
 
 

  
Abstract — Energy efficiency and positional accuracy are often 

contradictive goals. We propose to decrease power consumption 
without sacrificing significant accuracy by developing an en-
ergy-aware localization that adapts the sampling rate to target's 
mobility level. In this paper, an energy-aware adaptive localiza-
tion system based on signal strength fingerprinting is designed, 
implemented, and evaluated. Promising to satisfy an application's 
requirements on positional accuracy, our system tries to adapt its 
sampling rate to reduce its energy consumption. The contribution 
of this paper is three-fold. (1) We have developed a model to pre-
dict the positional error of a real working positioning engine un-
der different mobility levels of mobile targets, estimation error 
from the positioning engine, processing and networking delay in 
the location infrastructure, and sampling rate of location infor-
mation. (2) In a real test environment, our energy-saving method 
solves the mobility estimation error problem by utilizing addi-
tional sensors on mobile targets. The result is that we can improve 
the prediction accuracy by as much as 37.01%. (3) We imple-
mented our energy-saving methods inside a working localization 
infrastructure and conducted performance evaluation in a real 
office environment. Our performance results show as much as 
49.76 % reduction in power consumption.  
 

Index Terms — Position measurement, Power demand, Quality 
assurance 

I. INTRODUCTION 
Advances in sensor network technologies enable an 

array of applications in consumer electronics. Emerging 
from this trend are an increasing number of commercial 
and experimental deployments of sensor networks for 
object tracking, such as asset tracking in warehouses, 
patient monitoring in medical facilities, and using loca-
tion to infer activities of daily living (ADL) at home. 
Location information of the objects is essential for these 
types of applications.  

Traditional localization research [13][15][16][19] con-
centrated on improving the accuracy of pinpointing the 
spatial position of a target. However, practical deploy-
ment of localization systems shows that positional accu-
 
 

racy and energy efficiency are of equal importance, es-
pecially in the context of sensor networks where energy is 
a premium. Energy efficiency of mobile units (e.g., tags 
or badges) attached to the tracked targets is critical for 
any practical deployment. A highly accurate localization 
system may be of little use if it requires frequent re-
charging of the mobile units. Therefore, both positional 
accuracy and energy efficiency are necessary in the de-
sign of localization systems. 

Recent work addressed the issue of energy efficiency in 
localization systems. For examples, object-tracking sen-
sor network systems [1][2][18] found that energy effi-
ciency and positional accuracy are often two contradic-
tory goals. By changing sampling rate1 of location in-
formation, a localization system can trade higher energy 
consumption for better positional accuracy. Sampling rate 
here is defined as the rate at which the localization infra-
structure and its mobile units are triggered to perform 
necessary communication and computation in determin-
ing positions. Furthermore, these systems have identified 
a number of basic energy-saving solutions that adaptively 
reduce the sampling rate with little impact on positional 
accuracy. Their general mechanisms are to (1) detect or 
predict the mobility pattern of a tracked target, and (2) 
then dynamically adjust the sampling rate accordingly to 
a changing mobility pattern. For example, when a tracked 
target changes its position slowly, the sampling rate can 
be reduced for better energy conservation without losing 
much positional accuracy.  

There are two main drawbacks in the existing solutions. 
First, current adaptation mechanisms, although dynamic, 
calculate the sampling rate based on heuristics. There is 
no formal analysis of positional error due to signal noise, 
 

1 Sampling rate is defined as the rate at which the localization 
infrastructure and its mobile units are triggered to perform 
necessary communication and computation in determining 
positions. 
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communication delay, and sampling delay such that given 
the required positional error-bound specified by the ap-
plications, the system can derive the just right sampling 
rate to provide accurate enough position information, 
minimizing the sampling rate, and in turn minimizing the 
energy consumption.  

Second, the mobility prediction of current solutions is 
based on the estimated position information. The velocity 
is obtained by taking the two most recent estimations and 
dividing the distance moved by the time elapsed. The 
predicted moving velocity is inherently inaccurate due to 
the position estimation errors. The adverse effect is par-
ticularly significant when the object is static. The network 
might continue to sample frequently thinking the object is 
moving due to differences between consecutive position 
estimations.  

