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Abstract. Location-aware services can benefit from accurate and reliable in-
door location tracking. The widespread adoption of 802.11x wireless LAN as 
the network infrastructure creates the opportunity to deploy WiFi-based loca-
tion services with few additional hardware costs. While recent research has 
demonstrated adequate performance, localization error increases significantly in 
crowded and dynamic situations due to electromagnetic interferences. This pa-
per proposes collaborative localization as an approach to enhance position es-
timation by leveraging more accurate location information from nearby 
neighbors within the same cluster. The current implementation utilizes ZigBee 
radio as the neighbor-detection sensor. This paper introduces the basic model 
and algorithm for collaborative localization. We also report experiments to 
evaluate its performance under a variety of clustering scenarios.  Our results 
have shown 28.2-56% accuracy improvement over the baseline system Ekahau, 
a commercial WiFi localization system. 

1   Introduction 

Technologies for indoor location tracking are important for deploying location-aware 
services in public buildings like museums, transit stations, or hospitals. For example, 
visitors can receive background information about the exhibit they are viewing, pas-
sengers can obtain real-time status update on their next connections, and emergency 
medical personnel can locate critical patients or equipments. Given accurate and reli-
able location information, an intelligent museum guide can provide museum visitors 
with relevant information and timely services. In contrast, location errors may result 
in undesirable deliveries of the wrong information to the wrong people at the wrong 
place. 

The widespread adoption of 802.11x wireless LAN as a common network infra-
structure enables WiFi-based localization with few additional hardware costs.  Micro-
soft Research proposed an RF-based indoor location tracking system by processing 
signal strength information at multiple base stations [1]. Since then, much research 
has focused on improving WiFi-based localization from noisy signals, and has 
achieved position estimation with up to 90% accuracy within an error of 1 meter.  
While such performance is sufficient for most indoor pervasive computing  
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applications, the results are somewhat misleading since they are usually measured in 
static, ideal situations with minimal signal interference. Our previous work [12] dem-
onstrated the impact on position estimation with people moving around a target mo-
bile device. Not only does the estimated position become unstable, but the error also 
rises twofold due to electromagnetic interferences by the human body. 

People cluster naturally in typical social settings. Based on observing museum vis-
its, people often browse through the exhibits with their family or friends, forming 
relatively stable moving clusters. Visitors also tend to gather in front of popular ex-
hibits, instantly creating temporary static clusters. Figure 1, two random snapshots 
taken at the National Museum of Natural Science, illustrates that most visitors are in 
the midst of small crowds. In addition, clusters are dynamic.  First, they may move as 
a group with varying speeds. Second, they may assemble and disassemble over time. 
Similar scenarios happen frequently in other public places, such as passengers depart-
ing or arriving in transit stations. 

   

Fig. 1.  Visitors at the National Museum of Natural Science in Taiwan 

This research investigates the problem of WiFi-based localization in clustering sce-
narios. This paper starts by analyzing the effects on positioning errors due to human 
clusters of varying sizes. We then propose collaborative localization as an approach 
to improving position estimation accuracy by leveraging potentially more accurate 
position information from nearby neighbors. Section 3 introduces the basic idea and 
models supporting collaborative localization. Section 4 presents the experimental 
results showing the advantages of the proposed approach. Section 5 provides pointers 
to related research, followed by the conclusion and future work in Section 6. 

2   Clustering 

A traditional WiFi-based location system utilizes wireless signal strength to estimate 
locations in two phases. First, the offline training phase collects Received Signal 
Strength Indicator (RSSI) from multiple access points (APs) at each sampled location.  
The results are saved in a radio map. Second, the online estimation phase matches the 
RSSI from a target mobile device to each sampled location on the radio map. The coor-
dinates of the target location can be estimated deterministically or probabilistically. To 
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understand the impact of human clusters on location accuracy, we have conducted 
preliminary experiments described in our previous work [12]. Results of these ex-
periments have shown that human clustering can create strong interferences with 
surrounding signals, leading to significant degradation in location accuracy. In a case 
of six people walking around a user carrying the target mobile device, the position 
estimated by the Ekahau location system [4] becomes unstable, leading to doubling of 
the average positioning error.  

