for re-farming the GSM spectrum.

Unfortunately, cellular networks remain a blackbox to most
users and developers. A lack of open access to fine-grained
runtime network operations makes it exceedingly difficult for
researchers and developers to understand and/or refine network
behaviors. For example, a particular device may differ in
its energy characteristics under different operators, and many
developers are unaware of why this is the case. Another
example would be the use of NB-IoT to monitor and control
vehicles, wherein forward control commands are difficult to
reach and tend to be delayed. In this situation, developers
would find it difficult to determine whether the observed
behavior is affected by the quality of the radio signal or is
a side-effect of an energy-saving feature.

In industry, many operators employ a large number of
testing engineers and experts in analysis to keep their networks
operating within designated specifications. In a typical sce-
nario, engineers employ customized cellphones that are con-
nected to a notebook PC to launch testing scripts. Debugging
tools for baseband suppliers, such as QXDM[10], XCAL[15],
MTK Catcher[6], are then used to analyze cellular network
messages and provide fine-grained information. Unfortunately,
many such devices are out-dated and difficult to bring up to
spec.

After field engineers have collected data traces for testing,
analysts are tasked with identifying problems, such as low
throughput and dropped calls reported by monitoring software
developed by Nokia[14][7], Huawei[3], and Actix[1], before
undertaking the tedious task of manual checking each event.

In this study, we adopted the approach used in
Mobilelnsight[32] in our development of a full-featured test
bed referred to as NBPilot. The proposed system can carry
out active performance testing, while simultaneously acquiring
user and signaling data by taking advantage of the transparent
Qualcomm baseband decoding capabilities. We then applied
this tool to explore the daily operations of a city-scale NB-
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IoT from the perspective of site verification and network
maintenance. To the best of our knowledge, the dataset used
in this study is the fastest growing NB network in the world
(more than 2,000 NB sites in just six months), and of high
dimensionality.

The sheer volume and dimensionality of this data would
make it almost impossible to have human experts perform trou-
bleshooting using conventional rule-based systems. In many
cases, the functioning of an NB network relies on hundreds or
even thousands of items and parameters. Thus, we employed
the-state-of-art machine learning techniques for modeling and
the analysis of NB performance.

This work makes the following main contributions:

o We reverse-engineered the Qualcomm NB chipset to
decode essential NB frame details and illustrate the proce-
dures used to deal with various energy footprints. We also
describe several typical configurations (under different
operators), which have a non-negligible influence on
performance.

o The proposed system was applied to a metropolitan
NB-IoT network for data trace collection, testing, and
verifying thousands of individual site. To the best of
our knowledge, this is the largest NB-IoT database ever
explored.

o We applied machine learning to facilitate the interpre-
tation of a dataset collected over a six month period
with the aim of identifying the most important features
underlying low throughput situations and long delays.

The rest of the paper is organized as follows. Section III
then presents the design of the NBPilot system and Sec-
tion IV presents our evaluation of its typical performance.
Section V supplements performance evaluation with examples
of machine learning models. Section VI outlines related work.
Section VII concludes.

II. BACKGROUND

NB-IoT is radio-access technology designed by 3GPP to
meet the connectivity requirements of massive MTC applica-
tions. The aim of this scheme was to provide cost-effective
connectivity to billions of IoT devices, with support for low
power consumption and the use of low-cost devices, while
ensuring excellent coverage.

A. NB-IoT Primer

The design of NB-IoT mimics that of LTE, due to the fact
that they are both intended to facilitate radio network evolution
and roll out in the form of software solutions implemented
atop an existing LTE infrastructure. The overall structure of
NB-IoT is illustrated in Figure 1.

UE C-loT RAN

C-SGN

Fig. 1: NB-IoT Network Structure

UEs connect with eNB through the Uu air interface. The
eNBs are then connected to the MME and the Serving Gate-
way (SGW) via the S1 interface for the transmission of NB-
IoT messages and data packets. Two optimizations for the
cellular internet of things (CIoT) have been defined for the
evolved packet system (EPS) to enable the transmission of
data to applications: User Plane CIoT EPS optimization and
Control Plane CIoT EPS optimization[17].