Furthermore, existing solutions have been imple-
mented and tested only in simulations. Given a lack of 
real deployment, assessing actual performance of their 
solutions in real environments is difficult. In this work, 
we not only propose a positional error model and a 
mechanism to improve the mobility prediction, but also 
provide an implementation and evaluation of our en-
ergy-saving methods within a real localization system, 
tested in a real office environment. More specifically, our 
energy-saving methods (1) enable an application to 
specify an error tolerance requirement and then (2) dy-
namically adapt the sampling rate for quasi-optimal en-
ergy saving while meeting the application’s error toler-
ance requirement.  

This paper makes the following three contributions: 
 

 We developed an accurate positional error model to 
predict the positional error of a real working posi-
tioning engine under different mobility levels of 
mobile targets, estimation error from the positioning 
engine, processing and networking delay in the lo-
calization infrastructure, and sampling rate of loca-
tion information. This model forms the basis for 
developing our energy-saving methods on how to 
adapt sampling rate of location information while 
conforming to application’s positional requirement. 

 In real test environment, we found that even a small 
amount of estimation error from a positioning en-
gine can significantly impact the prediction accu-
racy of a target’s mobility, therefore, causing poor 
results in sampling rate adaptation. Our en-
ergy-saving method solves the problem by utilizing 
additional sensors on mobile targets. The result is 
that we can improve the mobility prediction accu-
racy by as much as 37.01%. 

 We implemented our energy-saving methods inside 
a working localization infrastructure and conducted 
a performance evaluation in a real office environ-
ment. Our performance results shown as much as 
49.76 % reduction in power consumption while the 
positional accuracy is maintained at the same level.  

The remainder of this paper is organized as follows. 
Section II formulates the energy-saving problem and 
develops an accurate positional error model to predict the 
positional accuracy in our localization system. Section III 
presents the design and implementation of our en-
ergy-saving solutions based the developed positional 
error model. Section IV describes experimental setups 
and shows performance results of our systems in a real 
working environment. Section V discusses related work. 
Section VI draws our conclusion and future work.  

II. RATIONALE 
In this section, we first formulate the problem of our 

study. Following a brief description of the positioning 
engine used in the system, we present the model to predict 
positional error in our localization system. This model is 
then used to derive our energy-saving methods. 

A. Problem Formulation 
Given a tracked object (O), an application can specify a 
tolerable amount of positional error (D) measured in dis-
tance. The positional error is defined as the difference 
between the actual (ground-truth) position and the re-
ported from a positioning engine.  
 
Problem statement: Given the specified positional error 
tolerance D from an application on a tracked object O, 
develop energy saving methods that provide the maximum 
amount of energy saving while minimizing the probability 
of exceeding the positional error bound D. 

 
Our energy-saving methods reduce energy consump-

tion by dynamically adapting the sampling rate of loca-
tion information based on a positional error model. Our 
rate adaptation can achieve good performance by accu-
rately predicting the mobility level of the tracked object 
using sensors attached on mobile targets. Note that no 
prediction is 100% correct; therefore, there will be 
probability of occasionally exceeding the specified posi-
tional error bound. Our energy-saving methods aim at 
minimizing this nonconformance rate.  

 
Performance metrics: We can define the following two 
performance metrics from the above problem statement:  

 Energy consumption: it measures the amount of 
power consumption on a tracked mobile target un-
der an energy-saving method; and 
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 Non-conformance rate: it is computed as the 
probability of occurrences when the positional er-
ror exceeds the application’s error tolerance re-
quirement. 

B. Positional Error Model 
The overall positional error comes from two error 

sources in a localization system shown in Figure 1. The 
first source is the estimation error from a positioning 
engine when it calculates the position of a tracked object. 
The engine may think the object is at Pe1 instead of Pt1 
because of measurement problems. The second source is 
similar to the freshness problem of location sample within 
a sampling interval. This is illustrated in Figure 1. Two 
consecutive position samples pe1 and pe2 are calculated for 
a moving target at times t1 and t2. If an application re-
quests the position of this moving target at time ta and t1 < 
ta < t2, the position provided to the application is pe1, 
which is no longer the most up-to-date position of this 
mobile target. In other words, even when the position 
information estimated by a positioning engine is perfect 
at the sampling time, the application might still experi-
ence positional error that is proportional to the length of 
the sampling interval, also called the delay access error. 

 

 
Figure 1.Sampling error sources 

 
Before deriving the model for positional error, we 

provide a brief description of how our localization system 
works and explain any associated parameters that impact 
its positional accuracy.  