Several recent localization systems [11][12] have worked on the challenge of pro-
viding stable position estimation under different environmental dynamics, including 
change of floor layout, change in relative humidity, and moving people. Since major 
floor layout changes occur less frequently, they can be managed by rebuilding a selec-
tive part of a radio map. To adapt to different relative humidity levels, a separate radio 
map can also be constructed for each humidity level. However, coping with moving 
people is more challenging, because it is infeasible to model and enumerate all possi-
ble cases of human clustering formations, human orientations and moving speeds, and 
further, to construct corresponding radio maps. To our knowledge, we have not found 
any satisfactory solution that can address the challenge of people dynamics. 

To measure quantitatively the impact of people clustering on the amount of degra-
dation in positioning accuracy, we have conducted experiments, again using Ekahau 
as an example. For each test, users stand at pre-specified positions to form clusters of 
sizes 1, 3, and 7 person(s). Each user carries a Notebook PC equipped with a wireless 
network card to collect RSSIs from APs. The same WiFi cards are used to minimize 
errors due to different signal strength interpretations by different WiFi card drivers. 
The results are plotted in Figure 2, showing that the positioning accuracy degrades 
significantly with an increasing cluster size. In a single person case (no clustering), 
Ekahau can achieve a high positioning accuracy of approximately 80% within an 
error of 2 meters. In comparison, Ekahau's positioning accuracy degrades to 60% in 
the case of 3-person clusters, and further degrades to less than 30% in the case of 7-
person clusters. The general trend is that increasing cluster size leads to rapidly de-
creasing average positioning accuracy and precision.   

 

Fig. 2. CDF of the cluster's average positioning errors 
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To investigate how clustering influences the positioning estimation accuracy for 
each individual in a cluster, we have plotted cumulative density functions (CDFs) of 
average positioning errors experienced by each individual in Figure 3. It shows a 7-
person clustering case where each colored curve represents the positioning accuracy 
experienced by one person in a cluster. The relative position of each person in a clus-
ter is shown in a small diagram at the bottom. Although clustering degrades average 
positioning accuracy of a cluster (shown in Figure 2), the amount of degradation ex-
perienced by people varies within the same cluster. In the 7-person clustering case 
shown in Figure 3, user-7's accuracy is almost unaffected, whereas user-3's accuracy 
is significantly reduced.  

user3user7

 

Fig. 3. CDFs of each node's average positioning error within a 7-person cluster 

The next question is what causes such large variance in positioning accuracy 
among individuals within the same cluster? We have found several possible direct and 
indirect causes, such as people's relative position within a cluster, their orientation, the 
way (e.g., the height) they hold the device, the geometry of the environment, etc. 
Rather than considering clustering as a hindrance to improving accuracy in localiza-
tion systems, we turn them into an advantage by exploiting collaboration among 
neighbor nodes. 

3   Design and Implementation 

We propose collaborative localization to leverage the variance in location accuracy 
among nodes within a cluster. Intuitively, nodes in the same cluster may help localize 
each other so as to enhance the overall average positioning accuracy of the cluster. By 
identifying nodes with high location accuracy, we can use their location estimations to 
help better localize neighbor nodes with lower location accuracy. The design for col-
laborative localization is shown in Figure 4. It consists of the following three  
modules: Neighborhood Detection, Confidence Estimation, and Collaborative Error 
Correction. The general work flow of the system is summarized as follows. 
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1. Neighborhood Detection identifies nearby neighbor nodes as possible candidates 
for collaborative localization;  

2. Confidence Estimation computes and attaches a confidence score to the position 
estimation returned by a given localization system (e.g., Ekahau). Confidence 
measures the probability of a location estimation being accurate, and it will be 
formally defined in Section 3.2. 