Control Plane CIoT EPS optimization involves the transfer
of UL data from the eNB to the MME, from which it
may be transferred via SGW to the Packet Data Network
Gateway (PGW), or to the Service Capability Exposure Func-
tion (SCEF). SCEF is used for the delivery of non-IP data
over a control plane, and provides an abstract interface for
network services (authentication and authorization, discovery,
and access network capabilities).

From these nodes, the UL data are forwarded to the ap-
plication server. Downlink data is transmitted along the same
paths in the reverse direction. Under this scheme, there is no
need to establish a data radio bearer; i.e., data packets are
sent to the signaling radio bearer instead. Thus, this scheme is
particularly well-suited to the infrequent transmission of small
data packets.

Under the User Plane CloT EPS optimization scheme, user
data is transferred in the same way as conventional data traffic;
i.e., over radio bearers to the application server via SGW and
PGW. Thus, there is a certain amount of overhead associated
with establishing a connection; however, this scheme makes it
far easier to transmit a sequence of data packets.

B. Power Saving Techniques

The battery life of an MTC device depends to some extent
on the technology used in the physical layer for transmitting
and receiving data. However, longevity depends to a greater
extent on the efficiency with which a device utilizes the idle
and sleep modes that allow the powering down of many device
components for extended periods.

Like LTE, NB-IoT uses two main RRC protocol states:
RRC idle and RRC connected. In RRC-idle state, devices save
power by freeing up resources that would otherwise be used
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Fig. 2: Life cycle and related power levels of a NB-IoT
activities

to send measurement reports and uplink reference signals. In
RRC-connected state, devices send and receive data directly.
NB-IoT introduces two additional power saving techniques:
extended Discontinuous Reception (€DRX) and Power Saving
Mode (PSM).

Figure 2 illustrates the NB-IoT energy profiles.

In idle state, the UE periodically monitors the paging chan-
nel to check for incoming data. This periodicity (i.e., the DRX
cycle) has been extended in NB-IoT from 2.56s (maximum
value in LTE) to a maximum eDRX of 175 minutes. A UE
may also be allowed by the network to switch to PSM, in
which the UE is registered to the network but is not reachable
(i.e., paging is not monitored in terms of energy savings w.r.t.
the idle state). At the expiration of the PSM cycle, the UE
performs a Tracking Area Update (TAU). Two timers are
defined for idle and PSM phases: 73324 is the duration of
the idle phase (up to 3 hours); 73412 represents the TAU
periodicity and thus determines the duration of the PSM cycle
(up to 413 days).

III. THE DESIGN OF NBPILOT

We were inspired by the Mobilelnsight project[32] to build
a portable hardware and software system for decoding NB-IoT
network messages and conducting experiments. The resulting
NBPilot system is used to dissect NB-IoT network procedures
and parameters.

A. System structure

Figure 3 presents a schematic illustration showing the
overall NBPilot system.

The hardware components are based on the Qualcomm
modem chipset, due to the fact that our decoding scheme is
currently operating in a Qualcomm series. Unlike LTE, which
deals with smartphones as user equipment, we emulated IoT
devices using a Raspberry Pi as the main control unit. NB-
IoT cellular protocol stack at the modem include PHY, MAC,
RLC, and PDCP functionalities. Above the PHY and MAC
layers is situated the control-plane protocol, RRC, which is
used mainly for radio resource allocation and radio connection
management. Note that this protocol is also involved in the

Y [ NAS (3GPP TS36.331)
7O\ __-

100). @ [ RRC (3GPP TS36.331)
0

]
]
[ PDCP (3GPP TS36.323) ]
]
]
]
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DIAG@Modem RLC (3GPP TS36.322)

MAC (3GPP TS36.321)
[ PHY (3GPP TS36.21[123])

Fig. 3: NBPilot System Structure: Raspberry Pi and
Qualcomm NB modem. The specific NB cellular stack(3GPP
R13 version) is referring to [23][21][24][20][25][22][19]

transfer of signaling messages over the air. NAS is responsi-
ble for conveying non-radio signaling messages between the
device and the core network.

