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ABSTRACT
Next generation devices, such as virtual reality (VR), augmented
reality (AR), and smart appliances, demand a simple and intuitive
way for users to interact with them. To address such needs, we
develop a novel acoustic based device-free tracking system, called
Strata, to enable a user to interact with a nearby device by simply
moving his finger. In Strata, a mobile (e.g., smartphone) trans-
mits known audio signals at inaudible frequency, and analyzes the
received signal reflected by the moving finger to track the finger
location. To explicitly take into account multipath propagation, the
mobile estimates the channel impulse response (CIR), which char-
acterizes signal traversal paths with different delays. Each chan-
nel tap corresponds to the multipath effects within a certain delay
range. The mobile selects the channel tap corresponding to the fin-
ger movement and extracts the phase change of the selected tap to
accurately estimate the distance change of a finger. Moreover, it
estimates the absolute distance of the finger based on the change in
CIR using a novel optimization framework. We then combine the
absolute and relative distance estimates to accurately track the mov-
ing target. We implement our tracking system on Samsung Galaxy
S4 mobile phone. Through micro-benchmarks and user studies,
we show that our system achieves high tracking accuracy and low
latency without extra hardware.
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1. INTRODUCTION
Motivation: Smart appliances, Virtual Reality (VR), and Aug-
mented Reality (AR) are all taking off. The availability of easy-
to-use user interface is the key to their success. Smart TVs are
still cumbersome to navigate through menus. Many smart appli-
ances require users to manually launch smartphone applications
and click through, which is even more cumbersome than actually
turning on/off switches. VR and AR are expected to hit $150 billion
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by 2020. They provide immersive experience, and open the doors
to new ways of training, education, meeting, advertising, travel,
health care, emergency responses, and scientific experiments. How-
ever, the current user interfaces of VR/AR are rather limited. Our
vision is to develop a device-free user interface (UI) so that a user
can freely move his or her hand to control game consoles, VR, AR,
and smart appliances.

Directly tracking hand or finger movement without any device
is appealing due to convenience. We have interviewed VR, AR,
game developers and users. They all prefer device-free based user
interface (UI) (i.e., controlling devices directly using hands without
holding anything) since it is cumbersome to hold a device outside
the view and it is more natural to play games and interact with
VR/AR objects using hands directly.

Challenges: There have been considerable work on enhancing the
user interface of VR/AR devices. Google Daydream [8] and HTC
VIVE [37] provide controllers for motion tracking. Device-free
tracking is more convenient for VR users. Microsoft HoloLens [11]
enables vision based device-free gesture tracking using camera and
depth sensor fusion. However, it costs more than $3,000 in the
market. Vision based tracking incurs significant energy and com-
putational cost [30]. Also, its tracking accuracy highly depends on
the background color and lighting condition.

Besides vision techniques, radio and acoustic signals based ob-
ject tracking has received significant research attention. However,
enabling accurate device-free tracking using radio and acoustic sig-
nals is particularly challenging. In such a case, reflected signal has
to be used for tracking. Reflected signal is much weaker than di-
rectly received signal (e.g., in free space, the directly received sig-
nal attenuates by 1/d2 whereas the reflected signal attenuates by
1/d4, where d is the distance between the device and target to be
tracked). Moreover, it is more difficult to handle multiple reflec-
tion paths in device-free tracking. In device-based tracking, one
may rely on finding the first arriving signal since the straight-line
path between the sender and receiver is shortest. In comparison, in
device-free tracking, the path of interest is not the shortest, which
makes it even harder to distinguish which path should be used for
tracking.

In particular, there has been considerable amount of work on
device-free motion tracking using RF signals (e.g., [13, 2, 41, 32])
and acoustic signals (e.g., [21, 40]). However, they either require
specialized hardware, or provide insufficient accuracy. For exam-
ple, WiDeo [13] is a recent WiFi-based tracking scheme and pushes
the tracking accuracy to within a few centimeters, but it requires
full-duplex wireless hardware. WiTrack [2] tracks user position
with 10-13 cm error by using customized hardware that transmits
chirp signal through 1.67 GHz bandwidth. WiDraw [32] achieves
5 cm tracking accuracy with the support of 25 WiFi APs around



the user. Therefore, they require complicated hardware while pro-
viding insufficient accuracy to enable motion-based UI for VR/AR
users. Millimeter-wave based tracking schemes, such as Goolge
Soli [17] or mTrack [41] achieve higher accuracy, but require 60
GHz antenna arrays that are not widely available yet. The acous-
tic based tracking schemes, such as AAMouse [44] or CAT [18],
achieve around 1 cm or lower median error on commodity devices.
However, they are device based schemes and assume the first ar-
riving signal should be used for tracking, which does not hold for
reflected signals. RF-IDraw [38] achieves high tracking accuracy,
but it requires the user to hold the RFID tag to be tracked.

Recently, two state-of-the-art acoustic tracking schemes (i.e., Fin-
gerIO [21] and LLAP [40]) enable device-free tracking only using
the existing speaker and microphones in mobile device. Although
they achieve higher accuracy than the other schemes, their tracking
accuracy is still limited due to multi-path and other movements. For
example, based on our extensive experiment, LLAP [40] achieves
0.7 cm distance estimation error in 1D tracking, but its trajectory
error in 2D space increases to 1.9 cm. When there are people mov-
ing around the tracking object, the accuracy further degrades. The
accuracy of FingerIO is even lower than LLAP.

Therefore, despite significant progress, achieving highly accu-
rate and responsive device-free tracking on commodity hardware
remains an open challenge. According to personal communication
with game and application developers, sub-centimeter level accu-
racy and within 16 ms response time are required in order to pro-
vide good user experience. This is especially challenging to achieve
using a commodity device, such as a smartphone, given its limited
processing power and lack of special hardware.

Our approach: Built on the existing work, we develop a new
device-free tracking using acoustic signals. In our system, a mobile
device (e.g., smartphone) continuously transmits inaudible acous-
tic signals. The signals are reflected by nearby objects, including
a moving finger, and arrive at the microphone on the same mobile.
The mobile analyzes the received signal to estimate the channel,
based on which it estimates the distance change and absolute dis-
tance to locate the finger. Due to the small wave-length of acoustic
signals, it is promising to derive the distance change based on the
phase. Phase is also more robust to imperfect frequency response
of a speaker. However, like many wireless signals, audio signals go
through multiple paths to reach the receiver (e.g., due to reflection
by different objects). Such multipath propagation poses significant
challenges for phase-based tracking. To address the challenge, we
estimate channel impulse response (CIR) in the time-domain. The
estimate gives the channel coefficient of each channel tap. We then
select an appropriate channel tap and use the phase of the selected
tap to estimate the distance change of a finger.

To further derive the absolute distance, we develop a novel frame-
work to estimate the absolute distance of the path reflected by the
moving finger during a few consecutive intervals such that its changes
match with the changes in the CIR during these intervals and the
distance changes between the intervals match with the phase mea-
surement. Inferring the absolute distance serves two purposes: (i) it
allows us to get the initial absolute distance so that we can translate
the subsequent distance change into a new absolute distance, and
(ii) it can be used to improve the tracking accuracy and alleviate er-
ror accumulation in subsequent intervals by combining it with the
relative distance change.