3. Collaborative Error Correction adjusts the estimated location of the target node 
using the estimated locations of neighboring nodes with higher confidence 
scores. This way, the error in location estimation of the target node can be  
reduced. 

Fig. 4.  Design of collaborative location system 

3.1   Neighborhood Detection 

For each target node, the Neighborhood Detection finds its neighbor nodes within a 
certain proximity radius (e.g., 2 meters). Each node periodically probes its neighbor-
hood through a proximity sensor, and the system continues to track the neighboring 
relationships among all target nodes. 

We experimented with a number of proximity sensors, including Bluetooth, Zig-
Bee, infrared, and ultra-sound, and have chosen ZigBee in our implementation.  Zig-
Bee offers the following advantages: (1) ZigBee's signal strength decays quickly over 
a relatively short distance, so its signal strength signatures can be mapped accurately 
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to proximity distances within a range of 1 ~ 2 meters; (2) The simplicity of ZigBee 
protocol  supports instantaneous connection, which facilitates proximity detection 
based on signal strength; (3) ZigBee does not suffer from the line-of-sight problem as 
with infrared sensors, so users can carry their WiFi nodes in their pockets; and (4) 
ZigBee radio has relatively low power consumption. 

In our current implementation, the neighborhood detection is defined in terms of 
the actual distance calculated from the ground truths of the target nodes. A neighbor 
node is defined as having a proximity distance of less than 2 meters to the target node. 

3.2   Confidence Estimation 

Confidence Estimation measures the probability of the location estimation, obtained 
from an underlying localization engine, being close to its true location. In other 
words, a high (low) confidence score implies that the location estimation has a high 
(low) probability of being the true location. Confidence in location estimation corre-
lates highly to positioning stability of a target node computed over time from a parti-
cle filter. Location estimation is based on the sensor model generated by the Ekahau 
localization engine, which is used in conjunction with a motion model to constrain 
location estimation within a reasonable variation consistent with human movement.  
That is, given the current location of a target, there is a limited range of possible loca-
tions that a human may reach. As a result, the difference between the location esti-
mated from a sensor response S and the bounded estimation P returned from a particle 
filter implies the uncertainty in location estimation. If the position of a target node 
changes beyond what's prescribed by the motion model, a low confidence score is 
assigned.  

The confidence estimation can be derived by accumulating successive uncertainties 
over a specified time window. Specifically, we define the confidence at time t accord-
ing to the following equation: 
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Here, t is the current time stamp, i is an accumulation index, and s is the length of the 
time window. Let w(i) be the weight to accumulate uncertainties at different times 
within the window, and uc(t-i) measure the uncertainty of a sensor response, i.e. the 
difference between the location estimation from the sensor response and the bounded 
estimation returned from a particle filter at time (t-i). Equation (1) computes the 
weighted sum of uncertainties over an accumulation window s, normalizing it to a 
value between [0, 1]. The value k is a constant that adjusts the speed of decline in a 
logarithmic curve - a higher k value means that the curve will decline more slowly. A 
high confidence score, e.g., 0.95, means that a particle filter has found little uncer-
tainty over the time window, indicating high accuracy in location estimation. In the 
current implementation, s is defined as the 3 most recent samples, constant k is 300, 
and the weight w(i) is equal for the three samples. 
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Fig. 5. Confidence scores and location estimation errors 

In order to validate how well Equation (1) models the relationship between confi-
dence and accuracy of position estimations, we have conducted an experiment by 
collecting 1179 location estimation samples. These samples' confidence scores are 
computed from Equation (1) and then plotted against their estimation errors from their 
true locations. Results in Figure 5 show a good inverse relationship between confi-
dence and error.  