We found several commercial NB modules that provide AT
and DIAG ports, as long as the drivers are installed correctly.
Quectel provides documentation[9] to guide configuration of
the QMI WAN driver for the Qualcomm NB modem used
in our prototype(Simcom7000c). The AT port can be read
and the log can be debugged at the same time. Commands
are issued directly to the virtual device via AT commands
in accordance with the chipset. These commands include the
activation/deactivation of cellular message types, and callback
registrations to receive hex logs. We set up the recorder to run
on the Raspberry Pi, and the decoder was set up to run offline
and obtain modem messages on a laptop.

The Raspberry Pi was used to run two sets of processes. The
first set was for conducting user experiments, such as selecting
and attaching NB networks, pinging websites, and establishing
socket connections, all of which are wrapped AT commands
and functions listed in chipset documents provided by vendors.
The second set of processes operates like a daemon service to
record raw modem logs, which are identified by the Qualcomm
chips via the DIAG interface and then decoded in accordance
with standard protocol written in the headers.

B. Issuing tests via AT commands

Since their inception in the 1980s, AT commands have been
the preferred means of controlling modems. Standardized AT
commands are issued by authorities, such as the International
Telephone Union (ITU-T) and the European Telecommuni-
cations Standards Institute (ETSI)[16][18]. These commands
make it possible to perform a number of functions, including
the selection of communication protocol, setting up the line
speed, dialing numbers, and ending calls.

Manufacturers of baseband processors that provide cellular
devices with modem functionality provide additional propri-
etary and vendor-specific AT commands with their chipsets.
As a result, modem modules also support their own AT
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command sets and expose modem and/or serial interfaces
when connected via USB to receive those AT commands.

Table I lists a selection of the AT commands used in
this work and comparison of AT command series pro-
vided by Qualcomm(Simcom7000c[12]), MTK(ME3616[5]),
Huawei(BC95[8]). We observe that different chipset vendors
share few common items but differentiate even for the same
functions.

TABLE I: Selection of the AT commands used in this work
of different chipset vendors.

| |Simcom7000c |[ME3616 |BC9S |
turn on/off modem |AT+CFUN AT+CFUN AT+CFUN
query signal strength| AT+CSQ AT+CSQ AT+CSQ
network registration |AT+COPS AT+COPS AT+COPS
network status AT+CPSI AT+CEREG AT+CEREG
PDP activation AT+CGATT  |AT*MCGDEFCONF|AT+CGATT
set APN AT+CGNAPN |AT+EGACT AT+CGATT
ping remote address |AT+CIPPING |AT+PING AT+NPING
open UDP socket AT+CIPSTART | AT+ESOCON AT+NSOCR
send UDP message |AT+CIPSEND |AT+ESOSEND AT+NSOST

The first step in checking whether a network connection is
up is to ping a server on the Internet. The Simcom7000c has
a special AT command specifically for this task. However,
before the ping can go through, it is necessary to specify
the Access Point Name (AT+CSTT), establish the IP bearer
(AT+CIICR), and ensure that everything has been set up
correctly by querying the local IP address that was assigned
(AT+CIFS). As long as a proper IP address appears, then the
technician can be sure that connectivity has been established
and that the ping can be sent to the server (AT+CIPPING).

C. Reverse Engineering an NB-IoT Stack

The first issue in reverse engineering an NB-IoT Stack is
the fact that ordinary NB development boards are unable to
expose message-level cellular information. Thus, we leveraged
an alternative side channel using the baseband chipset. The
chipset supports an external diagnostic mode, which exposes
the cellular interface to the USB port.

