
MagicInput: Training-free Multi-lingual Finger Input
System using Data Augmentation based on MNISTs

Hao Pan*

Shanghai Jiao Tong University

panh09@sjtu.edu.cn

Yi-Chao Chen*

Shanghai Jiao Tong University

yichao@sjtu.edu.cn

Qi Ye
Shanghai Jiao Tong University

yeqi3614@sjtu.edu.cn

Guangtao Xue†

Shanghai Jiao Tong University

gt_xue@sjtu.edu.cn

ABSTRACT
Text input systems based on device-free finger tracking tech-

nologies have attracted considerable attention in the use sce-

narios of mobile and the Internet-of-Things (IoT) devices. Is-

sues pertaining to 2D tracking have prompted interest in using

1D finger trajectories for the recognition of handwritten letters.

Nonetheless, 1D tracking imposes two major challenges: (i)

Trajectory information loss from 2D to 1D; and (ii) Inter-user

diversity in writing traits. These challenges could possibly be

overcome by collecting a large training dataset for every user;

however, this would impose an unacceptable burden on users.

This paper presents a text input system with multi-language

support without training using acoustic-based 1D finger track-

ing technology. We developed a novel data augmentation

scheme, in which the handwritten image dataset MNISTs

are used to create artificial datasets (called TrackMNISTs).

We compensate for the trajectory information loss of 1D by

creating personal dataset (from TrackMNIST) to match the

writing habits of individual users. The proposed data aug-

mentation mechanism is also applicable to multilingual letter

recognition. In experiments, MagicInput achieved outstanding

classification accuracy on unseen users: 10 digits (98.3%), 26

uppercase/lowercase English letters (97.8%/95.3%), 49 Japan-

ese characters (91.4%), and the 30 commonly used Chinese

characters (93.8%).
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†Guangtao Xue is the corresponding author.
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1 INTRODUCTION
Motivation: Text input systems based on device-free finger

tracking technologies have attracted considerable attention for

mobile devices. Finger tracking technology based on acoustic

signals has been shown to achieve high precision using the

built-in speaker and microphone. The known audio signals (at

inaudible frequencies) are transmitted via a mobile, reflected

signal by the moving finger will be received and be analyzed

to track the finger location over time.

Currently, to obtain the distance between the finger and

the mobile, mainstream acoustic-based tracking technologies

calculate the initial absolute distance and update the value

by tracking the distance changes associated with the move-

ment of the finger [23, 32]. And the state-of-the-art work (e.g.,
Strata) can limit distance estimation error to less than 3mm in

1D tracking, and coordinate positioning error of 0.6cm in the

2D space during the preliminary duration [32]. Note that this

approach imposes cumulative errors pertaining to distance

change, such that the absolute distance error increases over

time. Even a tiny error in estimating the absolute distance

can lead to grievous errors in the 2D positioning coordinates.

When acoustic-based tracking system is used for extended

durations, the absolute distance estimation error increases to
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Figure 1: Exemplar 1D tracking trajectory while the user
writes a letter ’b’ in the air.

1.3cm in 1D tracking, and 7.9cm in 2D coordinate positioning.

Calibration mechanisms can be used for the cancellation of

accumulated error at regular intervals; however, this requires

that the user’s finger remain stationary for an extended pe-

riod, thereby undermining the user experience. Therefore, 1D

acoustic-based finger tracking is the better for high precision

and stability over time.

Fig. 1 is an example of 1D tracking trajectory as the user

writes the letter ’b’ in the air. The finger’s 1D position is

continuously tracked and recorded as a specific time-series

pattern determined only by variations in the relative distance.

Overall, 1D tracking provides three notable advantages for the

recognition of handwriting: (1) Only one microphone and one

speaker are required; (2) Errors in distance change estimation

are negligible (1.3mm), making it ideal for tracking process

over an extended duration; (3) Estimates of distance change

based on acoustic signal phase variations impose low compu-

tational overhead, thereby lowering energy consumption.

Challenges: The use of 1D tracking for handwriting recog-

nition also imposes two major challenges: (i) Different users

have different writing habits and characteristics. Unless the

system has access to a large-scale training dataset related to

the writing traits of an enormous number of users, the trained

classifiers will lack robustness when dealing with unknown

users. Furthermore, collecting training data from every target

user would be exceedingly difficult and negatively impact the

user experience. (ii) Unlike 2D tracking, 1D tracking discards

all characteristics of handwritten letters except for the dis-

tance change. This makes it difficult to develop an algorithm

for the classification of letter traces with high precision for

the majority of users.

Proposed Methods: In this paper, we sought to overcome

the lack of large-scale training datasets by developing a data

augmentation scheme based on the MNIST-series datasets

(hereafter referred to as MNISTs). The proposed scheme in-

volves generating artificial datasets (referred to as TrackMNISTs),

comprising 1D finger tracking patterns converted from the

handwritten images in MNISTs. We designed data augmen-

tation scheme into three steps: (i) We developed a stroke-

sequence restoration algorithm to reverse engineer the actual

handwriting process from which the images in MNIST were

derived. (ii) We simulated the trajectory of a finger jumping to

indicate a disconnection between strokes when writing letters

in the air. (iii) We augmented the dataset with data simulating

other personal writing characteristics, such as writing speed

and writing position. Note that the MNIST-series includes

many datasets of digital images covering a wide variety of

language types and rich writing styles. Thus, the proposed

data enhancement scheme is applicable to MNISTs of mul-

tiple languages. We also sought to overcome the difficulties

involved in designing a high-precision and robust classifier

for the unseen users. This was achieved by tailoring a dataset

specifically for each target user (i.e., one that best matches

their writing characteristics) in conjunction with a simple

classifier to enhance letter trace classification performance.

A prototype of our proposed text input system (called

MagicInput) was implemented on the Android phones equipped

with the Strata system [32] for 1D finger tracking. We then

conducted extensive experiments aimed at evaluating the ef-

fectiveness and generalizability of the proposed text input

system to multiple languages and a diversity of unseen users.