Other applications can be created using the framework illustrated in Figure 4. 
Since a confidence estimation is independent of sensor models, a different localiza-
tion algorithm (e.g., a simple nearest neighbor algorithm) can be used in a sensor 
model.  At the same time, a different confidence function that is more accurate than 
the one described in Equator (1) can be used. 

3.3   Collaborative Error Correction  

Collaboration Error Correction (CEC) enhances location estimation from particles of 
a target node by removing estimation that has a lower confidence score, from estima-
tions of its neighbor nodes that have higher confidence scores. In order to produce this 
enhancement, the collaborative error correction step requires the following informa-
tion: (1) a set of neighbor nodes within proximity of a target node Ns = {N1 , N2 , .. Ns} 
detected from the neighborhood detection, and (2) a set of pairs of their location esti-
mations and confidence scores {<N1 

pos, N1 

conf>, <N2 

pos, N2 

conf>, .. <Ns 

pos, Ns 

conf>}. 
Collaborative enhancement is based on the concept of attraction from magnetic in-

teractions in nature. A high confidence node Nx, whose location estimation is at Nx 
pos, 

is assigned a stronger magnetic charge Nx 
conf. On the other hand, a low confidence 

neighbor node Ny, whose location estimation is at Ny 
pos, is assigned a weaker mag-

netic charge Ny 
conf. Based on natural magnetic interactions, a low confidence node, 

acting as a nail, will be pulled from its original position at Ny 
pos toward the position of 

a high confidence node at Nx 
pos. The magnitude of this attraction force (refer to as the 

neighboring force) is proportional to the ratio Nx 
conf / Ny 

conf.  
The actual mechanism can be described as follows. In step 1, for each node N, we 

collect its proximity nodes and <estimated location, confidence score> pairs. In  
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step 2, the neighboring force Fb between a target node N and one of its neighbor node 
Nb, is computed as follows: 
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Here, r measures the proximity distance between the node pairs, ε is a constant meas-
uring the amount of error ratio in a neighbor proximity measurement, D is the Euclid-
ean distance between two coordinates Npos (a target node's position) and Nb

pos (a 
neighbor node's position), and the unit vector u(Nb

pos - Npos) gives the direction of this 
neighboring force. In step 3, since a target node can have multiple neighbor nodes, 
individual attraction forces contributed from each of its neighbor nodes are summed 
into an aggregate neighboring force F, which is defined in equation (3). Note that F is 
computed as a weighted sum of neighboring forces, with the weight equal to the nor-
malized confidence level of each of its contributing neighbor nodes.  
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In the last step, we apply F to correct the location estimation of a target node. This 
corrected location estimation is then used to assign probabilities of particles. Finally, 
the particle with the highest probability is chosen as location estimation. 

4   Experimental Results 

The following experiments were performed on the corridors of the 3rd floor of the 
Computer Science Department building in our university as shown in Figure 6. The 
baseline WiFi positioning engine is a commercial product Ekahau [4]. All users 
brought mobile devices equipped with the same brand IEEE 802.11g WLAN card. 

4.1   Neighborhood Sensing 

In the real environments, errors caused by neighborhood sensing technology will 
reduce benefit generated by the proposed algorithm. The error model of the neighbor-
hood detection is derived from ZigBee radio, which is the chosen sensor. In neighbor-
hood detection, each radio periodically transmits and receives signals from neighbor 
radios. From the received signals, their RSSI values are measured. Figure 7(a) shows 
that RSSI decays rapidly when distance between two radios increases from 1 to 3 
meters, which is an ideal range for neighbor proximity detection. We adapt a simple 
method to detect neighbors within 2 meters proximity. First of all, the average re-
ceived signal strength corresponding to the 2 meters distance mark is chosen as a 
threshold. When received signal strength is greater than the threshold, two radios are 
recognized as neighbors. Figure 7 (b) shows the probability that two radios are de-
tected as neighbors at different distances. For nodes that are more than 2 meters apart, 
there is still a small 20% probability that they will be incorrectly detected as neighbor 
nodes. When two radios are less than 2 meters, there will be 71.6% probability that 
they are correctly detected as neighbors. 
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Fig. 6. Floor layout for the experiments. The red triangles are locations of IEEE 802.11 AP and 
the rectangular area is the corridors of the floor. 