Our localization system is composed of infrastructure 
and mobile components. The infrastructure component 
consists of beacon nodes installed on the ceiling of a de-
ployed environment. These beacon nodes are made of 
Taroko motes2. These beacon nodes use Zigbee radio to 
periodically broadcast beacon packets containing their 
beacon-IDs. Since beacon nodes are hardwired to the 
building’s power source, energy saving for the infra-
structure component is not our target.  

The mobile component consists of MicaZ motes3 car-
 

2 http://www.chnds.com.tw/index_e.html 
3 http://www.xbow.com/ 

ried as badges by tracked persons. Since each badge runs 
on battery, its energy consumption is our target. Each 
MicaZ mote has the same Zigbee radio as in the infra-
structure component. Each badge can take out a record of 
the receiving power of beacon packets, and a sensor 
network infrastructure relays this record, pairs of bea-
con-id and signal-strength back to our positioning engine 
which is running on a remote server. This positioning 
engine was developed previously in our lab. It runs a 
hybrid algorithm combining signal strength (SS) finger-
print and SS propagation model. Once the positioning 
engine collects enough SS information from a mobile 
badge, it estimates the badge’s current position. The 
current position is forwarded to a location middleware, 
which then reports the current position to the application. 
At the same time, our energy-saving methods calculate a 
sleep time for a mobile badge, during which the radio 
interface on the mobile badge can be turned off to con-
serve power.  

The details of positioning algorithm [17] are not the 
focus here. Instead, the points are (1) our localization 
system is not perfect and it produces estimation error, and 
(2) there is a processing and networking delay between 
the time when a mobile badge takes SS measurements 
and the time when the positioning engine calculates the 
badge’s current position.  

Based on the above description, we develop the fol-
lowing model to predict the positional error in our local-
ization system: 
 

overall_error = estimation_error + (pn_delay + 
sleep_time) * target_velocity (1) 

 
The estimation_error measures the difference in length 

between the ground-truth position and the estimated po-
sition from our positioning engine. The pn_delay denotes 
the processing and networking delay between the time of 
SS measurements on a mobile badge and the time a po-
sition is calculated on a server. Based on our experimental 
measurement, this delay is relatively small. Therefore, the 
pn_delay is considered as a known constant given by a 
localization infrastructure. On the other hand, estima-
tion_error is an unknown variable that can dynamically 
change based on a localization infrastructure. In our cur-
rent implementation, we use an average positional error 
of 3 meters for our localization system. The performance 
of our localization system is plotted in Figure 3, showing 
its position error cumulative probability distribution. 

The target_velocity denotes the current moving speed 
of a mobile badge. Since it is an unknown dynamic 
variable, we need to develop a prediction heuristic to 
estimate its current value. The sleep_time is a time in-

pe1 
pe2 

ground-truth 
position at ta 

estimation error 

delay access error 

pt1 
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terval in which the badge turns off its radio interface to 
conserve power. At the end of the time interval, the badge 
wakes up for the next position sampling. The sleep_time 
is a control parameter in which our energy-saving 
methods trade higher energy reduction for less positional 
accuracy.  

The second term on the right-hand side of Equation (1) 
estimates the distance that a mobile badge traveling at 
target_velocity can move away from the last sampled 
position. Note that the second term reaches peak at the 
end of a sampling interval. Therefore, the overall_error 
approximates an upper bound on the positional error 
within a sleep_time interval. 

C. Energy-Saving Solutions 
 By setting the error tolerance (D) from an application 
equal to the overall error in Equation (1), we obtain the 
longest possible sleep_time for a mobile badge while 
meeting the specified positional error tolerance. The 
reason for choosing the longest sleep time is to maximize 
the amount of power saving since the radio on the mobile 
badge is turned off. Therefore, this longest sleep_time is 
calculated using the following equation: 
 

sleep_time = (error-tolerance – estimation-error) –  
target_velocity 

pn_delay 
(2) 

 

There is one unknown variable in Equation (2): tar-
get_velocity. Since this unknown variable is dynamic 
over time, our energy-saving methods need to continu-
ously predict target_velocity’s current value before using 
this equation. In addition, our energy-saving methods also 
need to change sleep_time based on current predicted 
values of target_velocity. We provide a summary of all 
parameters in the positional error model in Table 1. These 
parameters are categorized into a control parameter, 
known system parameters, an unknown variable requiring 
prediction, and application specified input.  