In experiments, MagicInput achieved outstanding classifica-

tion accuracy: 10 digits (98.6%) 26 lowercase English letters

(97.8%), 26 uppercase English letters (95.3%), 49 Japanese

characters (91.4%), and the 30 most commonly used Chinese

characters (93.8%).

Contribution: The contributions of this work are summa-

rized as follows:

• We developed a finger text input system with multi-

language support without training, based on an innova-

tive data enhancement scheme involving the generation

of an artificial dataset (TrackMNIST) from MNIST-

series datasets.

• We developed a stroke-sequence restoration algorithm

aimed at simulating the handwriting process underly-

ing the images in the MNISTs. We also simulated the

specific trajectory of finger jumping at disconnection

between strokes, as well as the various writing charac-

teristics (e.g., font size, writing speed and position).

• To overcome interference associated with the character-

istics of multiple users, we developed an online match-

ing mechanism to compile from TrackMNISTs a per-

sonalized dataset with a high similarity to the writing

characteristics of the target user. Combining a personal-

ized dataset with a simple classifier model was shown

to greatly improve classification accuracy.

• A prototype of the MagicInput implemented on An-

droid phones demonstrated the effectiveness and gener-

alizability of the proposed system in recognizing letters

and characters written by unseen users in a variety of

languages.
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2 RELATED WORK
2.1 Vision-based Text Input Methods
The standard approach to vision-based text recognition in-

volves analyzing a image of handwritten text in real time

by extracting character-related features for classification via

machine learning models or neural network-based deep learn-

ing methods, and can achieve character-level accurate rate

(95.88% ∼ 99.96%) on different languages after model train-

ing through enormous labeled datasets [20, 21, 29]. Note

however that vision-based methods are highly susceptible to

ambient, they raise issues pertaining to privacy, and impose

heavy computational burden.

2.2 RF-based Text Input Methods
RF-based device-free tracking schemes have also attracted

considerable attention [1, 11, 14, 22, 24]. Systems based on

Channel State Information (CSI) have proven highly effective

in guiding human-computer interactions; however, the use

of RF technology limits the detection resolution to the cen-

timeter scale, which makes it difficult to differentiate among

fine finger movements. WriFi uses WiFi signals for continu-

ous wireless input upper English letter recognition (with 86%

accuracy) based on PCA and FFT [8]. WiReaderr is an adap-

tive system that uses the CSI of commercial WiFi systems

for handwriting recognition on 26 uppercase English letters

(with 90.64% accuracy) [9]. However, this requires that users

produce obvious body movements (e.g., raise arms) to input

handwriting and cannot support lower English letters, which

can be awkward in many social situations.

2.3 Acoustic-based Text Input Methods
Many researches have used low-cost acoustic signals for the

input of handwriting. Acoustic-based methods can be divided

into those that rely on tracking and those that rely on audi-

ble sounds. A microphone is used to receive acoustic sig-

nals reflected from the hand/finger as it traces symbols in

the air [17, 18, 23, 32]. Examples include LLAP [23] using

phase-based tracking and FingerIO [18] using OFDM symbol

based movement detection. By contrast, the Strata [32] sys-

tem used in the current work is the state-of-the-art acoustic

tracking scheme with the minimum absolute distance estima-

tion error, which combines the absolute initial and relative

distance estimates to accurately track the moving target.

A number of methods have been developed to identify hand-

written letters by analyzing the sound produced as a finger or

stylus is brushed across a hard surface [7, 13, 31, 33]. Note

however that these methods work only with specific surfaces

and cannot handle with multiple users. Writinghacker [31]

and WordRecoder [7] relies on training data collected from

multiple users; however, recognition accuracies on unseen

users are not satisfied. The handwriting system in [13] must

be retrained for every user. And the system in [33] uses three

template matching schemes to identify cursive letters; how-

ever, it is limited to a single user.

2.4 Sensor-based Text Input Methods
Sensor-based methods are meant to capture and characterize

motions associated with the task of handwriting [3, 6, 27, 30].

For example, UbiTouch identifies handwritten characters by

sensing the movement of the user’s hand in the proximity of

a light sensor (with character recognition rate of 79%) [27].

iRing senses the rotation and bend angle of the user’s fin-

ger using an infrared sensor embedded in a ring [19]. Some

methods apply bioelectrical sensors to the skin of human

body as an input interface [12, 25, 26]; other systems use

the accelerometers or gyroscopes built into mobile devices

to recognize hand movement; however, waving the device

through the air tends to be awkward.

3 PRELIMINARY STUDY
In this section, we first compare the feasibility of 2D and 1D

tracking for letter classification. We then discuss the impact

of training datasets on the performance of the letter trace

classification models.

3.1 2D Tracking vs. 1D Tracking
We implemented the acoustic-based finger tracking algorithm,

Strata, on a Huawei Honor 9, to enable the tracking of finger

movements. The performance of the Strata system in 2D track-

ing was evaluated using the experimental testbed in Figs. 2.

A volunteer was tasked with writing the letter ’a’ 20 times

repeatedly with a finger on a Surface screen, wherein the

images recorded on the touchscreen were used as the ground

truth. Meanwhile, the 2D tracking system recorded the finger

movement in real time. A portion of the tracking results are

presented in Fig. 3, we found that the positioning error across

the entire 2D plane eventually reached 7.9cm, by which point

the trajectory was no longer representative of the letter ’a’.

The next step involved using a microphone and speaker to

perform 1D finger tracking via the Strata. Using the experi-

ment testbed in Fig. 4, we displayed standard letters (’a’-’d’)

on a Surface and tasked the volunteer with writing each letter

50 times in accordance with the standard shape in the stan-

dard stroke order. Meanwhile, the Strata 1D tracking system

recorded the trajectory patterns in real time. The normalized

results are presented in Fig. 5. The black bold line (the ground

truth) in each sub-graph indicates the simulated normalized

change in distance between the point of origin and each node

in the standard letter image. Despite the errors in 1D tracking,

the tracking pattern of each letter did not vary. Moreover, the

tracking patterns for any given letter did not vary over time,

thereby demonstrating the stability of the system.