 
                             (a)                                                                                (b) 

Fig. 7. Distance and the error model: (a) The relationship between distance of two ZigBee 
radios and the received signal strength, and (b) the relationship between distance of two ZigBee 
radios and the probability that they will be detected as neighbors. 

We have found several sources of errors in the ZigBee-based neighborhood detec-
tion. The first source of error occurs when two nearby persons standing back-to-back, 
their neighboring links will not be detected, because ZigBee radio signal does not 
penetrate human bodies well. The second source of error occurs when a third person 
comes between two persons standing face-to-face, again their neighboring links will 
also be broken due to human body interference from the third person. 

4.2   Performance Evaluation 

To evaluate performance of our collaborative localization, we have designed two sce-
narios for experiments. The first scenario consists of stationary people forming station-
ary clusters. Locations of stationary clusters are pre-arranged shown in Figure 3. We 
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then observe how well our collaborative localization can improve positioning accu-
racy over a baseline WiFi positioning engine. The second scenario consists of mobile 
people forming mobile clusters. Movements of people are modeled after an ordinary 
group visit shown in Figures 12 and 15. In addition, two persons standing at two fixed 
locations on a corridor act as stationary passers. We then observe collaborative local-
ization on how well stationary passers can help improving positioning accuracy of 
mobile clusters. 

In the experiments, we simulate the error induced from ZigBee. The error is then 
appended to the ground truth to evaluate our collaborative location system. This is the 
preliminary study of deploying ZigBee as proximity sensor. 

4.3   Stationary Clusters (Scenario I) 

Scenario I consists of two cases of 3-person and 7-person stationary clusters with a 
cluster radius fixed to either 0.5 meter (called a dense cluster) or 1 meter (called a 
sparse cluster). Figure 8 plots cumulative distribution functions (CDF) of average 
positioning errors for 3-person dense and sparse clusters. Curves labeled "no-
collaboration" show results when collaboration is not applied to location estimations, 
whereas curves labeled "collaboration" show results when collaboration is applied to 
location estimations. In addition, the curve labeled "3-person non-clustering" shows 
results when 3 stationary persons are standing apart without forming any cluster. This 
is used as a reference line for comparing with clustering cases. In the 3-person sparse 
cluster case, collaboration produces 37.2% accuracy improvement from 3.38 meters 
(no-collaboration) to 2.12 meters at 75% precision. Moreover, the average error is 
reduced by 34% from 2.41 meters to 1.59 meters. In the 3-person dense cluster case, 
collaboration produces 38% accuracy improvement from 5.38 meters (no-
collaboration) to 3.34 meters at 75% precision. Moreover, the average error is reduced 
by 28.2% from 3.33 meters to 2.39 meters. 

Figure 9 shows a positive relationship between the amount of accuracy improve-
ment received by a target node, after applying collaboration, and △Confidence, 
which is the difference in confidence scores between a target node and its neighbor 
node, in a 3-person dense cluster case. The plot shows that when △Confidence is 
positive (i.e., a neighbor node has a higher confidence score than a target node), col-
laboration can help improving positioning accuracy of a target node. More impor-
tantly, a larger △Confidence results in a higher accuracy improvement, because a 
target node can benefit more from a neighbor node whose location estimation has a 
better accuracy than its location estimation. On the other hand, when △Confidence is 
negative (i.e., a neighbor node has a lower confidence score than a target node), col-
laboration is disabled because a neighbor node is likely to have worse positioning 
accuracy than a target node. 