The cellular interface maps itself to a virtual device (e.g.,
/dev/diag) in the OS. This virtual device exposes all raw
cellular messages as binary streams,the OS uses USB tethering
to bind the virtual device to a USB port (e.g., /dev/ttyUSB).
This enables the external collector to fetch cellular messages
from the hardware interface. Next, we parse each message
using the raw cellular logs. Figure 4 illustrates the decoding
procedure for NB Master Information Block (MIB) message.

Developing a message parser for each signaling message
involves extracting the message format from the standards
outlined for each protocol.We follow along the principles of
another cellular decoding project Mobilelnsight[32]. Some for-
mats can be extracted automatically including RRC and NAS.
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Fig. 4: NB Stack Decoding Examples
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Fig. 5: Setting and negotiating PSM and eDRX between UE
and network

For instance, the NB RRC standards[19] provide abstract mes-
sage notations under ASN.1, which can be readily compiled
into message decoders[2]. Other messages must be manually
converted into machine-readable formats by comparing with
Qualcomm QXDM.

D. Interactivity between AT and diag

Figure 5 illustrates the interactivity of the proposed system
via energy feature settings and their effects in real networks:

1) The AT command is used to set the PSM and eDRX
parameters.

2) The information is wrapped within an “Attach request
Msg” from the UE to eNB. which includes the following
parameters: 7'3324(Active time 2 min), 7'3412(TAU 3 h),
eDRX:(2621.445(0zd)), PTW(5.12s).

3) In cases where the network returns an “Attach accept
Msg” that does not include PSM or eDRX parameters,
this is an indication that the network does not support
eDRX functionality, such that we obtain the following
parameters: 7'3412(12h) and T'3314(2s).

In this section, we outlined the design and implementation
of NBPilot. In the following section, we show how a number of
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NB network activities could be performed using the decoding
capabilities of NBPilot.

IV. EVALUATION

We first evaluated the decoding capabilities of the selected
modem by conducting a comparison using Qualcomm pro-
prietary software as well as a crosswise comparison using
HiSillicon(Huawei) and MTK decoding tools. We then sought
to provide a comprehensive illustration of the NB-IoT typ-
ical procedures, covering cell information, random access
procedures, uploading and downloading characteristics under
different operators.

A. Decoding capabilities coverage

NBPilot decodes all signaling messages on RRC-r13(for
NB), NAS(MM and SM) and partially supports PHY, MAC,
RLC and PDCP messages. Huawei provides a tool called
LogViewer[8] to examine the RRC messages. It first finds the
corresponding decoder .xml file, and then uses the message ID
to build a dictionary, the key of which is the message decoder
node in the XML tree. MTK provides the similar tool called
Genie Logging Tool[5] to observe RRC messages.

We manually check with QXDM,LogViewer and Genie tool.
We find RRC and NAS formats are 100% the same among
three chipsets, they have been endured the conformance testing
before shipping into the market. NBPilot currently supports
nearly 40 types(38) of messages. In a typical user study of data
uploading activity, the top 5 signaling messages statistics are:
LTE RLC DL AM All PDU(20.9%), LTE MAC DL Transport
Block(17.8%), LTE NB1 ML1 Sum Sys Info(14.0%), LTE
NB1 ML1 GM DCI Info(11.2%), LTE NB1 ML1 GM TX
Report(11.2%).

B. uploading and downloading activities

UE first searches for a cell on an appropriate frequency,
reads the associated SIB information, and begins the random
access procedure to establish an RRC connection. Using this
connection, the UE registers with the core network via the
NAS layer (if this has not already been done). The UE
then returns to RRC IDLE state, whereupon it may again
implement the random access procedure (when it has mobile-
originated data to send), or waits until it is paged. Figure 6(a)
and Figure 6(b) present schematic diagrams illustrating the
downloading of data from eNodeB to UE and an opposite
data uploading procedure.