We implement our approach on Samsung Galaxy S4 mobile phone,
which has one speaker and two microphones, and enable real-time
tracking of the user’s moving finger. Using extensive evaluation,
we show our system has three distinct features: (i) high accuracy:
within 0.3 cm distance tracking error, 1.0 cm 2D tracking error, and

0.6 cm drawing error in a 2D space; (ii) low latency: we can update
the position every 12.5ms, and (iii) easy to deploy: with a software
app installation, a smartphone can track a nearby finger movement
without extra hardware.

Paper outline: The rest of this paper is organized as follows. We
describe our approach in Section 2, and evaluate its performance in
Section 3. We review related work in Section 4, and conclude in
Section 5.

2. OUR APPROACH
In this section, we present a fine-grained acoustic-based device-

free tracking.

2.1 Overview
We use the phase change of the acoustic channel to estimate the

distance change. This allows us to achieve high accuracy because
the acoustic wavelength is very short. For example, the wavelength
is 1.9 cm in 18 KHz audio frequency. Only 1 mm movement causes
the reflected path length to change by 2 mm, which results in 0.21π
phase change, large enough to detect.

However, in practice, due to multi-path propagation (i.e., a sig-
nal traverses multiple paths before arriving at the receiver), the im-
pact of a moving target on the overall channel can be very com-
plicated, and varies across environments. In order to address this
challenge, we use the phase from the estimated channel impulse
response (CIR) rather than the raw received signal. CIR is a char-
acterization of all signal traversal paths with different delays and
magnitudes [27]. Specifically, it is a vector of channel taps where
each channel tap corresponds to multi-path effects within a specific
delay range. By focusing on the phase change of certain channel
taps whose delays are close to the target delay range, we can ef-
fectively filter out the phase change incurred by the movement of
objects outside a certain range as determined by the number of taps
being used.

The phase change only gives us the distance change. We need to
know the absolute distance at some point in order to translate the
distance change into an absolute distance for tracking. Moreover,
using the distance change alone incurs error accumulation, since
the distance at a given time is estimated as the sum of all previous
distance changes plus the initial position, each of which may incur
an error. To address both issues, we develop a technique to esti-
mate the absolute distance, which is used to get the initial position
and also enhance the tracking accuracy by combining it with the
distance change over time.

Putting together, our overall system consists of the following
steps, which we will elaborate in this section.

1. Estimate channel impulse response (CIR) (Section 2.3);

2. Identify the channel tap corresponding to the target, and track
the phase change of the selected tap in CIR to estimate the dis-
tance change (Section 2.4);

3. Estimate the absolute distance based on CIR (Section 2.5);

4. Combine the absolute distance with the relative distance to get a
more accurate distance estimate, and track the target’s position
based on the distance to different landmarks (e.g., microphones)
(Section 2.6).

Our system implementation uses 18-22 KHz frequency and 48 KHz
sampling rate. We can easily support other bandwidths and sam-
pling rates.
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Figure 1: Impact of sinc() on channel estimate.

2.2 Background
A wireless signal, including an audio signal, travels through a

straight line from the transmitter to the receiver in free space. In
reality, due to obstacles in the environment, a single transmitted
signal will reach the receiver via multiple paths (e.g., paths going
through different reflectors). Therefore, the received signal is a su-
perposition of multiple signals with different delays. The received
signal via multipath is traditionally modeled as the following Lin-
ear Time-Invariant (LTI) system [35]. Suppose the channel has L
paths and the received signal from path i has delay τi and ampli-
tude ai determined by the travel distance of the path and reflectors.
Then, the received signal y(t) is the summation of L signals, as
shown below:

y(t) =

L∑
i=1

aix(t− τi) =

L∑
i=1

aie
−j2πfcτis(t− τi) = h(t) ∗ x(t),

(1)

where s(t) and x(t) are the transmitted baseband and passband
signals at time t, respectively, and h(t) is the channel impulse re-
sponse. h(t) =

∑L
i=1 aie

−j2πfcτiδ(t− τi), where δ(t) is Dirac’s
delta function [22].

The channel estimate from the received baseband symbols is a
discrete output of h(t) sampled every Ts [35], which is

h[n] =

L∑
i=1

aie
−j2πfcτi sinc(n− τiW ), (2)

where sinc(t) = sin(πt)
πt

. Conventionally, h[n] is called the n-th
channel tap, because CIR is regarded as a discrete-time filter in LTI
system. Note that sinc function decays over time, so the impact of
delayed signal on the measured h[n] is small when the difference
between nTs and τi are sufficiently large. However, if they are
relatively close, movement is captured in multiple channel taps due
to the signal dispersion effect of sinc function. This is illustrated in
simulation result in Figure 1, where the channel is affected by one
reflected signal at 30 cm (i.e., τ = 0.697 ms). From the figure, we
can observe that not only the closest channel tap from τ (i.e., h[3]),
but also the other nearby channels are affected by a single reflected
signal.

2.3 Estimating Channel Impulse Response
Single-carrier communication channel: To estimate the channel,
we design data communication for acoustic channel. An important
design decision is whether we should use single-carrier or multi-
carrier (e.g., OFDM) communication. OFDM is widely used in
modern wireless communication due to its efficiency and robust-
ness to Inter Symbol Interference (ISI) caused by multipath. How-
ever, it yields channel estimation in frequency domain, while chan-
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Figure 2: Transmitter and Receiver system diagram.

nel estimate is often more useful in time domain for tracking and
localization purpose [19]. So we need to transform channel coef-
ficients from frequency domain to time domain, but this process
requires additional computation due to IFFT. Therefore, we use a
single-carrier based communication system to directly estimate the
channel in time domain without extra processing.

Transmission signal design: A transmitter sends a known training
sequence for channel estimation. Let S = {s[1], ..., s[K]} denote
the training sequence, whereK is the length of the sequence. It can
be any random bits. We choose 26-bit GSM training sequence be-
cause it is known to have good properties for synchronization and
channel estimation [25] and widely used in single carrier commu-
nication. We modulate S to BPSK symbols, where bits 0 and 1 are
mapped to baseband symbols 1 and -1, respectively.

Figure 2(a) illustrates signal generation and transmission pro-
cess. To transmit a modulated symbol over the inaudible frequency
band, we first need to reduce the signal bandwidth so that it does
not exceed the maximum allowed bandwidth of the inaudible band.
Let fs and B denote the sampling rate and the channel bandwidth,
respectively. To limit the bandwidth of the transmitted symbol, we
upsample the symbol at a rate of fs

B
, which is done by zero padding

and low-pass filtering to smooth discontinuity [22]. Finally, we up-
convert the signal to transmit it over the inaudible band. Let fc
denote the center frequency of the passband. We change the fre-
quency of the signal by multiplying

√
2 cos (2πfct) to the base-

band signal: x(t) =
√

2 cos (2πfct)s(t), where s(t) and x(t)
are upsampled baseband and passband signals, respectively. Since
BPSK only has real parts, x(t) =

√
2e−j2πfcts(t).

To remove noise outside the transmission band, we perform band-
pass filtering on x(t) with pass-band from fc− B

2
Hz to fc+ B

2
Hz.

The generated passband signals are transmitted through the smart-
phone speaker. Since the transmitted training sequence is always
fixed, it can be generated offline and saved as a format of 16-bit
Pulse Coded Modulation (PCM) in a Waveform Audio (WAV) file,
which can be played by any mobile device that supports it (e.g.,
smartphone or smart watch).