3
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Figure 2: Testbed setup for
the Strata 2D finger tracking.

(a) The 1st time. (b) The 3rd time. (c) The 10th time. (d) The 20th time.

Figure 3: Examples of tracking the 2D trajectories involved in the repetitive movement
of fingers writing the letter ’a’.

o y

x

z

Mic 1

Speaker

Figure 4: Testbed setup for
the Strata 1D finger tracking.

(a) Writing “a”. (b) Writing “b”. (c) Writing “c”. (d) Writing “d”.

Figure 5: Comparison of ground truth finger trajectories and actual finger trajectories
in terms of tracking errors: a) letter ’a’; b) letter ’b’; c) letter ’c’; d) letter ’d’.

3.2 1D Trajectory Classification
Letter trace data collection: Three volunteers were tasked

with inputting examples of their handwriting in their own

writing styles into a Surface. This task involved writing 26

lowercase letters a total of 50 times each, during which the

Strata collected 1D distance information of the associated

finger movements. To compensate for variations in writing

speed among the volunteers, the resulting data was normalized

to cover the same length, thereby ensuring that the classifier

obtained inputs of equal dimensions.

Performance of classification algorithms: The letter trace

datasets obtained from the three volunteers were normal-

ized and then fed into various time-series classification al-

gorithms: k-nearest neighbor (KNN), logistic regression (LR),

support vector machines (SVM), naive bayes (NB), random

forest (RF), adaBoost (AB) and long short-term memory net-

work (LSTM). The corresponding classification accuracy re-

sults (after cross-validation) are listed in Tab. 1. All of these

mainstream classifiers performed well; however, RF and AB

achieved the highest accuracy of roughly 90%.

Classifier KNN LR SVM NB RF AB LSTM

ACC(%) 88.5 88.9 87.2 88.3 91.3 91.5 87.2

Table 1: Results of canonical classifiers in recognizing
hand-written letters based on finger trajectories.

Impact of training dataset: In most application scenarios

of HCI systems, the trained classifier cannot achieve satisfied

classification results on untrained/unseen users. A number of

researchers have developed the feature-engineering or trans-

fer learning methods to resolve the impact of cross-user on

the classification tasks. The feature-engineering method is

inapplicable to the current study, due to the fact that the di-

mensionality reduction associated with the use of 1D tracking

leads to information loss. Transfer learning methods (1) need

a large amount of data in both source field and target field,

or (2) involve the inclusion of expert rules to alter the direc-

tion of the prediction model (zero-shot scenarios), and cannot

be applied in the current scenario. In this paper, we try to

solve this problem with the model selection mechanism by

generating a personalized dataset for each untrained user.

Here, we discuss the impact of various training datasets

on the classification of handwritten letter traces in terms of

accuracy. We first trained a RF classifier (as RF1) with the

volunteer 1’s dataset. Volunteer 1 then wrote the same letters

again (testing data) to verify the performance. The classifica-

tion accuracy of model RF1 reached 97.5%, the corresponding

confusion matrix is shown in Fig. 6(a). Similarly, we trained

model RF2 with the volunteer 2’s dataset. When using test-

ing data from volunteer 1, the classification accuracy of RF2

reached 34.8%, the confusion matrix is shown in Fig. 6(b).

Finally, we trained model RF3 with both volunteer 1 and

2’s dataset, and again used testing data from volunteer 1 for

analysis. The classification accuracy of model RF3 reached

79.3%, the confusion matrix is in Fig. 6(c).

In classifying the letter traces of a specific user (e.g., volun-

teer 1), the performance of RF1 far exceeded that of RF2 and

RF3. This can be attributed to the fact that the training of RF1

is perfectly suited to the specific writing traits of that user.

By contrast, the training of RF2 was entirely unsuited to the

writing traits of volunteer 1, whereas RF3 had to account for

4
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(a) RF1 (97.5%). (b) RF2 (34.8%). (c) RF3 (79.3%).

Figure 6: Confusion matrices (with average accuracy) of
three RF models trained from different datasets.

the writing traits of all three users, resulting in a more general

model. Overall, these results indicate that as long as we have

a training dataset that matches the target user’s writing traits,

then a classifier can be tailored specifically to that user to

optimize classification performance.

4 DATA AUGMENTATION
In this section, we detail the proposed data augmentation

scheme involving the conversion of the MNISTs into an arti-

ficial letter tracking trace datasets (TrackMNISTs).

4.1 Simulating Traces from MNIST Images
Creating TrackMNIST for letter classification required the

transformation of every still image in the MNIST into tra-

jectories mimicking the movement of user’s finger through

the air while writing the letter represented in the image. The

data transformation process was divided into two steps: 1)

Determine the writing direction of each stroke as well as the

stroke sequence; and 2) Simulate the trajectory of the jump-

ing motion performed by the finger when the user encounters

disconnected strokes. Note that the default stroke sequences

simulated in this paper matched the standard stroke sequence

taught in most schools, regardless of language.

4.1.1 Restoring Stroke Order Sequences. In the fol-

lowing, lowercase English letters were used as examples to

illustrate the pipeline of restoring stroke order sequences. We

downloaded a video for the standardized instruction of writ-

ing lowercase English letters from the Teach Handwriting

website [10]. By carefully analyzing each frame in the video,

we were able to extract the special points (Fig. 7(a)) as well

as the specific direction of each stroke (Fig. 7(b)).

Fig. 7(c) presents an example written by a volunteer in ac-

cordance with the standard writing protocol for the common

style of the letter ’f’ in Figs. 7(b) and 7(a). It was observed

however that some of the volunteers employed a continuous-

stroke writing habits instead of the common style. Fig. 7(f)

presents an example written by a volunteer in accordance with

the standard writing protocol for the continuous-stroke style

in Figs. 7(e) and 7(d). For each image in each writing style,

we firstly involved identifying the special points (start and

1

2

3 4

(a) Special

points.