III. DESIGN AND IMPLEMENTATION OF POWER-SAVING 
METHODS 

In this section, we describe the design and implemen-
tation of our energy-saving localization system. The 
system architecture is shown in Figure 2. It consists of 
three components: a positioning engine, a mobility pre-
dictor, and a sampling rate adaptor. The system has three 
main steps. In the first step, a positioning engine is in-
voked to estimate a mobile badge’s position based on its 
SS measurements. In the second step, the mobility pre-
dictor estimates the mobile badge’s current velocity. The 
inputs to the velocity prediction come from two sources: 

(a) recent location history and (b) acceleration readings 
from an accelerometer sensor attached to a mobile badge. 
In the third step, the sampling rate adaptor computes a 
sleep time based on the positional error model defined in 
Equation (2). If the mobility prediction is accurate, this 
time interval is also the longest possible sleep time that 
meets the positional accuracy required by an application.  

 
TABLE 1. PARAMETERS IN THE POSITIONAL ERROR MODEL 

Description Parameters 
Control parameter (adjusted 
by our energy-saving meth-
ods) 

sleep_time 

Known system parameter 
(given by a localization sys-
tem)  

pn_delay, estima-
tion_error 

Unknown variable (required 
prediction) 

target_velocity  

Application specified input  error_tolerance 

 
We have developed three possible energy-saving 

methods for calculating the sleep time interval: (1) peri-
odic sampling, (2) adaptive sampling, and (3) sen-
sor-assisted adaptive sampling. These three methods are 
described in details below. 

A. Periodic Sampling 
This method calculates a fixed sleep time regardless of 

changing mobility level of a tracked object. This sleep 
time is calculated by first setting the badge’s velocity to 
an application-specific value, and then applying Equation 
(2) to compute a fixed period for the sleep time. This 
application-specific value should be a conservative esti-
mation that approximates a fast moving velocity capable 
of a tracked object. For example, if the tracked object is a 
person in an office environment, the velocity is set at a 
fast walking speed of a sporty office worker, which is 1.5 
meters per second.  

Given that periodic sampling uses a conservative ve-
locity (i.e., an upper bound velocity), it can achieve good 
conformance rate; however, this achievement is at the 
expense of much higher power consumption as shown in 
the experimental section. Since periodic sampling does 
not attempt to predict a user’s current mobility level, this 
fixed sleep-time is likely to be much lower than the op-
timal sleep-time computed from the tracked object’s 
current mobility. 
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Figure 2. System architecture. 
 

B. Adaptive Sampling with Constant-Velocity 
This method is based on a constant velocity model to 

predict the current velocity of a mobile badge. The cur-
rent velocity is calculated as the instantaneous velocity 
from the most recent two location samples according to 
the following equation: 

 

target_velocity 
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A potential problem with this prediction heuristic is 

that a small amount of estimation error from the posi-
tioning engine significantly impacts the prediction accu-
racy, causing either under-estimation or over-estimation 
of velocity. Consider the example that our positioning 
engine tracks a moving person at a normal walking ve-
locity over an office building corridor. Our positioning 
engine can produce estimation error. Figure 3 shows its 
accuracy and precision profile. It can limit positional 
error to 4 meters with 80 % probability of accuracy. In the 
case of this moving person, we have observed common 
occurrences. For example, in one case, the positioning 
engine is not sensitive enough; it estimates this moving 
person’s position at the coordinate (10, 10) at current time 
and the same coordinate one second before. The predicted 
velocity becomes zero with constant-velocity prediction. 
Plugging this zero velocity into Equation (2) returns an 
infinite sleep-time, meaning that the mobile target would 
turn off its radio interface forever, which is obviously 
wrong. This illustrates a need to set an upper bound to 
prevent a mobile target from sleeping too long and 
missing application’s positional accuracy requirement, 
either due to prediction error or due to the tracked objects 
temporarily staying stationary.  

In another case, the positioning engine can produce 
different direction of errors in two subsequent position 
estimations. The most recent estimation is the coordinate 

(20 – error, 20), and the previous one taken at one second 
ago is (21 + error, 20). The predicted velocity would be 
over-estimated by twice the amount of errors. If the error 
is large, applying Equation (2) results in a very short 
sleep_time close to zero. This illustrates a need to set a 
lower bound to prevent a mobile target from sleeping too 
little and wasting energy.  

 

 
Figure 3. Position error cumulative probability distribution 

 
There are many ways to obtain the upper and lower 

bounds. One possibility is for application users to provide 
a reasonable mobility bound on the tracked objects. For 
examples, if the tracked objects are people, we can use a 
fast person’s running speed as an upper bound. A second 
possibility is to learn the upper and lower bounds of the 
tracked objects by observing their mobility patterns over 
time. We can start by choosing conservative values for 
upper and lower bounds, and then gradually adjust to the 
correct values.  