We refer to the training sequence as a frame. Between frames,
we insert a fixed gap (i.e., zero symbols) to avoid inter-frame inter-



ference. The gap should be sufficiently long so that the delayed sig-
nal from the previous frame does not interfere with the new frame.
However, it should be as short as possible to provide low latency.
Our study shows 24 zero symbols between frames are sufficient. As
a result, a frame has 50 symbols. Given that the baseband symbol
interval is 1

B
= 0.25 ms, each frame lasts 12.5 ms. So we update

new channel estimate and the target’s position every 12.5ms, which
is below 16 ms required for providing seamless user experience.

Receiver design: Figure 2(b) illustrates the signal reception and
baseband conversion process. The received passband signal y(t)
arriving at the microphone is converted into a baseband symbol
r[n] using the following down-conversion process: y(t) is multi-
plied by

√
2 cos (2πfct) and −

√
2 sin (2πfct) to get the real and

imaginary parts of the received baseband symbol, respectively. We
perform low-pass filtering and down-sampling to select a signal ev-
ery symbol interval. This gives us the following baseband signal 1:

r[n] =
√

2 cos (2πfct)y(t)− j
√

2 sin (2πfct)y(t)

=
√

2e−j2πfcty(t),

where t is the time that the n-th baseband symbol is sampled (i.e.,
t = n× Ts, where Ts is a symbol interval).

Frame detection: After passband-to-baseband signal conversion,
the receiver detects the first symbol of the received frame by energy
detection and cross-correlation. We first detect the rough beginning
of the frame based on energy detection: if the magnitude of three
consecutive symbols is higher than the threshold σ, we treat the first
symbol as the beginning of the frame symbols. Our implementation
uses σ = 0.003. This value needs to be carefully selected depend-
ing on the phone and the volume of the speaker. Then we find more
precise starting point based on cross-correlation. Specifically, we
find the sample that gives the maximum cross-correlation magni-
tude between the received and transmitted frames. Note the frame
detection procedure is only necessary at the beginning of track-
ing. Since the frame interval is fixed, once a frame is detected, the
subsequent frames can be determined by adding a constant frame
interval.

Channel estimation: Next we estimate the channel based on the
received frame and the known training sequence. There are several
existing channel estimation algorithms in single carrier communi-
cation system. We use least-Square (LS) channel estimation since
it is cheap to compute on a mobile. We mainly focus on the algo-
rithm implementation, and refer readers to [25] for the fundamental
theory behind it.

For LS channel estimation, one needs to decide the reference
lengthP and the memory lengthL, whereL determines the number
of channel taps we can estimate and P +L is the training sequence
length. Increasing L allows us to estimate more channel taps but
reduces the reliability of estimation. Our implementation uses P =
16 and L = 10, which implies we can track movement up to 50 cm
away (see Section 2.4.1). One can easily adapt P according to the
environment.

Let m = {m1,m2, . . . ,mL+P } denote the training sequence.

1Conventionally, (·) and [·] notations are used to represent analog
and digital signals, respectively. Here every signal is digital be-
cause a mobile app cannot access the analog signal. We use (·) and
[·] notations to distinguish upsampled signal with rate fs from the
downsampled signal with rate B.

A circulant training matrix M ∈ RP×L is:

M =


mL mL−1 mL−2 . . . m1

mL+1 mL mL−1 . . . m2

...
...

...
. . .

...
mL+P mL+P−1 mL+P−2 . . . mP+1

 .
Let y = {y1, y2, . . . , yL+P } denote the received training se-

quence. The channel is estimated as

ĥ = (MHM)−1MHyL, (3)

where yL = {yL+1, yL+2, . . . , yL+P }.
Given the pre-computed (MHM)−1MH , the computational cost

of the channel estimation is only the matrix-to-vector multiplica-
tion, which is O(P × L). Considering P = 16 and L = 10, the
channel estimation complexity is low enough to implement on a
mobile.

To further improve the channel estimation accuracy, unlike in the
traditional digital communication, which picks one out of every r
samples during downsampling, where r is the upsampling rate, we
use the average of the first l in the r samples to estimate the channel
every sampling interval.

2.4 Tracking Phase Change

2.4.1 Overview
Next we track the phase change based on CIR estimates. We

study the impact of the reflected signal using the following experi-
ment. We move a small aluminum ball (< 1 cm diameter) attached
to a long and thin wood stick. The person moving the stick is over
1 m away from the ball (outside the range of CIR taps). The ball
is initially 30 cm away from the smartphone and moved 20 cm to-
wards the phone. Figure 3 shows the phase of multiple channel taps
while the ball is moving towards the smartphone. How to observe
the phase of the moving object will be explained in detail in Sec-
tion 2.4.2. The result shows that the phase rotates in multiple taps,
which indicates the path length is changing. This change is caused
by the moving ball. As shown in Figure 3, even though only a sin-
gle small object moves, the phase rotation is observed in multiple
taps. We repeat the experiments multiple times, and find that the
phase rotation is observed approximately in 3 consecutive taps and
the reflected signal with delay τ affects the three h[n] that have the
smallest |τ − nTs|. As a result, h[n] can be approximated as:

h[n] ≈
∑
k

ake
−j2πfcτk , (n− 3

2
)Ts < τk < (n+

3

2
)Ts.

(4)
In other words, each channel tap h[n] contains the phase and mag-
nitude of the reflected signals whose delays are between (n− 3

2
)Ts

and (n+ 3
2
)Ts. The path length changes with the delay τk accord-

ing to dk = τkVc, where dk is the travel distance of the path k
and Vc is the propagation speed of the audio (i.e., Vc ≈ 340m/s).
Assuming that the speaker and microphone are closely located, the
distance from the microphone to the reflecting object is approxi-
mately half of the travel distance. Therefore, h[n] indicates the
object’s distance from microphone is between (n − 3

2
)TsVc

2
and

(n + 3
2
)TsVc

2
. Given Ts = 0.25 ms, TsVc

2
= 4.25 cm and each

tap captures objects across 12.75 cm range. This enables us to filter
out the movement of objects outside the target range. For example,
if we want to track the movement of a finger within 50 cm from
the mobile, we can limit the channel taps to the first 10 taps to fil-
ter out the movement outside 50 cm. This is because the 10th tap
may contain information from objects up to around 12th taps away,
which gives 12 ∗ 4.25 = 51 cm.
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Figure 3: Phase change in multiple channel taps while moving
a ball.

Next we track the phase change using the CIR estimate. While
the CIR vector captures the channel with different propagation dis-
tances, it is challenging to extract the phase change caused by the
target movement based on CIR since multiple paths with similar
distances are mixed within each channel tap. To address the is-
sue, we decompose the problem into the following two steps: (i) if
we know which channel tap is affected by the moving target, how
to extract the phase change caused by the target’s movement, and
(ii) how to determine which channel tap is affected by the target.
Below we present our approaches to address both issues.

2.4.2 Estimate Phase Change
We assume the k-th channel tap is affected by the target’s move-

ment. In order to observe the phase change of the moving target, we
compare the two consecutive channel measurements. Taking dif-
ference between the two consecutive channels effectively removes
dominant static reflections. Let Lk denote the number of paths ob-
served in h[k]. Suppose the Lk-th path is the path reflected from
the moving finger, while the other Lk − 1 paths remain the same
during the two consecutive channel measurement periods t−1 and
t. Then,

h[k]t−1 =

Lk∑
i=1

aie
−j2πfcτi(t−1),

h[k]t =

Lk−1∑
i=1

aie
−j2πfcτi(t) + aLke

−j2πfc(τLk (t−1)+τd(t)),

where h[k]t is the k-th channel tap estimated from the t-th frame
and τd(t) is the delay difference caused by the target movement be-
tween the t-th and (t−1)-th frame intervals (i.e., τd(t) = τLk (t)−
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Figure 4: Phase of the channel impulse responses while a finger
is moving.