Figure 10 plots cumulative distribution functions (CDF) of average positioning 
errors for 7-person dense and sparse clusters. Results show that the amount of accu-
racy improvement in 7-person clusters is greater than that of 3-person clusters. In 
the 7-person sparse cluster, collaboration produces 54.7% accuracy improvement 
from 6.26 meters (no-collaboration) to 2.83 meters at 75% precision. Moreover, the 
average  error is reduced by 49%  from 4.20 meters  to 2.14 meters.  In the 7-person  
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Fig. 8. CDF of average positioning errors in 
the 3-person cluster scenario 

Fig. 10. CDF of average positioning errors in 
the 7-person cluster scenario 

 

Fig. 9. The amount of accuracy improvement 
versus the neighborhood confidence differ-
ence in the 3-person dense cluster 

Fig. 11. The amount of accuracy improve-
ment versus the neighborhood confidence 
difference in the 7-person dense cluster 

dense cluster, collaboration produces 49.2% accuracy improvement from 7.25  
meters (no-reduced by 56.3% from 5.95 meters to 2.60 meters. Similar to the 3-person 
case, Figure 11 shows a positive relationship between the amount of accuracy im-
provement and the confidence difference with a neighbor node.  

4.4   Mobile Clusters (Scenario II) 

Scenario II consists of two cases of 4-person and 5-person mobile clusters with a 
cluster radius fixed to 0.5 meter. In addition, one more person in a 4-person case and 
two more persons in a 5-person case stand at fixed locations on a corridor as station-
ary passers. These settings are shown in Figure 12 and Figure 15. The total distance of 
the corridor is about 30 meters. Figure 13 plots cumulative distribution functions 
(CDF) of positioning errors for the stationary passer and average errors of the  
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Fig. 12. 4 clustered persons walking by a 
stationary passer 

Fig. 15. 5 clustered persons walking by 2 
stationary passers 

 

Fig. 13. CDF of average positioning errors in 
the 4-person mobile cluster case 

Fig. 16. CDF of average positioning errors in 
the 5-person mobile cluster case 

 

Fig. 14. Average of accuracy improvement in 
the 4-person mobile cluster case 

Fig. 17. Average of accuracy improvement in 
the 5-person mobile cluster case 

4-person mobile cluster. The curve labeled "1-person stationary" shows positioning 
error of the stationary passer, and the curve labeled "4-person mobile cluster" shows 
average positioning error of a 4-person mobile cluster. In addition, curves labeled " 
no-collaboration" show results when collaboration is not applied to location estima-
tions, whereas the curves labeled "collaboration" show results when collaboration is 
applied to location estimations. For the 4-person mobile cluster, the collaborative 
localization produces 16% accuracy improvement from 5.67 meters (no-
collaboration) to 4.76 meters at 75% precision. Moreover, the average error is reduced 
by 17.5% from 4.57 meters to 3.77 meters. Figure 14 shows the relationship between 
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the amount of improvement in positioning accuracy received by a target node and 
△Confidence. Results show a target node can benefit when collaborating with a 
higher confident neighbor node. However, we have found that accuracy improvement 
in mobile clusters is smaller than accuracy improvement in stationary clusters. The 
reason is that mobile nodes in general receive less accurate location estimations from 
a localization engine than stationary nodes; therefore, a node in a mobile cluster has a 
smaller chance of finding a high confidence neighbor node for collaboration than a 
node in a stationary cluster. 

Figure 16 plots cumulative distribution functions (CDF) of positioning errors for 
two stationary passers and average errors of a 5-person mobile cluster. Results show 
that the amount of improvement in a 5-person mobile cluster is greater than that of a 
4-person mobile cluster. For the 5-person mobile cluster, collaboration produces 
26.2% accuracy improvement from 5.58 meters (no-collaboration) to 4.12 meters at 
75% precision. Moreover, the average error is reduced by 33.5% from 4.03 meters to 
2.68 meters. Figure 17 shows the amount of improvement in positioning accuracy 
received by a target node and △Confidence. Results also show that a target node can 
benefit when collaborating with a higher confident neighbor node. 