1

3 4

2

(b) Standard stroke sequence when writing ’f’ in

common style.

(c) Exam-

pleI.

1

2

(d) Special

points.

1

2

(e) Standard stroke sequence when writing ’f’ in

continous-stroke style.

(f) Exam-

pleII.

Figure 7: Start and end points and stroke sequence in-
volved in writing a standard lower case English ’f’.

(a) Simulated strok sequence of

handwritten ’f’ in common style.

(b) Simulated strok sequence of ’f’

in continous-stroke style.

Figure 8: Examples of stroke sequences simulated from
still handwritten images in the EMNIST.

end points) based on a common characteristic. Note that the

degree value (i.e., the number of edges incident to the vertex)

was odd. Thus, we skeletonized the handwritten image, tra-

versed each node, calculated its degree value, and then filtered

out the nodes whose degree value was odd, the coordinates

of which were then recorded in the Start point set Sn . If the

Sn is empty, we sampled some points uniformly and recorded

them in Sn . We also defined the corresponding Direction set
Dn to collect the standardized direction in each timestamp.

We developed a stroke sequence algorithm to apply stroke

sequence information to still images in the MNISTs, and

Fig. 8 shows the results of stroke order sequences of the two

examples ’f’. The proposed algorithm was implemented using

particle swarm optimization, whose core idea is to use a group

of particles to traverse the binarized images. We described

the details as following:

• Step 1: We select one start point from the Sn .

• Step 2: We initialize a certain number of particles at

the start point, and initialize the movement direction

with Gaussian distribution (N (μ,σ 2)) for each particle,

where the expected value (μ) is set as the first direction

value in Direction set Dn and σ is set as 10°.

• Step 3: The particle swarm start to swim with the de-

fined direction. If the particle moves outside the letter,

it is eliminated; otherwise, it is lived until the next

timestamp. If there exists surviving particles in the first

timestamp, we go to Step 4. Otherwise, we return back

to Step 1 and select another start point.

5
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• Step 4: At the following timestamp, we defined the

corresponding wandering direction for the surviving

particle swarm according to the Dn . If we traversed the

whole direction set, and there existed surviving parti-

cles, we record their moving trajectories and collect

them in the Simulated stroke sequence set T and go

to Step 6. If the direction set has not been traversed

and the whole particles were eliminated, it means there

exist discontinuous strokes and we go to Step 5.

• Step 5: We select a new point from Start point set as the

start point of the next stroke, and migrated the living

particles to the new start point and repeat Step 3.

• Step 6: We execute the average processing on all traces

in the T to obtain the simulated writing movement be-

havior of the current handwritten letter picture.

4.1.2 Simulating Finger Jumping Traces Between Dis-
connected Strokes. Whenever a letter is written using a

discontinuous stroke, the finger will tend to jump when the

user encounters a disconnection between strokes. This jump-

ing motion cannot be identified in the handwritten images;

however, an acoustic-based tracking system should be able to

detect this type of characteristic motion. Take for example an

’f’ written in the common style (left side of Fig. 9), where the

user’s finger departs from the plane on which the letter was

written (at the end point of one stroke) before returning to the

same plane (at the start of the next stroke).

The trace left by the movement of the user’s finger presents

a continuous curve as it departs from and returns to the writ-

ing plane (see Fig. 9). Note that users differ in their jump

trajectories and even the same user will vary in their jump tra-

jectories according to the preceding and/or following stroke.

To overcome this variability, we employed a second-order

Bezier curve to simulate the trace left by a user’s finger when

encountering a jump from one stroke to the next.

The principle of the second-order Bezier curve is illustrated

in Fig. 10. The second-order curve describes the curve using

two data points A(x1,y1) and C(x3,y3) and one control point

B(x2,y2). We try to identify points D, E and F respectively

on lines AB, BC and DE, AD
AB
= BE

BC
= DF

DE
. Thus, all of the

trajectories of F form a Bezier curve, and the coordinate

relationship of point F (xf ,yf ) can be described as follows:{
xf = (1 − t2)x1 + 2t(1 − t)x2 + t

2x3,

yf = (1 − t2)y1 + 2t(1 − t)y2 + t
2y3

(1)

where t ∈ [0, 1]. When using a second-order Bezier curve to

simulate a trajectory, the landing point of the previous stroke

is designated A in the jump plane, and the start point of the

next stroke is designated B. We then set the coordinate value

of C randomly to generate multiple curves passing through A
and B to simulate the trajectory of the finger movements of

multiple users during the jump between strokes.

o
x

y

z Finger Jumping Plane

o’ x’

y’

Ending point 
of Stroke 1

Starting point 
of Stroke 2

trace 1
trace 2
trace 3o

Figure 9: Example of stroke discontinu-
ity when writing the letter ’f’.

Figure 10: 2nd
Bezier curve.

Note that in addition to differences in the shape of traces

related to the jump plane, there are also differences in the

angle (θ in Fig. 9) between the finger jumping plane and letter

writing plane. We simulate the jump characteristics specific

to particular users by varying the value of θ .

4.2 Simulating Other Writing Characteristics
As shown on the right side of Fig. 9, we assume that the

tracking device begins at the origin of the three-dimensional

(3D) spatial coordinate system, and XOY plane is parallel to

the writing plane. Using the known 3D coordinates of each

point in the letter and the trajectory of finger jumps, it is

relatively easy to calculate the distance between the origin

and each point along the trajectory of the moving finger in

accordance with the corresponding stroke sequence. We can

generate an artificial dataset of traces collected by the tracking

system when the user writes letters with his finger.

The above-mentioned method can only be used to represent

inter-user differences in writing style. Nonetheless, there are

three other characteristics that can affect the tracking of finger

trajectories: letter size, writing speed, and the position of the

finger relative to the mobile device.