τLk (t− 1)). By taking their difference, we get

hd[k]t = aLk (e−j2πfc(τLk (t−1)+τd(t)) − e−j2πfcτLk (t−1)), (5)

where hd[k]t = h[k]t − h[k]t−1. Equation 5 assumes that aLk
associated with a propagation path is constant over two consecutive
measurements due to a very small distance change in a 12.5 ms
interval. From the angle of hd[k]t, we observe the phase rotation
caused by the change of τLk (t).

∠(hd[k]t) = ∠(e−j2πfc(τLk (t−1)+τd(t)) − e−j2πfcτLk (t−1))

= ∠(e−j2πfcτLk (t−1)(e−j2πfcτd(t) − 1))

= ∠(e−j2πfcτLk (t−1)) +
∠(e−j2πfcτd(t))

2
+
π

2
, (6)

where ∠(X) is the phase of the complex number X . We can prove
∠(e−j2πa − 1) = ∠(e−j2πa)

2
+ π

2
geometrically. The proof is

omitted in the interest of brevity. Equation 6 assumes ∠(hd[k]t) is
smaller than π.

Figure 4 (a) and (b) show the phases of h[k] and hd[k], respec-
tively, while a user is moving his finger towards the speaker and
microphone. In the collected trace, we conjecture h[k] includes
the finger movement related path between 1.0 second and 4.6 sec-
ond. In Figure 4(a), the phase is very stable and the change by the
finger movement is not clear because the majority portion of h[k]
contains signals from the static paths. After removing the impact
of the static paths, we can observe clear phase rotation due to the
finger movement from hd[k].

From the phase difference between hd[k]t+1 and hd[k]t, we get
the phase rotation caused by the delay difference ∠(e−j2πfcτd(t)),
and eventually the travel distance of the finger during the measure-
ment interval using the relation between the phase change. Note
that τd(t) = τLk (t)− τLk (t− 1). Using Equation 6, we represent
the phase difference as

∠(hd[k]t+1)− ∠(hd[k]t) = ∠(e−j2πfcτLk (t))

−∠(e−j2πfcτLk (t−1))+
1

2
(∠(e−j2πfcτd(t+1))−∠(e−j2πfcτd(t)))

= ∠(e−j2πfcτd(t))+
1

2
(∠(e−j2πfcτd(t+1))−∠(e−j2πfcτd(t))).

By solving the above equation, we can calculate ∠(e−j2πfcτd(t)).
Without prior, we can simply assume τd(t + 1) = τd(t). Once
we get the phase rotation, we can calculate the distance change
based on dt = λ × ∠(e−j2πfcτd(t))/2π, where dt is the distance



change of the dynamic path at time t, and λ is the wavelength of the
audio signal. This relationship holds as long as the phase change
is smaller than π, which holds for our finger movement speed and
interval duration.

2.4.3 Finding Channel Tap Corresponding to the Tar-
get

Section 2.4 assumes we already know which tap to use for track-
ing the finger movement. This section describes how to find the
right tap that includes the path reflected from the finger among
multiple possible taps. Note that as mentioned in Section 2.4.1,
the phase rotation by the finger movement is observed in multiple
taps rather than in a single tap. Therefore, we just need to select
one of these taps.

The channel taps can be classified as dynamic taps (i.e., those
that includes dynamic paths) and static taps (i.e., those that do not).
The right taps should be dynamic taps, since we are interested in
tracking finger movement. If all taps are static taps, it means the
finger does not move and its position does not need to be updated.

Criterion 1: Compared to the static taps, the dynamic taps have
relatively larger variation of the channel over time. Therefore, we
develop the following test to identify dynamic paths in the tap k:

M1[k]t =
|h[k]t − h[k]t−1|

|h[k]t| > σl,

which compares the normalized difference in the magnitude of two
consecutive channels with a threshold σl. We use σl = 0.05.

Criterion 2: While the above condition distinguishes between the
dynamic and static taps, the noise in the channel estimation might
cause the classification error. Therefore, we add another criterion
based on the following observation: the phase rotation of static tap
k, denoted as hd[k], is very unstable because all static paths are re-
moved during the differentiation process and the remaining value in
hd[k] may contain random noise. In comparison, if k is a dynamic
tap, the phase rotation of hd[k] is much more stable because hd[k]
includes the dynamic path and its phase change over the measure-
ment interval is stable. This is evident from Figure 3 and 4, which
show the phase changes when the dynamic path is not included in
the channel tap.

Based on this observation, we develop the following criterion
to select the final tap. We measure the stability of phase change,
which is defined as the phase change difference over the last three
measurements. Specifically, we find the maximum phase change
over the three periods: M2[k]t = maxi=t−2,t−1,t f(i), where
f(i) = |∠(e−j2πfcτ

k
d (t)) − ∠(e−j2πfcτ

k
d (t−1))|. We select the

tap with the smallest maximum phase change (i.e., the smoothest
tap) from all taps that satisfy the criterion 1 as the final tap.

2.5 Estimating Absolute Distance
So far, we have focused on tracking the distance change of the

finger by observing the phase. We need an absolute initial distance
at some point in order to get the distance over time. Therefore, we
develop a method to estimate the absolute distance based on the
channel coefficients.

How to accurately estimate the absolute distance based on the
channel estimate is an open problem. WiDeo [13] and Chronos[36]
cast this problem as non-linear optimization problems, which search
for the parameters associated with each channel tap such that the
sum across all taps matches the overall channel measurement. This
is effective when the channel is sparse. [13, 36] show this approach
achieves decimeter-level accuracy in WiFi. We have tried this ap-
proach in our context, and found the accuracy is poor when applied

to acoustic signals due to many multipaths, which results in many
unknowns and a severely under-constrained system.

Basic framework: We develop a new formulation to address the
under-constrained problem. It is motivated by the following impor-
tant observation. We do not need to reconstruct complete channel
profile in order to track a moving finger. Instead, we just need to
reconstruct the delay and magnitude of the path that is reflected by
the finger. Since a finger is small, it is reasonable to assume only
one path is reflected by the finger. Therefore, we can take the differ-
ence between the two consecutive CIR estimates, which will cancel
out all static paths and reduce the unknowns to the number of the
parameters associated with the path that is reflected by the finger.
Recall Equation 2 models the impact of reflection on the estimated
channels. We take the difference between the two consecutive CIR,
which removes all static paths and only keeps the path reflected by
the moving finger:

hd[n] = a(e−j2πfc(τ+τd) sinc(n− (τ + τd)W )

− e−j2πfcτ sinc(n− τW )), (7)

where a and τ are the amplitude and delay of the signal reflected
from the finger, respectively 2. Based on the measured hd[n], our
goal is to find τ and a that minimize the difference between the
measured and estimated CIR change, where the estimated CIR is
derived from the mathematical model using Equation 7.

To further improve the accuracy, we minimize the difference be-
tween the measured and estimated CIR change over multiple con-
secutive CIR measurements. Our implementation considers the
past 3 CIR measurements (i.e., the CIR change from t− 2 to t− 1
and from t − 1 to t). We still compute the coordinate every in-
terval except that we use the most recent 3 CIR measurements to
construct the optimization problem. Therefore, we can improve the
accuracy while maintaining 12.5 ms tracking interval.