4.5   Evaluation of Confidence Estimator 

We compare the accuracy improvement between our confidence estimation method, 
calculated from Equation (1), and two alterative estimation methods called uniform 
and random. Results, shown in Figure 18, plot cumulative distribution functions 
(CDF) of average positioning errors for a 7-person dense stationary cluster over three 
confidence estimation methods. Curves labeled "no-collaboration" shows a reference 
line when collaboration is not applied to location estimations. In the uniform method, 
every node receives equal confidence scores regardless of estimation errors from the 
underlying location engine. In the random method, a random number between 0 and 1 
is assigned to each node as its confidence score, again regardless of estimation errors 
from the underlying location engine. In a 7-person stationary dense cluster, our 
method outperforms both uniform and random methods. Note that both random and 

 

 

Fig. 18. Comparison of three confidence estimation methods (our current method, uniform, and 
random) in a 7-person, stationary, dense cluster 
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uniform methods can still benefit from collaboration. The reason is that positioning 
errors from the underlying Ekahau location engine in general follow a symmetric 
distribution. Symmetric distribution means that while some location estimations of 
nodes are off in one direction, some location estimations of nodes in the same cluster 
are off in an opposite direction. Therefore, applying collaboration has a beneficial 
effect of error cancellation within a cluster of nodes. 

5   Related Work 

There has been extensive research on indoor localization. WiFi-based location sys-
tems can be either deterministic [5-8] or probabilistic [1-4] in matching RSSI from-
mobile devices to a radio map. The best systems claim 90% accuracy with an error of 
less than 1~2 meters. Some of these systems achieve better accuracy by combining 
different localization methods. That is, a hybrid system can benefit under situations 
where one method works poorly while another still works well. For example, 
Graumann et al. [9] aim at designing a universal location framework by using GPS in 
an outdoor environment, WiFi for an indoor environment, and Motes for proximity 
detection. Gwon et al. [10] proposed algorithms combining WiFi and Bluetooth  
sensors as information sources and selectively weighting them such that error contri-
bution from each sensor can be minimized to improve the positioning accuracy. How-
ever, these systems do not address the human clustering problem. 

Dynamic environmental factors can incur location estimation errors in traditional 
Wi-Fi location systems. Some proposed methods have attempted to address this issue. 
The temporal prediction approach in [11] can observe and learn how a radio map 
changes over time by employing emitters and sniffers to observe Wi-Fi RSSI varia-
tions. By applying regression analysis, the temporal prediction approach can learn the 
temporal predictive relationship between RSSI values received by sniffers and those 
received by target mobile devices. However, the temporal prediction approach as-
sumes that changes in the environmental factors follow some predictable temporal 
patterns. However, in the people clustering case, such assumption does not hold given 
that people clustering is highly dynamic with individual node experiencing large 
variations of degradation. Reference points and regression model would not be able to 
capture such dynamic variations. Chen et al. [12] also addressed the challenge of 
providing stable position estimation under different environmental dynamics, includ-
ing change of floor layout, change in relative humidity, and moving people. Since 
major floor layout changes occur less frequently, they can be managed by rebuilding a 
selective part of a radio map. To adapt to different relative humidity levels, a separate 
radio map can also be constructed for each humidity level. However, coping with 
moving people is more challenging, because it is infeasible to model and enumerate 
all possible cases of human clustering formations; furthermore, to construct different 
radio maps. 