 

C. Sensor-assisted Adaptive Sampling 
Sensor-assisted adaptive sampling solves the problem 

of estimation errors from a positioning engine, especially 
when tracked objects are in a stationary mode. Since sta-
tionary mode offers the highest opportunity for energy 
saving, this adaptive sampling method is developed spe-
cifically for this purpose.  

Consider the example of typical office workers who 
spends most of their days sitting in front of their computer. 
Given a lack of movement, their mobility or velocity 
should be zero or close to zero most of the time. Again, 
since our positioning engine produces estimation errors, 
their estimated positions from a position engine can 
commonly jump around within a radius of 2~4 meters at 
each subsequent location sampling. Assume that the 
sleep_time is set to be 2~4 seconds, the predicted velocity 

Positioning Engine 

Mobility Predictor 

Sampling Rate Adap-
tor 

Velocity 

Sleep time 

Position Estimation 

Accelerometer 

RSS Measurements 
Mobile Badge 
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is one meter per second. To address this issue, we look for 
low-cost and low-energy sensors to assist mobility pre-
diction.  

Our chosen sensors are accelerometers. Readings from 
an accelerometer are interpreted as a 1-bit state indicator 
that tells whether the mobile target is moving or not. This 
can be done through simple comparisons of accelerome-
ter readings if they exceed a certain movement threshold 
and persist over a time window. If the accelerometer 
shows a stationary target, the badge can continue to sleep 
to conserve power. If the accelerometer detects move-
ment on a mobile target, it triggers the badge to perform 
location sampling based on the previous adaptive method. 

IV. PERFORMANCE EVALUATION 
In this section, we describe experimental setting and 

analyze performance results of our energy-saving local-
ization system in a real working environment. 

A. Experimental setup 
To evaluate our adaptive sampling methods, we have 

conducted experiments to show and compare the effec-
tiveness of periodic and adaptive sampling methods by 
changing values in the impact factors. These impact fac-
tors are (1) application-specified error tolerances and (2) 
the mobile target’s mobility levels. Two performance 
metrics below are measured and compared: 

 
 Unit power consumption: It measures the average 

power consumption per second on a tracked badge 
using a power-saving method. We have considered 
two approaches to measure unit power consumption 
in a real working environment. The first approach is 
to connect a mobile badge to a power meter. The 
size and the weight of the power meter, however, 
make this approach infeasible. The second approach 
is to collect real data and code traces from mobile 
badge while it is running in a real environment and 
then feed the traces to a realistic power estimation 
tool for MicaZ called PowerTOSSIM [6]. Impor-
tantly, we would like to stress that our performance 
results and collected traces are not based on simu-
lation, but on real implementations. 

 Non-conformance rate: It measures the percentage 
where the reported location from our localization 
system to an application exceeds the specified error 
tolerance. 

 
Our experimental environment is on the third floor of 

National Taiwan University’s CS department building. 
We incorporated our energy-saving methods in a Zig-
bee-based localization system developed prior to this 
work and described earlier in Section II. The floor layout 

of the experimental environment is shown in Figure 4. 
The triangles mark the locations of beacon nodes. They 
are placed approximately 6 meters apart. The current 
mobile badge is shown in Figure 5. 
 

 
 

Figure 4. Test environment 
 

During the experiment, a tracked person wears a mo-
bile badge and conducts his/her activities only within the 
shaded area. The area includes corridors, a meeting room, 
a lab office, and a restroom. Table 2 shows six different 
scenarios with different levels of user mobility. For ex-
ample, scenario #3 corresponds to relatively high user 
mobility of 70%. In such a scenario, a user typically 
walks along a corridor, bumps into a friend, and chats 
with him/her for a short time. Note that each scenario 
involves a time length of at least 15 minutes (900 sec-
onds). A 70% user mobility level means that a user moves 
70% of the time or 630 seconds at a leisurely walking 
velocity of 0.5 meter per second. He/she is stationary, i.e., 
standing to chat with a friend, 30% of the time (270 
seconds). Scenario #5 corresponds to a low 30% mobility 
case, in which a user walks to a meeting room to have a 
discussion with friends. He/she occasionally moves to a 
white board to explain an idea. However, he/she sits and 
listens to friends most of the time.  
 