Putting together, we solve the following optimization problem:

min
τ,τest

d
(i),a

:
∑
i

L∑
n=1

[
ht,t+id [n]−

a(e−j2πfc(τ+τ
est
d (i)) sinc(n− (τ + τestd (i))W )

−e−j2πfcτ sinc(n− τW ))
]2

+ α
∑
i

|τestd (i)− τd(i)| (8)

where ht,t+id [n] denotes the measured CIR change in the n-th tap
from the t-th measurement to the t + i-th measurement, τestd (i) is
the inferred delay change from the t-th measurement to the t + i-
th measurement, and τd(i) is the delay change derived from the
phase measurement in Section 2.4. a, τ , and τestd (i) are unknowns.
The first term in the objective captures the fitting error between
the measured CIR change versus the CIR change derived from the
absolute distance based on a, τ and τestd (i), and the second term
captures the fitting error between the inferred delay change versus
the delay change measured from the phase. α captures the relative
weight between the two terms, and set to 100 in our evaluation due
to more accurate distance change measurement.

Compared with the channel decomposition in [13, 36], which
tries to find τ ’s and a’s associated with all paths in the channel,
our scheme finds τ and a associated with the path reflected by the
moving finger. This has two benefits: (i) it reduces the number
of unknowns and improves the accuracy while reducing computa-
tion cost, (ii) it removes all static paths and helps reduce the error.

2Note that Equation 5 is based on Equation 4, which is an approx-
imation to Equation 2.
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Figure 5: Measured, re-generated, and ground-truth channel
differences with coarse and fine grained channels based abso-
lute distance estimation.

Moreover, we leverage the information across multiple measure-
ments to further enhance the accuracy. Once we get τ , we can
easily calculate the absolute distance as the product of delay (τ )
and sound propagation speed.

Enhancement: While the above approach is useful to find the ab-
solute distance, its accuracy is limited by the resolution of the esti-
mated channel. Since the channel bandwidth is limited to 4 KHz,
the baseband symbol interval is 0.25 ms, which is translated into
the channel resolution of 4.25 cm. When we try to find τ using
h[n] sampled every 4.25 cm, the error increases due to the coarse
resolution.

To enhance the accuracy, we exploit the over-sampled signals
to achieve finer resolution. For the over-sampled signals received
between h[k] and h[k+ 1], we estimate the channel using the same
method in Section 2.3. These samples are 0.0208 ms apart (i.e.,
1
Fs

ms), which corresponds to the distance resolution of 3.5 mm.
As a result, the resolution of the channel estimation is limited not
by the baseband symbol rate but by the sampling rate of the audio
signal, which is 12 times higher! With this fine-grained channel
estimation, we find τ using the same optimization framework.

Figure 5 shows the impact of coarse-grained and fine-grained
channel estimation on the absolute distance estimate. In this ex-
periment, we record the audio signal while a user is moving his
finger, and estimate the absolute distance using the measured chan-
nels. For ease of interpretation, we represent the x-axis of Figure 5
as the distance corresponding to the delay of the channel. The red
lines in the figures show measured channel difference. The green
and blue lines correspond to the channel differences by plugging
in the estimated and ground-truth delays into Equation 7, respec-
tively. The ground-truth finger distance is 32 cm. As we can see,
the channel difference under the coarse channel estimation devi-
ates from the ground-truth, and has 2 cm error. In comparison, the
channel difference from the fine grained estimation is close to the
ground-truth, and has only 0.4 cm error.

2.6 Tracking the moving finger in 2D space
In Section 2.4 – Section 2.5, we present an approach to estimate

the distance to the target. This allows us to track in 1D space,
which is already useful for some applications. Next we describe
how to track a finger in 2D space by leveraging two microphones
on a smartphone (e.g., Samsung S series).

Combine relative and absolute distance: We use both absolute
distance and distance change estimated from the phase to track the
target. At the beginning, we use the absolute distance to get the
initial position of the target. Afterwards, we can get two distance
estimates: dpk estimated from the phase and dck estimated from the
channel difference, where dpk = dk−1+∆dpk and ∆dpk is computed
as a function of the phase change. We then combine the two dis-
tance estimates using a weighting factor β: dk = (1−β)dpk+βdck.
β is set to 0.1 due to more accurate phase change measurement. In
section 3.3.3, we extensively evaluate the various β values.

Estimate coordinate: Given the phone form factor, we know the
relative locations of the speaker and microphones. Suppose the
speaker is located at the origin (0, 0), and the two microphones
are located at (x1, 0) and (x2, 0), respectively. We assume they
are all aligned in the same Y-axis. The finger should be on the
ellipse whose foci are (x1, 0) and (x2, 0) and the total distance
to the foci are d1 and d2, respectively. Using two microphones as
landmarks, we can track the finger by finding the intersection of the
two ellipses. There are multiple intersections between two ellipses
when they overlap, and we select the one closer to the previous
position.

3. PERFORMANCE EVALUATION

3.1 Experiment setup
To evaluate performance and conduct user study, we implement

an Android app that processes the audio signal and tracks the fin-
ger movement in real-time. We use Samsung Galaxy S4 with An-
droid 5.1.1 as a tracking device. It has one rear speaker and two
microphones at the top and bottom of the phone with 14 cm sepa-
ration. The mobile app plays audio file generated as explained in
Section 2.3, and analyzes the audio signal received from the mi-
crophones to track the finger in real-time. The speaker’s volume
is set to 80% of the maximum. We use inaudible audio frequency
between 18 KHz and 22 KHz for transmission, and set the tracking
interval to 12.5 ms. To convert passband to baseband, we imple-
ment an infinite-impulse response (IIR) low-pass filter.

To collect the ground-truth of the finger movement, we let the
user move the finger on the top of a smart tablet, shown in Fig-
ure 6. It collects the touch event of the screen and generates the
ground-truth trajectory of the finger movement, which is compared
with the position estimated by our approach. This setup is only
needed for collecting the ground truth to quantify the accuracy, and
our scheme lets users freely draw in the air. In user study, we show
simple shapes, such as a triangle, diamond, and circle on the tablet
screen, and ask the user to trace the shapes. The average distance
of the shapes is 22.3 cm. For data collection and user study, we
recruit 5 users: four are men and one is woman. They are college
students between 21 to 29. This age-group is among the most ac-
tive VR/AR users. The data is collected at a student office in the
department building surrounded by desks, cubicles, walls and small
objects nearby, and people are allowed to move around the tracking
device.



Figure 6: Testbed setup for the performance evaluation.

3.2 Baseline Schemes
We compare our scheme with the following two acoustic signal

based device-free tracking schemes:

Low Latency Acoustic Phase (LLAP): LLAP [40] tracks the fin-
ger movement by observing the phase change of the reflected sig-
nal. In this scheme, the transmitter continuously sends sine waves
and the receiver tracks the moving target based on the phase change
of the received waves. We implemented LLAP closely follow-
ing [40]. We generate the transmission signal sin (2πfct) using
MATLAB, stored as 16-bit PCM-format WAV file, and transmitted
through the speaker. At the receiver side, the audio signal from the
microphone is first multiplied by

√
2 cos (2πfct) and−

√
2 sin (2πfct),

and goes through a low-pass filter to get the real and imaginary
parts of the received signal, respectively. The phase of the mov-
ing finger is tracked by Local Extreme Value Detection (LEVD)
algorithm in [40] that filters out static signals and tracks the phase
change by the finger movement. It improves the accuracy of the
phase estimation by averaging multiple received signals. We take
the phase after averaging all received signals during 12.5 ms so
that both Strata and LLAP have the same tracking delay. Also, we
used the multiple frequencies to address the multi-path fading as
proposed in [40]. We did not implement its absolute distance esti-
mation algorithm in LLAP for initialization. Instead, we used the
ground-truth for the initial position estimation.