Size of finger-written letters: The size of a letter written

in the air can affect the tracking, unless the finger moves at

different speed, such that the size affects only the time to

completion. In generating the artificial dataset, we first sought

to normalize the length of the traces via up-/down-sampling.

In so doing, we were able to eliminate the effect of letter size

on tracking traces, and thereby disregard the issue of letter

size in augmenting the personal datasets.

Speed of finger writing: As shown in Fig. 1, the differ-

ence in writing speed can affect the slope (or pattern) of the

tracking traces. Any variation in the speed of the finger while

drawing a single stroke can profoundly affect the resulting

trace pattern. To make the artificial dataset robust to variations

in writing speed, we changed the number of points associated

with each stroke trajectory and each jump trajectory. Increas-

ing the number of points in a given trajectory simulates faster

writing, and vice versa.

Position of finger relative to mobile device: Altering the

position of the user’s finger relative to the mobile device could

alter the resulting tracking trace. As shown in the 3D coordi-

nate system in Fig. 9, we simulated the two finger positions

6
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Figure 11: Standard
stroke sequence of ’lun’.
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Figure 12: Simulated
stroke sequence of ’lun’.

1

4
6

8

11

Stroke 
Jump

Stroke 
Jump

Stroke 
Jump

2

12

Stroke 
Jump

Stroke 
Jump

7

3

5

109

Figure 13: Example of ar-
tificial 1D tracking pattern
when writing ’lun’.

w o r d

Figure 14: Example of letter
segmentation when input a
word: ’word’.

relative to the mobile device: XOY plane and (−X )OY plane,

instead of the four positions considering spatial symmetry.

Thanks to the normalization operation, there was no need to

consider the initial distance between the finger and the device.

4.3 Multi-language Support
The simulated tracking trace data corresponding to images in

the EMNIST dataset is applicable to writing of almost any

kind, such as the 10 digits, the 26 uppercase and lowercase

English letters, and even written languages of high complexity,

such as Chinese and Japanese. In this section, we use Chinese

characters as an example to verify the universality of the

proposed tracking trace simulation scheme.

We first downloaded a video for the standardized instruc-

tion of writing Chinese characters from the website [2]. By

carefully analyzing each frame, we were able to extract the

start and end points of each stroke as well as the specific direc-

tion of each stroke (Fig. 11). We selected one corresponding

handwritten image from the CASIA-HWDB dataset [15], pre-

processed it via skeletonization and identified start points. We

then compare the number of potential start points extracted

from the handwritten picture with those in the video to de-

termine whether the continuous-stroke style were evident in

the handwritten image for that character. In the event that

continuous-stroke style were observed, we would regenerate

the corresponding stroke sequence. The restoring stroke order

sequence algorithm was used to identify the specific stroke

sequence used by the volunteer when writing this character

(as shown in Fig. 12). At the disconnection of strokes, we

again used second-order Bezier curves to simulate the jump

trajectory of the volunteer’s finger. Finally, we calculated the

distance between the device and each node encountered along

the trajectory of the user’s finger, the corresponding results of

which are shown in Fig. 13.

5 SYSTEM DESIGN
Fig. 15 illustrates the system architecture comprising a server

side and a mobile device side. The main task on the server side

is to convert still images in MNISTs into tracking traces. The

resulting TrackMNIST dataset is then used to train a general-

purpose Random Forest model for the letter classification on

the warm-up stage. On the mobile device side, Strata is used

to track the input patterns traced by the user’s finger using the

built-in microphones and speakers. The input system can be

divided into three components based on their functions and

are described in the following sub-sections.

5.1 Letter Trace Segmentation
In the current system, we impose the restriction on users that

they need to pause briefly after each letter. This pause can be

reflected in the 1D tracking system, wherein the slope of the

relative change in distance is 0. As shown in Fig. 14, if the

slope changes from non-zero to zero, then the zero boundary

point is identified as the ending timestamp of the previous

letter. If the slope changes from zero to non-zero, then the

zero boundary point is identified as the start timestamp of the

next word. After identifying the start and end timestamps of

a letter, the trajectory between the two timestamps is used as

the trace related to that letter.

5.2 Letter Classification Mechanism
This part addresses the problem of similarities among trajec-

tories and information loss resulting from the use of a 1D (as

opposed to 2D) finger tracking system. In the MagicInput, we

developed a novel letter classification mechanism based on a

personalized dataset.

5.2.1 Warm-up. In this stage, the MagicInput provided

users with the output Top-K results and let them select the

correct one. The “Word Correction” module can also check

and correct the misclassified letters. Therefore, the MagicIn-
put can satisfy the requirement of the multi-language text

input recognition in the warm-up stage.

Meanwhile, the mobile device also uploads the trace for

the letter fragment of interest and the corresponding label that

user selected to the server. Personalized dataset will be used to

improve the user experience and obtain the high performance

on Top-1 classification.
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Figure 15: System architecture of the MagicInput.

5.2.2 Letter classification. Confronting the lack of labeled

training data applicable to unseen users, we sought to develop

the means by which to match training datasets to the user’s

writing characteristics and recognize letters using a simple

machine learning scheme.

Personalized dataset update: The mobile device repeated

N times of upload process for each letter. The server then

finds in the TrackMNISTs the top M traces that most closely

resemble the average N uploaded letter traces, and sends

them back to the mobile terminal. Until all the letters (e.g.,
the whole 26 English lowercase letters) are updated, the mo-

bile terminal obtain the complete dataset which included the

testing user’s writing habits.

K-nearest neighbors: With the updated personalized dataset,

the KNN method is used to classify the traces of letter frag-

ments created by the user. Note that low computational com-

plexity of the KNN method makes it ideal for mobile devices.

Note also that tailoring the dataset to the characteristics of the

user allows KNN to achieve Top-1 classification results.