 
 

Figure 5. Mobile badge (MicaZ) and beacon node (Taroko). 
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TABLE 2. TEST SCENARIOS WITH DIFFERENT USER MOBILITY LEVELS. 
 

Scenarios Mobility 
levels 

Scenario description 

1 100% A person jogged repeatedly from one end 
of corridor to the other end. 

2 90% A person walked along a corridor, en-
tered his/her office, briefly sat down to 
check his/her calendar, and then hurried 
off to a meeting room. 

3 70% A person walked along a corridor, 
bumped into a friend, and stopped to chat 
for a short time. 

4 50% A person leisurely walked and browsed 
through posters displayed on a wall along 
a corridor. 

5 30% A person walked to a meeting room to 
have a discussion, occasionally moved to 
a white board to explain an idea. but most 
of the time, sat and listened to friends. 

6 10% A person walked to a seminar room, sat 
and listened to a long lecture. 

 
For each of six scenarios shown in Table 2, we run three 
power-saving methods repeatedly with different applica-
tion error tolerance at 5, 6, 7, 8, 9, and 10 meters. 
 

B. Impact on Mobility Levels 
A fourth theoretical method optimizes savings. The 

optimal curve plots the maximum possible energy saving 
by measuring the target’s real velocity from external 
observation and then applying the positional error model 
to compute the most optimal sleep time value. The opti-
mal method is used as a baseline for comparing with other 
three energy-saving methods.  

The first set of experiments compares of the four en-
ergy-saving methods under different mobility levels, i.e. 
optimal, periodic sampling, adaptive sampling, and sen-
sor-assisted adaptive sampling Figure 6 plots four energy 
consumption curves for the four methods. We observe the 
following general performance trends. 

 Among the three energy-saving methods, periodic 
sampling has the worst performance, followed by 
adaptive sampling. Sensor-assisted adaptive sam-
pling has the best performance. Sensor-assisted 
sampling outperforms periodic sampling in energy 
saving by a significant margin of 49.76% at the 10% 
mobility level and 6.88% at the 90% mobility level. 
Sensor-assisted adaptive sampling also outperforms 
adaptive sampling by a significant 37.01% at the 
10% mobility level and 1.97% at the 90% mobility 
level. 

 In both adaptive and sensor-assisted adaptive sam-
pling methods, energy consumption rises with an 

increasing mobility level. The reason is that to 
maintain the same error tolerance, a higher mobility 
level requires a higher sampling rate, resulting in a 
higher level of power consumption. 

 For the sensor-assisted adaptive sampling method, 
the amount of energy-saving improvement over the 
periodic sampling method also rises with a de-
creasing mobility level. The reason is that periodic 
sampling does not exploit many opportunities for 
energy saving since the tracked target is stationary 
most of the time at the lower mobility level. 

 
Figure 7 shows the measured non-conformance rate for 

each energy-saving method under different mobility lev-
els. Non-conformance rate measures the probability of 
positional error exceeding the application’s error toler-

Figure 7. Non-conformance rate v.s. different mobility levels given an ap-
plication-specified error tolerance of 7 meters. 

Figure 6. Power consumption given different mobility levels under an ap-
plication-specified error tolerance of 7 meters 
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ance requirement. Figure 7 shows that these en-
ergy-saving methods can conserve power while most of 
the time meeting the application’s requirement. In addi-
tion, these methods have comparable non-conformance 
rate. Note that even the optimal method still produces 
non-conformance due to the unavoidable estimation error 
from the positioning engine.  
 

C. Impact on Application Error Tolerance 
The second set of experiments show the tradeoff rela-

tions between energy consumption and error tolerance for 
each of the three energy-saving methods and under dif-
ferent positional error tolerance. Figure 8 (a-c) plots four 
energy consumption curves, corresponding to the optimal, 
periodic, adaptive, and sensor-assisted adaptive methods, 
with the mobility levels of 70%, 50%, and 30%. The 
general trends observed are: 

 
 Similar to the results in the first experiment, peri-

odic sampling has the worst performance, followed 
by adaptive sampling, and sensor-assisted adaptive 
sampling. Sensor-assisted adaptive sample has the 
best performance. At the 70% mobility level shown 
in Figure 8 (a), the sensor-assisted sampling method 
outperforms the periodic sampling method by 
16.50% at the 5 meters error tolerance and by 
22.12% at the 10 meters error tolerance. The sen-
sor-assisted adaptive sampling method also out-
performs the adaptive sampling method by 9.20% at 
the 5 meters error tolerance and by 7.29% at the 10 
meters error tolerance. 