The main difference between Strata and LLAP is that the for-
mer separately measures the phase change of the signals with dif-
ferent delays while the latter measures the phase change caused
by all of the surrounding objects. Since multiple body parts may
move together while the user moves the finger, using the combined
phase change yields less accurate finger tracking. The problem is
even worse when there are other moving objects and people nearby,
which can be common in practice. Our evaluation results of its 1D
distance estimation error is similar to what is presented in [40]. In-
terestingly, [40] did not evaluate the 2D tracking error.

Cross-correlation based tracking: This scheme tracks a moving
object by measuring the change in the cross-correlation of the re-
ceived signal, called echo profile proposed by FingerIO [21]. It
transmits an OFDM symbol every interval and locates the moving
finger based on the change of the echo profiles of the two consecu-
tive frames. Specifically, every interval it compares the difference
between the echo profiles of the two consecutive frames and fil-
ters out the points whose differences are smaller than a pre-defined
threshold. Among the remaining unfiltered points, it selects the
point closest to the beginning of the interval since the direct path
is the shortest path. We carefully followed the description of [21]
in our implementation, but achieved much lower accuracy than [21]
perhaps due to additional optimization used but omitted in [21]. We
identified a few ways to improve [21]. First, we use larger band-
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Figure 7: Impact of distance on tracking error.

width and longer FFT size for OFDM symbol, both of which help
to improve the tracking accuracy. We select FFT size of 256 and
6 KHz bandwidth (16 – 22 KHz) for transmission while the other
approaches including ours still use 4 KHz bandwidth. Second, we
find the difference between the two consecutive profiles is small as
the finger is moving, which makes it challenging to select an ap-
propriate threshold for filtering. Instead, we select the point that
has the maximum cross correlation difference. Our results show
this helps to improve accuracy and we can now roughly track the
position of the moving finger, but sometimes detect a random lo-
cation due to noise. Therefore, we further filter out the positions
that are too far from the previous position. Our evaluation picks the
maximum peak that is within + − 10 cm away from the previous
position. 10 cm is a loose bound to tolerate the error in estimating
the previous position. After getting the distance estimation, we use
the same algorithm introduced in Section 2.6 to locate the finger in
a 2D plane.

3.3 Experimental Result

3.3.1 Phase based Tracking
Tracking accuracy in 1D: We first evaluate the accuracy of esti-
mating distance change. In this experiment, the user initially places
the finger 20 cm away from the mobile phone, and moves 10 cm to-
wards it. We repeat the experiment 200 times for each scheme and
collect the CDF of the distance error. As shown in Figure 7, the
median errors of Strata, LLAP, and cross-correlation based track-
ing (i.e., CC based) are 0.3 cm, 0.7 cm, and 1.5 cm, respectively.
Their 90th percentile errors are 0.8 cm, 1.8 cm, and 3.2 cm, respec-
tively. The performance of LLAP is similar to the result presented
in [40] when the finger is a moving object and the initial distance is
20 cm (e.g., see Figure 11(c) in [40].). Note that in [40], the authors
mostly used a hand rather than a finger to evaluate the tracking per-
formance. Figure 7 indicates that Strata can accurately track the
movement by observing the phase rotation from CIR. Its median
tracking error is less than half of LLAP. Since Strata separately
tracks the phase in the CIR vector, it can effectively filter out the
measurement noise from the user’s body movement. In compar-
ison, LLAP cannot since all signals are mixed up. The accuracy
of the cross-correlation based tracking (even after optimization) is
lower than both phase-based tracking schemes.

Tracking accuracy in 1D with other moving objects: One ad-
vantage of Strata is that it can distinguish movements at different
distances. This allows us to easily filter out the interference in-
curred by the movement of the surrounding objects in the phase
tracking. By limiting the channel taps to the first 10, we can ignore
the phase change caused by the moving object with the distance
larger than 50 cm.

To validate its effectiveness, we perform the distance tracking
experiment with a person moving in the background while another
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Figure 10: Impact of distance on tracking error.

user is moving his finger. The background user is approximately
60 cm away from the mobile phone. Figure 8 plots CDF of the
distance tracking error. In Strata, the tracking accuracy is almost
not affected by the background user: the median error increases by
only 1 mm over no background moving user.

For the cross-correlation based tracking, we set it to focus on the
phase change within the range between 0 to 40 cm. Even if there
is a change in echo-profile in the distance of the moving user, we
ignore it. As a result, it can effectively avoid the interference and
achieves similar median tracking error as before: 1.6 cm. In com-
parison, LLAP incurs considerable degradation due to the moving
user. The median error increases from 0.8 cm to 1.2 cm. Since it
does not have a mechanism to distinguish the phase change caused
by different objects, the background movement significantly de-
grades its tracking accuracy. LLAP [40] proposes to combine the
phase tracking results of different frequencies to mitigate the multi-
path fading, but we find it is not sufficient to cancel out the large
fading caused by moving people near the object to be tracked.

Varying the number of samples: Figure 9 is the average 1D track-
ing error with 95% confidence interval when various number of
samples are used for averaging downsampled signals as explained
in Section 2.3. The result shows that averaging 4 samples reduces
the error from 0.39 cm to 0.35 cm compared to simple downsam-
pling. Moreover, it reduces the variance. The 90th percentile error
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Figure 11: CDF of the absolute distance error.

decreases from 1.1 cm to 0.8 cm. Using more than 4 samples does
not lead to significant additional improvement. So we use 4 sam-
ples to reduce the computation cost.

Besides the number of samples, there are a few parameters that
should to be carefully selected for accurate tracking: 1) the frame
detection threshold σ, 2) the dynamic channel tap selection thresh-
old σl, and 3) weighting factor β. We extensively address β in
the next section, and skip detailed microbenchmark of σ and σl.
These parameters require calibration on different phones, but are
relatively easy to get after a few trials.

Impact of distances: We further vary the distance of the moving
target. Specifically, we set the initial distance of the finger from the
microphone to 20 cm, 30 cm, and 40 cm, move it 10 cm towards
the mobile phone, and measure the distance error. Figure 10 shows
the average error with 95% confidence interval. The mean track-
ing errors are 0.35 cm, 0.55 cm, and 0.9 cm, respectively, as the
distance changes from 20 cm to 30 cm to 40 cm. In all cases, the
average error is within 1 cm.

3.3.2 Estimating Absolute Distance
Strata can not only track the distance change from the phase, but

also estimate the absolute distance using the channel difference as
explained in Section 2.5. To evaluate the accuracy of the absolute
distance estimation, we collected the audio and ground-truth data
while users are tracing the shapes on the tablet where initial po-
sition of the finger is 20 cm away from the phone. The distance
error is measured by calculating the difference between the esti-
mated distance of the finger and microphones versus the ground-
truth distance. Figure 11 shows the CDF of the distance error in
200 collected traces. The median and the 90th percentile errors are
1.0 cm and 2.1 cm, respectively. Note that the fine-grained channel
estimation significantly improves the accuracy. In terms of the me-
dian error, the error reduction from the coarse channel estimation is
48%. We also implement the other schemes that exploits CIR to de-
tect the distance of the target (i.e., WiDeo [13] and Chronos [36])
and evaluate their absolute distance estimation accuracy, but they
perform poorly for acoustic signals: their median tracking error is
larger than 10 cm, so we do not include the result in Figure 11.