5.2.3 Failure Feedback. In the event that a user’s writing

habits change over time, the local dataset (i.e., on the mo-

bile device) must be changed accordingly. In the event of a

classification error, the user only needs to make a note of the

erroneous classification result and input the correct label. The

mobile device then re-uploads the erroneous trace of letter

fragment with the correct label to the server, which then ex-

amines the top M traces that most closely match the trace and

sends them back to the mobile device. This makes it possible

for the mobile to update its personalized dataset to bring it in

line with the current writing habits of the user.

5.3 Word Correction
To deal with misclassifications due to similarities among let-

ters (e.g., ’a’ and ’d’) and imperfection of the classifier, we

included a word correction mechanism (e.g., Spell Check

Package in Android) aimed at recognizing words rather than

individual letters. Finally, the corrected words were displayed

on the mobile device’s screen.

6 EVALUATION
6.1 Experiment Setup
Hardware platform: We implement the proposed MagicIn-
put as a prototype application on the Android phone. In the

following experiments, the MagicInput app was installed on a

Huawei Honor 9 running Android 8.0. The MagicInput cloud

server was installed in a PC with an Intel Xeon Gold 5118

CPU @ 2.30GHz 12 Core and 48GB of RAM. Note that the

server is only needed in the warm-up stage.

Multiple language MNIST datasets: We utilized the large-

scale handwritten image datasets on the Internet and the

data augmentation scheme (see Sec. 4) to create multiple-

language artificial dataset as TrackMNISTs. We used EM-

NIST dataset [5] to create artificial datasets for 10-class digits

and 26-class uppercase/lowercase English letters, and used

Kuzishiji-49 [4] dataset for 49-class Hiragana characters. For

Chinese characters, we selected 30 commonly used and rela-

tively complex Chinese characters from the Chinese MNIST

dataset – CASIA-HWDB [16], and created corresponding

artificial dataset for these 30-class Chinese characters.

Letter trace testing data collection: We recruited 15 vol-

unteers as target users. During data collection, the users wrote

letters with their fingers in the air along the XOY plane using

the 3D coordinate system established by the mobile device.

We made it clear to the volunteers should strive to keep their

finger stationary for a period of time after each letter was

written. To facilitate the labeling of collected data, we had

the users input specific text content (including 10 digits, 26

uppercase and lowercase English letters as well as 49 Japan-

ese and 30 Chinese characters) for 10 times, during which

the mobile device recorded changes in the 1D position of the

user’s finger as it was moved. We then collected these traces

into the testing dataset for each user.

6.2 Micro-benchmark
We performed micro-benchmark evaluation to select the key

parameters in the system design, and conducted the following

experiments in a user independent manner considering that

these system parameters do not change with users.

6.2.1 1D Tracking Error Distribution. During data aug-

mentation (Sec.4), we need to add it is necessary to consider

the distribution of errors in the Strata (1D tracking) data while

8
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Dataset MNIST EMNIST EMNIST
Kuzushiji

-49

CASIA

-HWDB

Language

Type
Digit

Uppercase

English

Lowercase

English
Japanese Chinese

Rate(%) 96.3 91.1 86.4 64.5 71.8

Table 2: The success rate of the stroke order restoration
algorithm on different MNISTs.

(a) Lowercase English letter ’f’. (b) Chinese character ’lun’.

Figure 16: Failure cases in restoring the stroke sequence.

estimating the relative changes in distance in real-world envi-

ronments. Thus, we employed the testbed in Fig. 4, in which

the volunteers were tasked with writing each lowercase Eng-

lish letter 50 times with his/her finger in accordance with

the standard image of the letter using the standard stroke

sequence. Throughout this exercise, Strata calculated the rel-

ative changes in distance between the user’s finger and the

mobile device. We also calculated the true changes in distance

between the mobile device and the standard letter stroke se-

quence in the image as the ground truth. From this, we derived

that the error distribution is a normal distribution (with mean

0.23mm and variance 0.16mm).

6.2.2 Data Augmentation. Performance of Restoring
Stroke Sequence Algorithm. We also evaluated the effec-

tiveness of the proposed stroke sequence restoration algorithm

(Sec. 4.1.1). Note that the algorithm is based on the concept

of particle swarms; therefore, if Num(T ) (T is the Simulated
stroke sequence set) is greater than or equal to 1, then we

know that the particle swarm has traversed all of the standard

strokes outlined in the instructional video. Thus, the success

rate in assigning stroke sequences to images in the MNISTs

was based on whether Num(T ) ≥ 1.

The stroke sequence restoration algorithm was applied to

five MNIST datasets, the conversion success rates of which

are listed in Tab. 2. The success rates when applied to MNIST

(0 ∼ 9 digits) and EMNIST (26 uppercase English letter)

were very high, reaching 96.3% and 91.1%, respectively. The

success rate when applied to EMNIST (26 lowercase English

letter) was relatively low (86.4%). We later determined that

this poor performance can be attributed to volunteers scrib-

bling many of the letters (as shown in Fig. 16(a)). The success

rates when applied to CASIA-HWDB and Kuzushiji-49 were

low, reaching only 71.8% and 64.5%, respectively. Fig. 16(b)

presents the failure cases that occurred when restoring stroke

sequence to the Chinese character ’lun’ (see Fig. 11).

Parameter Selection in Writing Speed Levels. In the

Sec. 4.2, we discussed the influence of writing size, writing

Figure 17: Parame-
ter selection for fin-
ger moving speed lev-
els of writing strokes.

Figure 18: Parameter se-
lection for simulating the
traces left by a finger jump-
ing movement.

Figure 19: CDF of user’s finger stopping time for letter
segmentation.

speed and writing position on 1D tracking patterns. Thanks

to normalization, we can disregard the impact of writing size.