The idea of utilizing neighbor information to help localization is also used in sen-
sor network localization and network coordination. DOLPHIN [13] deployed fixed 
nodes with ultrasonic and RF sensors in an environment. Nodes with known location 
coordinates are called master nodes. Non-master nodes can compute their relative 
locations to multiple master nodes by exchanging ultrasonic and RF signals. After 
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performing iterative triangulation, nodes can get their absolute coordinates and be-
come master nodes. He et al. [17] proposed a cost-effective, range-based localization 
approach called APIT for large scale sensor networks. Like the DOLPHIN system, 
the sensor network contains anchor devices that can obtain their locations through 
GPS receivers. Anchor nodes first broadcast their locations to non-anchor nodes. A 
non-anchor node then iteratively chooses different combination of 3 received anchor 
nodes and performs a Point-In-Triangulation (PIT) Test, which is used to determine 
whether a non-anchor node is inside a triangular region formed by 3 anchor nodes. If 
a non-anchor node resides in that triangular region, that region is marked as a possible 
location of the non-anchor node. After all combinations are exhausted, the center of 
intersections from all possible regions is calculated to estimate a non-anchor node's 
location. AFL [18] is a fully decentralized, anchor-free approach, utilizing the idea of 
fold-freedom to build a topology of a sensor network through local node interactions. 
In AFL, nodes start from a random initial coordinate assignment. By applying mass-
spring optimization repeatedly, nodes’ location estimations can converge to be near 
their true coordinates. Our work differs from these systems in that they assume nodes 
with known locations are stationary, whereas our work assumes that nodes are mobile 
people. In addition, these sensor network location systems assume that nodes with a 
cluster will not interfere with each other's positioning accuracy. However, in our sys-
tem, people clustering results in blocked signals and degradation in positioning  
accuracy. 

Hu et al. [14] proposed a method for sensor network localization that allows some 
node mobility. Seeds are nodes with known locations. Non-seed nodes apply a motion 
model to predict their locations by sensing whether they are entering proximity of or 
departing from a seed node. Seeds and non-seed nodes can be either mobile or sta-
tionary. However, their work does not consider errors in seed nodes' locations. This 
differs from our work in which node clustering leads to localization errors. 

Neighbor information has also been used in network coordinate system at the Inter-
net scale. GNP [15] places nodes with known locations in a network as landmark 
nodes. Other nodes can compute their approximate coordinates based on network 
round trip time (RTT) measurements to these landmark nodes. Vivaldi [16] proposed 
an alternative method without using landmarks. Each node in the network measures 
RTTs, translated into relative distances, to its neighbors and gradually converges to a 
virtual coordinate. However, these systems differ from our work in that they are not 
concerned with high location accuracy.  

6   Conclusion and Future Work 

This paper targets the problem of human clusters in WiFi-based localization. We have 
conducted tests to show that a human cluster can block WiFi signals, resulting in 
degradation of location accuracy. To address this issue, we have designed and imple-
mented collaborative localization, which a node with a higher confidence of accuracy 
can help fine-tune location estimations of neighbor nodes that have a lower confi-
dence. The proposed method consists of the three modules: (1) Neighborhood Detec-
tion finds nearby neighbors, (2) Confidence Estimation measures the accuracy of the 
location estimation, and (3) Collaborative Error Correction uses neighbor nodes'  
information to reduce the target node's positioning error. Our experimental results 
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have shown that collaborative localization produces 28.2~56% accuracy improvement 
in stationary human clusters and 16~33.5% accuracy improvement in mobile human 
clusters.  

For future work, we would like to improve the accuracy of our neighborhood de-
tection by using existing Wi-Fi adaptors or exploring alternative proximity sensors. 
One possible approach is to set WiFi adaptors in an ad-hoc mode for detecting signals 
strength from neighbor nodes. The advantage of this approach is that it requires no 
additional hardware. However, the challenge is in accuracy, considering that human 
body can cause interference to WiFi signals. To address this issue, we are looking for 
neighborhood detection methods that are not only based on using a single signal 
strength threshold. 

Another future work is to place fixed anchor nodes in the environment where hu-
man clusters are likely to occur, e.g., in front of popular exhibits. These anchor nodes, 
with maximum confidence scores, can help fine-tune any nearby human clusters that 
border them. 
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