3.3.3 Combining Relative and Absolute Distance Es-
timation

Comparison with the other acoustic tracking schemes: Finally,
we evaluate the tracking error in 2D plane. Given the finger’s dis-
tance from the left and right microphones, Strata and the base-
line schemes track the finger position in a 2D plane as explained
in Section 2.6. As shown in the previous evaluation results, the
phase-based distance tracking is more reliable than the absolute
distance estimation. Therefore, we set β of Strata to 0.1 to give
a higher weight to the estimate based on phase based tracking. For



0 1 2 3 4 5 6
Trajectory Error (cm)

0

0.5

1
C

D
F Strata

Strata- noise
LLAP
CC based

Figure 12: CDF of the trajectory errors with Strata, LLAP, and
cross-correlation based tracking.

0 0.1 0.2 0.5
Weighting Factor ( )

0

1

2

3

M
ea

n 
Er

ro
r (

cm
)

Figure 13: 2D trajectory errors with various weighting factors.

LLAP, we provide the ground-truth initial position and let it track
the finger starting from the ground-truth initial position. We col-
lect the finger trajectory tracked by the three schemes as well as the
ground-truth trajectory while the users are following the shapes on
the tablet screen. The initial distance is 20 cm. The trajectory error
is calculated by averaging the difference in the distance between
the estimated and ground-truth positions from all samples. Fig-
ure 12 shows the CDF of the trajectory errors of the three schemes
after repeating the experiment 200 times for each scheme. The me-
dian errors of Strata, LLAP, and cross-correlation based tracking
are 1.01 cm, 1.9 cm, and 3.47 cm, respectively. The 90th percentile
errors are 2.05 cm, 3.19 cm, and 4.18 cm, respectively. Similar to
1D tracking result, Strata yields the tracking error close to half of
that in LLAP, and cross-correlation based tracking shows the high-
est error among them. Note that the trajectory tracking error in 2D
is not reported in [40].

Figure 12 also shows the tracking experiment result in noisy en-
vironment. Using a PC with an external speaker, we played EDM
music [9] near the tracking device with the distance approximately
1m. We played it with median volume in the speaker, where the
sound pressure level near the phone was 70 dB. The result shows
noise has little impact on the tracking accuracy of Strata. Com-
pared to the other result without artificial noise, the distribution of
the tracking error is quite similar. The median error increases by
1 mm, but the 90th percentile error is hardly affected by the noise.
Similar findings were reported in several different acoustic signal
based tracking schemes (e.g., [44, 40, 33, 18]).

Figure 13 shows the average trajectory error with various weight-
ing factors on the absolute distance estimation (i.e., β). The result
shows that when we set β to small values, such as 0.1, it improves
the accuracy over the phase-based tracking alone. However, in-
creasing β more than 0.1 tends to increase the error because the
absolute distance error is less accurate than the phase based track-
ing. Note that even when β = 0, the absolute distance estimate is
still useful for getting the initial position.
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(b) 2D trajectory errors with various weighting factors.

Figure 14: Strata tracking evaluation when pen is tracked in-
stead of finger.

Tracking pen: So far, we have focused on tracking the finger
movement. Our CIR based tracking can effectively nullify the track-
ing noise from surrounding reflectors when they are sufficiently
separated. However, the reflections from the hand and arm move-
ment can affect the finger movement tracking, since the hand and
arm are close to the finger and their reflections are observed in the
same channel tap of the CIR. To understand the impact of hand and
arm movement on the tracking accuracy, we conduct the following
experiment. We track a pen attached to a 60 cm thin stick instead
of a finger. The user can remotely move it so that his body move-
ment does not affect tracking. We wrap the pen with aluminum foil
so that it can generate touch event to the capacitive sensing based
touch screen in the tablet, and collect the ground-truth of the pen
trajectory using the same method as before.

Figure 14 shows the pen tracking result. Its median and 90th per-
centile errors are 0.71 cm and 1.44 cm, respectively, which are 0.3
cm and 0.6 cm reduction from the corresponding finger tracking,
respectively. The error decreases since the impact of hand and arm
movement is removed. Figure 14(b) shows the mean tracking er-
rors with various weighting factors. Interestingly, when β = 0, the
finger and pen tracking have similar tracking errors. In this case,
we only use the phase to track the movement. Since the finger and
hand have roughly the same movement, phase-based tracking is
more robust to the arm and hand movement. In comparison, since
the hand and arm have different distances from the finger, their
movement has a larger impact on the absolute distance estimation.
In Figure 14(b), we observe the mean pen tracking error reduces
from 0.92 cm to 0.7 cm by increasing β from 0 to 0.1. Unlike the
finger tracking, further increasing β does not degrade the tracking
error of a pen. These results confirm our intuition that part of the
absolute distance estimation error comes from the hand and arm
movement.

User study: We evaluate how accurately users can draw shapes
with real-time feedback. We implement a JAVA program that re-
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Figure 17: Mean drawing errors of 5 users.

ceives the tracking result from the mobile phone and visualizes a
pointer on a PC screen controlled by the finger movement in real-
time. Then we asked the user to move the pointer to trace the shapes
(e.g., triangle, diamond, and circle) on the screen. The average
surface area of them are 31.1 cm. The quality of the drawings is
quantified using the drawing error, which is also used in [40]. For
each point that Strata estimates using the acoustic signals, we find
the closest point on the original shape to compute the distance and
compute the distance over all points.

Figure 15 shows the CDF of the drawing errors using 200 tra-
jectories collected from 5 users. The median and 90th percentile
drawing errors are 0.57 cm and 1.14 cm, respectively. When the
users draw with real-time feedback, they can compensate portion
of the tracking error by moving his finger towards the desired po-
sition. As a result, the drawing error tends to lower. Figure 16
shows sample drawings of the three shapes under median drawing
errors. As we can see, the traced trajectories are close to the orig-
inal shapes. Figure 17 shows the mean drawing errors of 5 users.
The user 2 corresponds to a female user while the other users are
male. The result shows that users achieve similar accuracy.

Tracking time: Every 12.5ms, Strata performs low-pass filtering,
passband to baseband conversion, channel estimation, and eventu-
ally tracks the finger movement. In our Samsung Galaxy S4, the
average processing time is 2.5 ms. According to [40], the process-
ing time of LLAP at each interval is 4.3 ms when the same device
is used. For the down-conversion, it already takes 3.5 ms. We ex-
pect that since LLAP uses multiple sine waves in different bands
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Figure 18: Energy consumption evaluation.

during the down-conversion process, it needs to filter the signal for
every band they use to receive the sine waves (9 in our implemen-
tation). On the other hand, Strata performs filtering only once for
the whole band. As a result, Strata spends less than 1 ms for the
down-conversion.

Energy consumption: Finally, we evaluate the energy efficiency
of Strata. In this experiment, we first fully charge the battery of the
phone, turn on the tracking app and let it track the finger movement,
and measure the battery consumption during 1 hour. For compar-
ison, we also evaluate the energy consumption of the vision based
tracking scheme. Since there is no particular finger tracking app in
the app market, we downloaded a popular camera app in Google
Play store, Face Camera [10], which tracks human face in camera
and adds some visual effects on it. We believe finger tracking and
face tracking are not quite different in terms of energy consump-
tion. While running Face Camera app, we only use camera based
track and do not use other features, such as taking picture or adding
visual effect. We also evaluate the energy consumption of the idle
phone as baseline. In all of these cases, we keep the screen turned
on assuming active use of the device.