System information is used to broadcast information that is
valid for all UEs within a cell. However, broadcasting imposes
restriction on each EU in terms of computational resources
and battery consumption, and should therefore be kept to a
minimum in terms of broadcast size and frequency. This can
be achieved by defining a set of System Information Blocks
(SIBs).
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RA Preamble Msg3
MIB sip \ (NPRACH) NPUSCH)
NPSS/NSSS[T](NPBCH\(NPDSCH)\, _-++++e+-
RA Responsel Msg4 F--n
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Fig. 6: Data transfer procedures in downlink and uplink

Fig. 7: Time consumption in each procedure when attaching
NB network, each stack bar stands for one operator

Valid versions of MIB-NB, SIB1-NB, and SIB2-NB are
always required for an UE, and any other SIBs required for
additional operations must also be valid. For instance, if access
barring is indicated in MIB-NB, then the UE requires a valid
version of SIB14-NB.

We tested NBPilot under the three operators deployed in the
city. Hereafter, the three operators are referred to as OPI, OplI,
OplIl. Figure 7and Table II illustrate the time consumption in
each procedure when attaching a particular NB network.

The time elapse for each specific procedure is calculated

We elaborate only a few differences of the SIB2 configu-
rations. OPIII is using pp16/32/64 three contention resolution
timer while OPI and OPII stick to pp16; as nprach periodicity,
OPIII sets this parameter two times larger than OPI and OPIIL.

C. MAC and RLC throughput

After paging (or if the UE is already connected), data recep-
tion can begin. DCI format N1 indicates resource allocation,
the number of subframes spanned by DL transmission, the
number of repetitions, and whether an ACK is expected.
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TABLE II: Time consumptions(in ms) in a RRC attach
procedure,including system information reading, RRC
connection setup, UE authentication, NAS security setup,
MME accept, and EPS bearer establishment.

‘ Operator ‘ Sys ‘ RRC ‘ Auth ‘ Sec ‘ MME ‘ Bearer ‘
OPI 0.568 | 0.24 0.324 | 0.748 | 0.66 0.13
OPIL 3331 | 0.708 | O 0 0.317 | 0.05
OPIII 2729 | 0.348 | 1.472 | 0.175 | 0.233 | 0.08

Correlations among DL metrics and features oo
DCl# I
-0.96
MC5
1BS -0.92
Sched # -0.88
MALC
-0.84

RLC

I' 0.80

Fig. 8: feature correlations in downlink transport situation

DCr# MCS TBS Sched # MAC RLC

In scenarios involving the transfer of uplink data, once
resources have been granted after recieving Msg4, the UE
begins transmitting its payload on NPUSCH using HARQ.
ACK/NACK for HARQ is carried within the UL using the
New Data Indicator (NDI) bit to distinguish between a request
for a new transmission and a request for retransmission of the
previous packet. In the case of failure, the eNB sends another
UL grant in which the NDI bit is used as a NACK, and the
UL grant informs the UE about the resources assigned for
retransmission.

In our dataset, the average RLC/MAC throughput of up-
loading data is 11.14kbps and 11.72kbps, while in receiving
data, the average RLC/MAC throughput is 16.96kbps and
17.31kbps.

We also calculate the correlations between the resulting
MAC/RLC throughput with DCI counts, MCS,and TBS in
Figure 8, and find that those features are all highly correlated
with each other.

In conclusion, we noticed that operators vary in their
configuration parameters with the result that UEs differ in
performance. An enormous number of parameters affect the
RACH results, delay range, and data transfer rates; therefore, a
new framework is required for the analysis of NB performance.

V. PERFORMANCE ANALYSIS AND MODELLING

The sheer volume and dimensionality of data make it almost
impossible to have human experts perform troubleshooting
using conventional rule-based systems. In this section, we

perform modeling and analysis on NB performance using the-
state-of-art machine learning techniques.