As for writing position, we discussed two types of positions

(XOY and (−X )OY ) in our system. In this part, we exam-

ine the impact of the parameters of the simulated writing

stroke speed, and test it on the digits or lowercase English

letters that can be written in one continuous stroke. Linear

down- and up-sampling was used to simulate a single speed

change (e.g., ×1), three speed changes (e.g., ×0.5, ×1, ×1.5),

five speed changes (e.g., ×0.3, ×0.6, ×1, ×1.3, ×1.6), 7 speed

changes and 9 speed changes respectively, and generate cor-

responding artificial datasets and pre-trained RF models. The

RF model trained using data that included three speed sim-

ulations achieved the highest classification accuracy (72.8%)

when applied to data from real-world users. By comparison

the RF model without speed simulations was 64.9% and the

RF model trained using speed simulations was 70.6%.

Parameter Selection for Simulating Traces of Finger
Jumps. In the following, we obtain the pattern presented by

the Bezier curve by selecting the coordinates of control point

B (see in Fig. 10). We take p points distributed uniformly in

the area (x2 ∈ [x1,x3],y2 ∈ [0,x3 − x1]) to generate p types

of corresponding Bezier curves. Similarly, we simulate the

user behavior by controlling the angle θ between the plane in

which finger jumping occurs and the one in which writing is

performed (see in left of Fig. 9). We take q points distributed

uniformly in area θ ∈ [0,π ]. A combination of p and q allows

9
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Figure 20: Determine parameter K . Figure 21: Determine parameter M . Figure 22: Determine parameter N .

the comprehensive simulation of the jumping movement made

by the user’s finger when it encounters a disconnected stroke.

Fig. 18 illustrates the impact of the RF model on classification

accuracy after applying to the dataset simulated trajectories

based on various combinations of [p,q]. Based on the results,

we selected [10, 3] with which to generate the final dataset

and corresponding RF model.

6.2.3 Letter Segmentation. The letters were segmented

by finding trajectories with a slope of 0. Note that if the

users were expected to pause for too long, it would greatly

undermine the user experience. By contrast, if the pauses were

not long enough, the letter segmentation algorithm would be

unable to recognize the letter trajectory associated with the

pause. During the collection of data, a letter segmentation

algorithm was used to segment each trace and then assess the

results according to the length of the resulting segments. The

CDF of the user’s finger stopping time for letter segmentation

is shown in Fig. 19. We found that when the user pauses for

0.8s, our system can perform almost 100% of the effective

letter segmentation on all five language letters.

6.2.4 Letter Classification Mechanism. Performance
of general RF model: The first stage in the classification

process is the warm-up, the performance of which relies on

the general RF model trained in advance by the server. The

fact that the TrackMNIST dataset does not account for the

writing characteristics of users prevents the general-purpose

RF model from performing letter classification with a high

degree of accuracy for every user. We therefore adopted the

Top-K classification results from which users may select the

letter they meant to draw. We trained a general purpose RF

model for TrackMNIST corresponding to each language, and

then used letter trace data collected from users to evaluate

its classification performance, the results of which are shown

in Fig. 20. Overall, we found that the pre-trained RF model

for each language achieved an average of 90% accuracy for

Top-5 classification on the multi-language letters, and near

100% accuracy of Top-10 classification. Since the users do

not require to provide their training data or be involved in

the pre-training, our system can support multiple languages

without users’ effort in the warm-up stage.

Personalized dataset collection: Parameter M indicates

the number of traces the system must collect from a given

letter trace with the target user’s writing habits in order to find

to achieve Top-1 classification accuracy using the KNN clas-

sifier. Parameter N indicates the minimum number of samples

the server must average in order to accurately characterize the

writing habits of the target user.

In determining parameter M , we set N at a large enough

value (e.g., 20) to ensure that the average trace data is indica-

tive of the user’s writing characteristics. From each user, we

therefore select 20 trace samples for a given letter and then av-

erage them, the result of which is used to represent the user’s

writing characteristics. We select from MagicInput the Top-M

traces with the highest degree of similarity for inclusion in the

user’s personalized dataset, and then use the KNN classifier to

evaluate the representativeness of the personalized dataset. As

shown in Fig. 21, if M is set too small (e.g., 100), the selected

dataset may be insufficiently robust, whereas if M is set too

high (e.g., 1500), then the enormous number of irrelevant

items would interfere with KNN classification performance.

Thus, we set M between 300 and 500 in seeking to obtain the

Top-1 classification results.

After setting M to 300, we select N traces for a given letter

and use the averaged trace results as the final trace by which

to represent the user’s writing characteristics. We then collect

the Top-300 traces presenting the highest degree of similar-

ity from the TrackMNIST for inclusion in the personalized

dataset. Finally, we use KNN classification accuracy (Top-1)

to determine whether N traces provide a representative indi-

cation of the target users’ writing habits. As shown in Fig. 22,

setting N at 3 was sufficient to represent the style of the target

user in writing that particular letter.

6.2.5 Effectiveness of Personalized Dataset. We eval-

uated the efficacy of the personalized dataset sought from

the artificial TrackMNIST, compared with the true collected

training dataset from user himself. We did the following ex-

perience. We randomly divided the trace dataset collected

from three users into a training dataset and a testing dataset

(at a ratio of 7:3). This training dataset was used directly as

the user’s personalized dataset II. The Top-2500 traces with

the highest degree of similarity from TrackMNIST were used

for as the personalized dataset Type I. We applied the KNN

classifier to the same testing dataset for each user in order

to compare the representativeness of the two types of per-

sonalized dataset. As shown in Fig. 23, personalized dataset
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Figure 23: Personalized Dataset I
from TrackMNIST vs. Personalized
Dataset II collected by the user.

Figure 24: Accuracy of MagicInput in classifying characters in multiple
languages when meeting unseen users.
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Figure 25: Influence of positions between the mobile device and user’s finger
on performance of MagicInput.

Figure 26: Influence of surrounding en-
vironment.

II achieved good classification performance on all five test-

ing datasets with average accuracy of 98.5%. Personalized

dataset I also achieved good classification performance on the

testing datasets with an average accuracy of 95.9%. It is suffi-

cient proof that the dataset selected from the TrackMNIST is

sufficient to represent the writing habits of the target user.