Figure 18 shows the energy consumption during one hour. While
the phone is not actively running apps, it consumes 14% of its bat-
tery in an hour. When the acoustic finger tracking is used, it spends
8% more battery. On the other hand, vision based tracking con-
sumes 27% additional energy, which is 3 times more than the en-
ergy consumption of the acoustic tracking. The result demonstrates
Strata can achieve energy efficient finger tracking and is more en-
ergy efficient than vision based tracking.

4. RELATED WORK
We classify existing work into (i) device-free tracking and (ii)

device-based tracking.

4.1 Device-Free Tracking and Gesture Recog-
nition

Vision-based: Vision has been widely used in object tracking and
gesture recognition. Among them, Microsoft Kinect [1] has been
commercially very successful. It uses depth sensor as well as cam-
era to recognize a user’s movement. LeapMotion [16] is another vi-
sion based object tracking device on the market. Mirosoft Hololens [11]
provides vision and depth sensing based AR capability. While it is
expected that it can provide fine grained finger-level gesture recog-
nition based on rich amount of signal resources [34], it requires a
high-end device that costs over $3,000.

To increase the user base for VR/AR, Google provides a $10
Google cardboard [6] and many other companies sell VR head-
sets within $100 (e.g., Samsung Gear), which transforms a smart-
phone into an AR/VR device. It is expected that smartphone-based
VR/AR will likely dominate in the future due to widely available



smartphones. Since existing smartphones have limited computa-
tion power, energy, and sensing capability (e.g., no depth sensors),
audio based tracking used in Strata is more attractive than vision
to support smartphone-based VR by using the existing speaker and
microphone on the phone and significantly reducing energy con-
sumption. For example, [30] reports acoustic sensing consumes
20% energy compared to vision-based object recognition, and our
system is even more energy efficient than vision-based approach as
shown in Section 3.3.3.

RF-based: Recently, RF based device-free object tracking schemes
in smart home and office environment have received significant at-
tention [2, 32, 13, 41, 17]. WiSee [24] is a pioneering work that
uses WiFi signals to recognize 9 gestures in several environments.
WiTrack [2] applies Frequency Modulated Continuous Wave (FMCW)
to track a user’s location with 10-13 cm error in the x and y coordi-
nates, and 21 cm in the z-dimension. It uses customized hardware
that can sweep the channel in 1.7 GHz bandwidth. WiDraw [32]
estimates angle of arrival (AoA) using CSI, and achieves a me-
dian tracking error of 5 cm using 25 WiFi access points (APs).
The requirement of such a large number of APs significantly lim-
its the applicability of WiDraw. In comparison, we only require 1
speaker and 2 microphones on one machine to achieve higher ac-
curacy. WiDeo [13] tracks human motion based on reflected WiFi
signals with 7 cm tracking error. It implements on WARP using 4
antennas with full-duplex capable transceivers, which is not readily
available on the market. VitalRadio [3] also uses specialized hard-
ware to monitor the breathing rate by observing the phase change
of the RF signal. mTrack [41] and Soli [17] use 60 GHz signals for
gesture recognition. While 60GHz is promising, it requires signif-
icant extra hardware for sending, receiving, and processing signals
in real-time. [39] proposes Soli gesture recognition scheme with
the support of Convolutional Neural Networks (i.e., deep learning),
which is too expensive to run on mobile device.

Acoustic-based: Both LLAP [40] and FingerIO [21] track the fin-
ger movement using the reflected audio signal from a mobile phone.
LLAP develops a phase based tracking while FingerIO uses OFDM
symbol based movement detection. Our evaluation in Section 3.2
shows Strata out-performs both schemes because we extract the
path associated with the finger movement and track its phase change
instead of using the mixed signals. The authors of [7] develop a
system, called UltraHaptics, to provide haptic feedback based on
acoustic radiation force from a phased array of ultrasonic trans-
ducers. This requires customized hardware while Strata supports
tracking in software. ApneaApp [20] uses FMCW to track heart-
beat by looking at periodic patterns. Gesture recognition performs
pattern matching and requires significant training data. In compar-
ison, continuous tracking is more challenging due to the lack of
training data or patterns to match against.

4.2 Device-based Tracking and Recognition
IMU-based: IMU sensors have been commonly used for motion
tracking. Several works have reported that accelerometer has large
error and its error increases rapidly over time due to double integra-
tion over time [38, 44]. Gyroscope has pretty good accuracy, but is
not easy to use, since users have difficulty in how much to rotate in
order to control certain displacement movement [44].

Acoustic-based: Audio is attractive for localization and tracking
due to its slow propagation speed, which helps improve the accu-
racy. One line of research uses acoustic signals to estimate dis-
tance. For example, BeepBeep [23] develops a novel approach that
allows the sender and receiver with unknown clock offsets to mea-
sure the one-way propagation delay. SwordFight [45] addresses

several practical challenges in using audio signals for tracking (e.g.,
quickly detecting the signal, reducing computation overhead, and
accounting for measurement error during movement). Another line
of research uses acoustic signals for localization. Cricket [31] uses
both audio and RF to achieve median error of 12 cm with 6 beacon
nodes. Swadloon [12] exploits the Doppler shift of audio signal for
fine-grained indoor localization. Its error is around 50 cm. [15]
uses chirp-based ranging to achieve localization error within 1 m.
AAMouse [44] uses the Doppler shift to estimate the velocity, from
which it computes the distance to localize the mobile. Its median
error is 1.4 cm. Recently, CAT [18] develops a distributed FMCW
and combines it with the Doppler shift estimation to achieve 7 mm
error. The third line of audio based approaches target gesture recog-
nition. DoplLink [4] and Spartacus [33] use the Doppler shift of
the audio signal between the two mobile phones for gesture recog-
nition. DopLink [4] detects if a device is being pointed by another
device. Spartacus [33] uses the Doppler shift to determine the de-
vice’s moving direction and pairs it with another device moving in
the same direction. However, these all require the user to hold the
device, which have different applications from Strata that tracks
hand movement without device.
RF-based: WiFi has been widely used for localization and tracking
(e.g., [5, 26, 28, 36]). Many WiFi based localization uses received
signal strength and their accuracy is limited due to obstacles and
multipath. More recently, several works use channel state informa-
tion (CSI), which reports the RSS on each OFDM subcarrier group,
to provide accurate location distinction [28]. ArrayTrack [42] and
SpotFi [14] further use phase of the received signal to enhance the
accuracy. For example, ArrayTrack achieves a median error of 23
cm using 16 antennas. RF-IDraw [38] achieves 3.7 cm tracking
error. Tagoram [43] and MobiTagbot [29] achieve higher tracking
accuracy than the above RF-based schemes by assuming the RFID
tag or reader moves at a constant speed, so they have different ap-
plications from Strata.

5. CONCLUSION
This paper develops a novel device-free acoustic tracking sys-

tem that achieves 1.0 cm median tracking error. Through this pro-
cess, we gain several important insights: (i) phase-based tracking
is effective for acoustic signals due to its small wavelength, but we
need to use the channel estimate from an appropriate tap (instead
of the overall channel) to achieve high accuracy, (ii) it is hard to
estimate the absolute distance by directly decomposing the chan-
nel since acoustic channel is not sparse, and our formulation based
on the change removes static paths, which significantly reduces the
number of unknowns and improves accuracy, and (iii) combining
both distance change and absolute distance helps further improve
the accuracy. Moving forward, we are interested in further enhanc-
ing the accuracy and developing applications on top of device-free
tracking.
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