A. Metrics concerned

The proposed system was applied to a metropolitan NB-
IoT system for data trace collection, testing, and verifying
thousands of individual site over a period of six months. To the
best of our knowledge, this is the largest NB-IoT database ever
explored. Our primary objective was to identify the features
responsible for low throughput,long signaling and data delays.

A number of issues are a concern for every operator. The
term delay refers to a number of signaling procedures (e.g.,
aging delay and RRC connection delay) as well as ping delays
associated with user activity.Data throughput also requires
optimization by operators. Many mechanisms and algorithms,
such as adaptive coded modulation, have been developed to
improve data transfer rates by enhancing spectral efficiency in
wireless channels, and access control in cases of congestion.

Any given network can be tasked with dozens of procedures,
each of which can have many possible meta-data fields. As a
result, the measurement data often contains hundreds of fields.
Our first objective is to elucidate the relationships between the
various network factors and target metrics, with the end goal
of building models that could be used to improve performance
through the tuning of network parameters.

B. Feature Engineering

In NB-IoT, the Random Access procedure(RACH) is con-
tention based and begins with the transmission of a preamble.
After obtaining a response from the eNB, a scheduled mes-
sage, msg3, is transmitted to begin the contention resolution
process. Finally, the contention resolution message is trans-
mitted to the UE indicating the successful completion of the
RACH procedure.

The RACH procedure illustrated in Figure 9 includes the
following:

1) UE sends a RACH preamble carrying RA-RNTI and eNB
to decode the preamble and obtain RA-RNTL

2) eNB sends a RACH Response using RA-RNTI, which is
calculated from the preamble resource (time, frequency
allocation). The UE decodes the RACH Response to
obtain an RB Assignment and MCS Configuration for
use in configuring itself to receive the “RRC Connection
Request”.

3) The UE sends an RRC Connection Request using the C-
RNTT obtained from the RACH Response

4) The UE receives an RRC Connection Setup using the
C-RNTI obtained from the RACH Response. The RRC
Connection Setup Message carries C-RNTIL. From this
point, the UE and network exchange messages with C-
RNTI
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maxNumPreambleAttemptCE-rl13

[ L ti 13

Msg3

SIB 2:
npdcch-NumRepetitions-RA-rl3
NPDCCH for Msg4 npdcch-StartSF-CSS-RA-r13

npdcch-Offset-RA-r13

Msg4

SIB 2:
threeTone-BaseSequence-rl3
threeTone-CyclicShift-rl3
CK-NACK-NumRepeti tions-NB-rl

HARQ ACK
NPDCCH (for RRC Conn Complete)

RRC Conn Complete

Fig. 9: Procedures of RACH

In NB-IoT, choices pertaining to coverage level depend on
channel conditions. Extreme coverage levels correspond to low
received power, whereas normal coverage corresponds to high
received power. The selection of coverage class determines the
transmission parameters, including the number of repetitions.
Deploying systems in this manner makes it possible to serve
UEs under a range of coverage conditions, as characterized by
path loss(MCS). Except the features showed in sib2 items and
the coverage level we discussed, there are still many features
tend to influence the RACH delay:

o RSRP: Reference Signal Receiving Power

o SINR: Signal to Interference plus Noise Ratio

o eDRX, DRX cycle periodicity: The DRX cycle periodic-
ity affects the time for DL reachability

o Power Saving Mode Idle timer: define the number of
occasions for DL reachability

o Deployment Mode: inband or standalone

o System Information: MIB periodicity, SIB1 periodicity,
SIB2 periodicity

o NPUSCH Transmission: Payload Size Subcarrier Spacing
(3.75kHz, 15kHz)

¢« NPRACH occurrence: NPRACH Periodicity

e Preamble Transmission: Preamble Format O or 1, Number
of Repetitions

o RA Backoff configuration

o« NPDCCH Occasion periodicity, Number of repetitions

« RAR Reception,Packet Scheduling NPDCCH Occasion
periodicity RAR Window Size

e« NPDCCH Occasion periodicity Contention Resolution
Window Size

« NPDSCH/NPDCCH Transmission, Payload Size Number
of Repetitions

C. Machine learning based Prediction

A number of machine learning algorithms have been used
to predict network performance:

(i) C4.5 based Decision Tree model

C4.5 builds decision trees based on the concept of infor-
mation entropy. The training data is a set of pre-classified
samples. At each node of the tree, C4.5 selects the data
attribute that most effectively splits its set of samples into
subsets enriched in one class or the other. The splitting crite-
rion is the normalized information gain (difference in entropy).
The attribute with the highest normalized information gain is
selected to direct the decisions. The C4.5 algorithm then recurs
in the smaller sublists.

(i1) Random forest model

A random forest is a meta-estimator that fits a number of
decision tree classifiers on various sub-samples of the dataset
and uses averaging to improve predictive accuracy and control
over-fitting. The sub-sample size is always the same as the
original input sample size but the samples are drawn with a
replacement when bootstrap=True (default).

(iii) Support vector machine (SVM)

SVMs are supervised learning models that operate with
learning algorithms to analyze the data used for classification
and regression analysis. Given a set of training examples (each
of which is marked as belonging to one or the other of two
categories), an SVM training algorithm builds a model that
enables the assignment of new examples to one category or
the other. In other words, SVM is a non- probabilistic binary
linear classifier. An SVM model represents the examples as
points mapped within a space in a manner intended to ensure
that the examples of the two categories are divided by a clear
gap (i.e., as wide as possible). New examples are then mapped
into the same space, thereby making it possible to predict the
category to which they belong based on the side of the gap
on which they fall.

(iv) Logistical classification

Linear regression is unsuitable for classification of this sort,
due to the fact that it assigns too much weight to data located at
a distance from the decision frontier. One alternative approach
is to fit a sigmoid function or logistic function.

D. Feature ranking and prediction accuracy

The value of these features can be determined by ranking
them according to the information gained when they are
used to predict performance. In this study, we adopted the
mutual_info_classif method from Scikit-learn[11] to derive the
information gain (IG) introduced by each of the attributes to
the overall binary classification of a target metric as important
or non-important. Table IV lists the average information gains
of the features. Our results show that the wireless signal quality
features (e.g., SINR and RSRP, MCL) are the most important.
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TABLE III: Top 5 Features in RACH delay classification
according to average IG.

Feature ID  Average IG
SINR 1 0.346
RSRP 2 0.275
MCL 3 0.201
NPRACH repetitions 4 0.179
NPDCCH repetitions 5 0.165

TABLE IV: RACH delay, Ping delay, MAC throughput
prediction using machine learning techniques.

lProblem IML Technique lAccuracy‘RecalllPrecisioan-Score‘
C4.5 Decision Tree 0.81 0.81 (0.81 0.81
Random forest 0.93 0.93 10.93 0.93
RACH delay foy\y 090  [091 [090  [0.89
Logistical classification |0.84 0.85 |0.85 0.84
C4.5 Decision Tree 0.79 0.79 10.79 0.79
Pine del Random forest 0.92 0.92 (0.92 0.92
g lsvm 090  [091 [090 [0.89
Logistical classification |0.83 0.84 |0.84 0.84
C4.5 Decision Tree 0.80 0.80 |0.80 0.80
Random forest 0.93 0.93 (0.93 0.93
MAC UL rate] oy 090  [091 [0.91  |0.90
Logistical classification|0.85 0.84 |0.84 0.85

We found that PRACH repetition counts are also relatively
important features in terms of information gain.

We model low throughput and long delay problems into
classification problems of machine learning. We set the thresh-
old for good/bad performance according to the specification
of operators, like in throughput scenario, below 10kbps is
regarded as poor performance and in attach delay where the
threshold is to be 5s.