 For the sensor-assisted adaptive sampling method, 
its energy-error tradeoff curve shifts closer to the 
optimal curve with a decreasing mobility level. The 
reason is that sensor-assisted adaptive sampling 
method can predict the tracked object’s velocity 
more accurately at a low mobility level than adap-
tive sampling method. For example, Figure 8 (a-c) 

shows that at the 5 meters error tolerance level, the 
sensor-assisted sampling method consumes 24.93% 
more power than the optimal method for the 70% 
mobility level. This amount is reduced to 10.65% 
for the 50% mobility level, and further down to 
6.25% for the 30% mobility level. However, adap-
tive sampling does not follow this trend. 

V. RELATED WORK 
Our idea is initially inspired by the notion of adaptive 

sensing or adaptive sampling in sensor network research. 
Energy efficient design is related to mechanisms at 
various levels of the wireless network protocol suite. The 
range estimation techniques are related to the localization 
error estimation. Sampling rate adaptation techniques are 
related to the energy-aware localization. Computation 
reduction techniques for fingerprinting-based localization 
are related to the efficient localization. In the following 
subsections, we review and discuss how this work is 
relevant or complimentary to the above mentioned re-
search domains.  

A. Energy-Efficient Design 
Communication has always been the main energy 

consumer in wireless systems; therefore, the en-
ergy-efficient issue has received much attention [8]. This 
leads to low-power design within the physical layer in 
order to reduce the sources of power consumption within 
mobile terminals. Adaptive error and power control are 
applied to energy efficient protocols within the MAC 
layer of wireless networks and power conserving proto-
cols within the LLC layer. Power-aware protocols within 
the network layer exploit the trade-off between frequent 
topology updates (resulting in improved routing) and 
precious bandwidth consumed by increased update mes-
sages. Opportunities for saving battery power within the 
transport layer lie in sensitivity to wireless environment. 
Selective acknowledgements and explicit loss notifica-
tion are used to handle losses. At application layer, tech-

 
                           (a)                  (b)                  (c) 

Figure 8. Tradeoff between power consumption and error tolerance under different mobility levels (70%, 50%, and 30%). 
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niques are developed specifically for different applica-
tions. Our work, the adaptive sampling mechanism, fo-
cuses on improving energy efficiency to support loca-
tion-aware applications. 

B. Range Estimation Techniques 
There are different techniques developed for range es-

timations. These techniques commonly require signal 
transmissions between the observer and the target ob-
served. The major differences are the properties of cali-
bration methods and the usage of signal sources. Our 
adaptive sampling mechanism is independent of and 
complementary to the range estimation techniques in that 
the frequency of range estimations can be optimized for 
energy-efficiency. 

Most of the techniques use sonic, ultrasonic, and RF as 
signal sources. Given the assumption that signal propa-
gates with constant velocity, TOA (time of arrival), by 
measuring the signal propagation time, is the most com-
mon method for estimating the distance. AOA (angle of 
arrival) is a network-based technique exploiting the 
geometric property of the arriving signal. By measuring 
the angle of the signal’s arrival at more then one receiver, 
AOA is able to give a more precise location. TDOA (time 
difference of arrival) [9] is also network-based. It meas-
ures the time difference instead of the angle to infer dis-
tance. Some hybrid approaches of TOA, AOA, and 
TDOA are also proposed, and this is still an active re-
search topic in the field of localization. 

Another class of techniques measures the received 
signal strength indication (RSSI). These techniques ex-
ploit the decaying model of electronic-magnetic field to 
translate RSSI to the corresponding distance [10] [11]. 
Also, the frequency bands used for transmission vary. For 
example, the well-known RADAR system [12] uses the 
radio frequency (RF). LADAR and SONAR use the 
visible light and the audible sound bands respectively. 
RADAR, SONAR, and MoteTrack [13], for instances, 
analyze the signal reflected from the object to estimate 
location. A recent innovation, Cricket [14], takes a hybrid 
approach, using both the RF and ultrasonic bands. 