6.3 MagicInput System Overall Evaluation
6.3.1 Multi-user and Multi-language Letter/Character
Input Performance. We evaluated the overall performance

of the MagicInput for online multilingual letter recognition

from unknown users. Fifteen users employed the MagicInput
app on their smartphones without collecting any training data

specific to the target user. We then tested the performance of

the input system when applied to five languages, the results

of which are shown in Fig. 24. We achieved the following av-

erage classification accuracy: 10 digits (95.3%), 26 uppercase

English letters (97.8%), 26 lowercase English letters (95.3%),

30 most commonly used Chinese characters (93.8%), and 49

Japanese characters (91.4%).

6.3.2 Impact of Input Positions. The MagicInput supports

user finger input in multiple positions relative to the mobile

device. We evaluated the impact of relative position on the

accuracy of the system by having a volunteer write letters

while holding the phone in eight different relative positions

(see Fig. 25(a)). As shown in Fig. 25(b), the position of the

mobile device relative to the finger was shown not to have a

significant effect on classification accuracy. This shows that

our system has good compatibility with users with different

dominant hands, and has no mandatory requirement for input

position.

6.3.3 Impact of Environmental Factors. Acoustic-based

finger input systems are easily affected by the surrounding

environment, due to multi-path effects. After completing the

warm up, we had a volunteer use MagicInput to input lower-

case letters in four different environments, while striving to

employ the same writing habits throughout. We then evaluated

the impact of the environment on classification performance

and word recognition accuracy. As shown in Fig. 26, envi-

ronments with small human traffic (e.g., labs and libraries)

had little impact on classification performance at the letter

and word level. Noise environments with with heavy human

traffic (e.g., subways and bus stations) were shown to have an

obvious detrimental effect on performance. Frequent moving

objects around the device may affect the finger 1D tracking

accuracy of the Strata system to a certain extent, resulting

in distortion of the letter trace pattern and a decrease in the

classification accuracy.

6.3.4 Comparison with Other Text Input Systems. The

performance of MagicInput was compared with that of touch-

screens and other acoustic-based systems (on uppercase Eng-

lish recognition), including EchoWrite and Wordrecorder [7,
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Figure 27: Comparison
of power consumption.

Figure 28: Comparison of
LPM rate.

Figure 29: Comparison on
letter/word recognition.

Figure 30: User satisfaction
of MagicInput.

28]. Like the proposed system, Echowrite identifies letters

written in the air, whereas Wordrecorder identify letters by

analyzing the audible signal generated by pens moving across

the surface of paper. For the sake of fairness, the same volun-

teer operated all four of the systems, which were installed on

the same smartphone (Huawei Honor 9). Again, we did not

provide a training dataset specific to the target users. All sys-

tems used the same built-in spell checker package to evaluate

word recognition accuracy.

Letter and Word Recognition: Fig. 29 presents the recog-

nition rates achieved by the four input methods when applied

to uppercase English letters by an unknown user. The touch-

screen achieved accuracy of 100%. Echowrite achieved accu-

racy of 66.2% when applied to uppercase letters, and 73.2%
on the words. Wordrecorder achieved accuracy of 88.2% on

uppercase letters, 90.1% on the words. MagicInput achieved

accuracy of 97.3% on uppercase letters, 100% on the words.

Input Efficiency: We used the LPM (letter per minute)

indicator to measure the input efficiency, and Fig. 28 illus-

trates the rate at which five different users were able to input

uppercase English letters using the four systems. Touchscreen-

based handwriting input method obtained the maximum LPM

value. And MagicInput achieved the second highest input

efficiency in the four methods, which is directly related to the

performance of letter classification.

Power Consumption: Fig. 27 shows the battery power

information of the Huawei Honor 9 after the same user con-

tinuously using these methods for 30 minutes respectively.

Our MagicInput system does not significantly increase the

power consumption of the device, thanks to the small calcula-

tions of the Strata 1D finger tracking system and the simple

classification model – KNN classifier.

6.4 User Study
Another 15 volunteers are recruited for the user study (7 males

and 8 females). We first gave a 15-minute instruction on how

to use MagicInput. After that, volunteers were free to try

MagicInput for 10 minutes. The input they made during the

period was also used to improve their own models (i.e., per-

sonalized dataset that matches with writing habits). Once the

instruction is done, we asked volunteers to come and sit in a

coffee shop, and use MagicInput and touchscreen-based hand-

writing input method in turns. We conducted an experiment

to assess user satisfaction with our proposed MagicInput, cov-

ering (a) letter classification accuracy, (b) input speed, (c)

power consumption, (d) multi-text support, and (e) conve-

nience compared to the touchscreen-based method. Surveys

were used Likert-type scoring, as follows: 5 (very satisfied), 4

(satisfied), 3 (neutral), 2 (unsatisfied), and 1 (very unsatisfied).

As shown in Fig. 30, nearly all of the volunteers were

satisfied with the letter recognition performance, input speed,

and power consumption of MagicInput. All of the volunteers

expressed amazement that our system supports text input

in multiple languages and expressed satisfaction with the

accuracy in other languages. Most of the volunteers reported

that MagicInput would be more convenient than a touchscreen

when using small devices (e.g., smartwatch), while driving

(speech recognition software is affected by ambient sound),

while playing games is full-screen mode.

7 CONCLUSION
This paper presents MagicInput, a training-free text input

system that support multiple languages using acoustic-based

1D finger tracking technology. MagicInput took advantages

of the large-scale handwritten image dataset (MNISTs) and

designed a novel data augmentation scheme to create a same

large-scale artificial dataset (TrackMNIST). We compensate

for the loss of 1D tracking information and similarities in

the letter trajectory by creating a personal dataset (from

TrackMNIST) matching the writing habits of each user and

improve letter classification using the KNN classifier. In ex-

periments, MagicInput achieved outstanding classification

accuracy on the letter traces written by unseen users in a

variety of languages.
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