We evaluate the data-driven prediction models by test-
ing with the 10-fold cross validation approach, using four
machine learning techniques from Scikit-learn library. The
four techniques perform similarly in terms of different met-
rics(accuracy, precision, recall and F-Score). Overall average
accuracy of prediction is more than 87%. We further model
the ping delay and MAC throughput problem to the classifi-
cation learning problem and still use those machine learning
techniques, all the results are showed in Table IV.

E. Scope and limitations

Our machine learning framework is highly generalizable;
however, it is still limited in a number of aspects. Cell res-
election required system information SIB4 (intrafrequency of
neighbouring cell) and SIBS5 (interfrequency of neighbouring
cell); however, we found that the operator had not configured
those SIBs. The NB-IoT network also failed to open a conges-
tion control or access barring algorithm. We have to assume
that the NB-IoT network was in the process of being deployed

and tested prior to large-scale commercial implementation. As
a result, we were unable to use machine learning to identify
the mobility factors or determine what factors are important
in cases of congestion.

In this study, we adopted an engineering approach to the
identification of key features underlying the performance of
NB networks. Experiment results revealed that wireless signal
qualities had a profound influence on the perceived data
delays. Thus, accurate performance modeling depends on
capturing these particular features.

VI. RELATED WORK

Industry players and researchers develop lots of tools to
dig into cellular networks. Many commercial solutions for
baseband chip signal porting and parsing, such as Qualcomm
QXDM][10], MediaTek Catcher[6], XCAL[15].

Mobilelnsight[32] provides the principle under capturing
baseband cellular message in an ordinary smartphone and
opens its codebase. Snoopsnitch[13] collects and analyzes
mobile radio data to make you aware of your mobile network
security and to warn you about threats like fake base sta-
tions (IMSI catchers), user tracking and over-the-air updates.
LTEye[31] provide a similar decoding capability on the air
using USRP, which was further used by piStream[34] to
decode the LTE resources information for optimizing the video
performance.

Operators put lots of energy to build large software to
monitor and diagnosing their networks. Many solutions are
existed and serving as the basic toolchain for their regular
tasks, such as Nokia[14][7], Huawei[3], and Actix[1].

Our work differs from the above in that we implement a full-
fledge NB prototype capable of conducting and collecting both
user plane and control plane data. It gives the testing engineers,
or any user, the freedom to know NB cellular characteristics
and test its performance.

The authors of [33] [30] use both user and control plane data
to diagnose real-world Femtocell and VoLTE(Voice over LTE)
problems, Understanding and diagnosing real-world Femtocell
performance problems seperately. Authors in [28] Developing
a predictive model of quality of experience for internet video,
presents a data-driven approach to model the metric inter-
dependencies and their complex relationships to engagement,
and propose a systematic framework to identify and account
for the confounding factors.[29] developed a machine learning
framework for diagnosing the root cause of mobile video QoE
issues for different video types (e.g., bitrate, duration) and
contexts (e.g., wireless technology, encryption). [27] modeled
web quality-of-experience on cellular networks using machine
learning framework, illustrating radio network characteristics
(such as signal strength, handovers, load, etc). [35] describe a
device-centric machine learning approach and use the latency
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analysis on two popular mobile apps (Web browsing and
Instant Messaging)

Our work extends the analyzing task into NB-IOT network
and device. By using classical machine learning methods, the
delay/throughput problems can be located and well predicted
out of hundreds of NB specific items.

VII. CONCLUSIONS

In this study, we adopted the approach used in the Mo-
bileInsight project[32] in developing a portable hardware and
software system for decoding NB-IOT network messages
and conducting experiments by which to analyze network
performance. We also built machine learning framework to
diagnose delay/throughput efficiency under the conditions typ-
ically found in the IoT industry. In the future, NB-IoT modules
and networks will be extended to include positioning methods
and multicast services based on 3GPP specifications[26]. The
efficacy of the proposed NBPilot system was established by
applying it to a metropolitan NB-IoT network with over 2,000
NB sites for the collection and testing of data trace as well as
the validation of a cellular station prior to going online.
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