C. Sampling Rate Adaptation Techniques 
Prediction-based energy saving scheme [1] is the 

closest to our work. Their system accepts an application 
request for a report of tracked objects’ locations every T 
seconds in an object-tracking sensor network. Then, their 
energy-saving scheme tries to meet this application re-
quest with minimum energy consumption and missed 
tracking rate. Their energy-saving scheme adapts location 
sampling frequency based on predicted object movement. 
In addition, their system also needs to consider energy 

consumption of sensor network infrastructure which also 
runs on battery. Their energy-saving scheme can dy-
namically turn off sensor nodes that are not in proximity 
of any tracked object. There are several differences be-
tween our system and their system. The largest difference 
is that their system works only in simulation, whereas our 
system works in a real working environment. Hence, we 
believe that our performance results are more realistic. 
The second difference is that their system assumes that 
estimation error from a positioning system is ignorable or 
zero. However, in real environment, no positioning en-
gine is perfect; therefore, our prediction heuristics must 
overcome this estimation error using accelerometers. 
Finally, the application requirement of positional accu-
racy is also different; their system adapts a coarse-grained 
reporting period whereas our system uses fine-grained 
positional error tolerance. 

Tilak et al. [2] propose adaptive and predictable pro-
tocols for adapting the sampling frequency based on 
mobility patterns of tracked objects. They have evaluated 
three protocols: (1) the static fixed rate (SFR) protocol 
with a fixed sampling frequency, (2) the dynamic velocity 
monotonic (DVM) protocol which adapts the sampling 
frequency based on a tracked object’s mobility pattern, 
and (3) the mobility-aware dead-reckoning driven 
(MADRD) protocol which uses a dead-reckoning local-
ization method on a prediction mobility model. Their 
experiment results have shown that MADRD protocol 
can provide good energy efficiency with sufficiently ac-
curate location given that the mobility of tracked objects 
follows predictable moving patterns. Our system differs 
from their work in similar ways as the prediction-based 
energy-saving schemes described previously. Their sys-
tem works only in simulation, whereas our system works 
in a real working environment.  

D. Computation Reduction Techniques 
The Horus system [3] proposes a so-called joint clus-

tering technique that can significantly reduce the com-
putational cost of searching for the radio map in a WiFi 
fingerprinting-based localization system. Computation 
reduction comes from partitioning location areas into 
clusters. In each cluster, only a subset of most access 
points with most distinguishable received signal strength 
(RSS) signature is selected as its cluster key.  

Chen et al. [4] proposes a similar idea by combining 
information theory, clustering, and decision tree algo-
rithms to reduce the computational cost. Their system 
makes further improvement in computation reduction 
over Horus by selecting even a smaller subset of access 
points and signals. One unique aspect of their system is 
that the positioning engine is moved to the client-side 
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execution, rather than on the server-side execution. This 
client-side execution can reduce communication cost to a 
server, translating into better energy savings on a mobile 
client device.  

Our work differs from these systems by focused on 
reducing the number of invocations of location sampling 
rather than reducing the amount of work in each invoca-
tion of location sampling (i.e., the positioning engine).  

VI. CONCLUSION & FUTURE WORK 
In this paper, we present our design, implementation 

and evaluation of a sensor-enhanced, energy-efficient 
adaptive localization system based on our definition of a 
formal positional error model that accurately predicts 
positional error of a real working positioning engine. 
Given a specified positional error tolerance from an ap-
plication, our localization system can dynamically adapt 
the sampling rate of location information to achieve better 
energy saving while conforming to application’s error 
tolerance. Furthermore, our energy-saving method util-
izes additional sensors on mobile targets to solve the 
estimation error problem in positioning engines. We have 
implemented our energy saving methods in a working 
localization system and conducted performance evalua-
tion in a real office environment. Our results have shown 
that prediction accuracy can be improved by as much as 
37.01%. As the mobility level increases, our sen-
sor-assisted adaptive sampling method reduces power 
consumption by as much as 49.75%. 

Our future work will further improve energy efficiency 
in our localization system. In the current implementation, 
we use an average value to approximate the estima-
tion_error in our positioning engine. However, estima-
tion error is dynamic depending on several factors in the 
environment, such as coverage area, temperature, hu-
midity, human clusters, etc.. Based on a confidence model 
[17], estimation error can be modeled and prediction 
heuristics introduced. This enables our adaptive sampling 
localization to determine a more precise sleep_time for 
better energy consumption and improved conformance to 
the error tolerance requirement.  

Our future work will extend application’s requirement 
specification to include not only the positional error tol-
erance but also an energy budget for a mobile target. This 
can be done by creating profiles on mappings between 
positional error and energy consumption under different 
mobility levels. These profile mappings can be obtained 
through offline or online calibrations. Then, when ap-
plications specify their desirable energy budgets, our 
system can provide a positional error bound given a target 
mobility level. 
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