Efficient Approximate Search on String Collections
Part II

- Marios Hadjieleftheriou

 Chen Li

 at&t

 University of California, Irvine
Overview

- Sketch based algorithms
- Compression
- Selectivity estimation
- Transformations/Synonyms
Selection Queries Using Sketch Based Algorithms
What is a Sketch

- An approximate representation of the string
- With size much smaller than the string
- That can be used to upper bound similarity (or lower bound the distance)
 - String s has sketch $\text{sig}(s)$
 - If $\text{Sim}_{\text{sig}}(\text{sig}(s), \text{sig}(t)) < \theta$, prune t
- And Sim_{sig} is much more efficient to compute than the actual similarity of s and t
Using Sketches for Selection Queries

- Naïve approach:
 - Scan all sketches and identify candidates
 - Verify candidates

- Index sketches:
 - Inverted index
 - LSH (Gionis et al.)
 - The inverted sketch hash table (Chakrabarti et al.)
Known sketches

- Prefix filter (CGK06)
 - Jaccard, Cosine, Edit distance
- Mismatch filter (XWL08)
 - Edit distance
- Minhash (BCFM98)
 - Jaccard
- PartEnum (AGK06)
 - Hamming, Jaccard
Prefix Filter

- Construction
 - Let string s be a set of q-grams:
 - $s = \{q_4, q_1, q_2, q_7\}$
 - Sort the set (e.g., lexicographically)
 - $s = \{q_1, q_2, q_4, q_7\}$
 - Prefix sketch $\text{sig}(s) = \{q_1, q_2\}$

- Use sketch for filtering
 - If $|s \cap t| \geq \theta$ then $\text{sig}(s) \cap \text{sig}(t) \neq \emptyset$
Example

- Sets of size 8:

 \[
 s = \{q_1, q_2, q_4, q_6, q_8, q_9, q_{10}, q_{12}\}
 \]
 \[
 t = \{q_1, q_2, q_5, q_6, q_8, q_{10}, q_{12}, q_{14}\}
 \]

 \[s \cap t = \{q_1, q_2, q_6, q_8, q_{10}, q_{12}\}, |s \cap t| = 6\]

- For any subset \(t' \subset t\) of size 3: \(s \cap t' \neq \emptyset\)
 - In worst case we choose \(q_5, q_{14}, \text{and } ??\)

- If \(|s \cap t| \geq \theta\) then \(\forall t' \subset t\) s.t. \(|t'| \geq |s| - \theta + 1\), \(t' \cap s \neq \emptyset\)
Example continued

- Instead of taking a **subset** of \(t \), we **sort** and take **prefixes** from both \(s \) and \(t \):
 - \(\text{pf}(s) = \{q_1, q_2, q_4\} \)
 - \(\text{pf}(t) = \{q_1, q_2, q_5\} \)
 - If \(|s \cap t| \geq 6 \) then \(\text{pf}(s) \cap \text{pf}(t) \neq \emptyset \)
- **Why is that true?**
 - Best case we are left with at most 5 matching elements beyond the elements in the sketch
Generalize to Weighted Sets

- Example with weighted vectors

\[w(s \cap t) \geq \theta \quad (w(s \cap t) = \sum_{q \in s \cap t} w(q)) \]

- Sort by *weights* (not lexicographically anymore)

- Keep prefix \(pf(s) \) s.t. \(w[pf(s)] \geq w(s) - \alpha \)

\[
\begin{array}{cccccccc}
1' & 2' & 4' & 6' & 8' & 10' & 12' & 14'\\
s & w_1 & w_2 & 0 & 0 & w_5 & & & \\
t & 0 & w_2 & w_3 & 0 & w_5 & & & \\
\end{array}
\]

\[
\begin{array}{c}
\text{pf(s)}
\end{array}
\]

\[
\begin{array}{c}
w(s) - \alpha
\end{array}
\]

\[
\begin{array}{c}
\alpha
\end{array}
\]

\[
\sum_{q \in sf(s)} w(q) = \alpha
\]
Continued

- Best case: \(w[\text{sf}(s) \cap \text{sf}(t)] = \alpha \)
 - In other words, the suffixes match perfectly

- \(w(s \cap t) = w[\text{pf}(s) \cap \text{pf}(t)] + w[\text{sf}(s) \cap \text{sf}(t)] \)
 - Consider the prefix and the suffix separately

- \(w(s \cap t) \geq \theta \Rightarrow \)
 \[w[\text{pf}(s) \cap \text{pf}(t)] + w[\text{sf}(s) \cap \text{sf}(t)] \geq \theta \]
 \[w[\text{pf}(s) \cap \text{pf}(t)] \geq \theta - w[\text{sf}(s) \cap \text{sf}(t)] \]

- To avoid false negatives, minimize rhs
 \[w[\text{pf}(s) \cap \text{pf}(t)] > \theta - \alpha \]
Properties

- $w[\text{pf}(s) \cap \text{pf}(t)] \geq \theta - \alpha$
- Hence $\theta \geq \alpha$
- Hence $\alpha = \theta_{\text{min}}$
- Small $\theta_{\text{min}} \Rightarrow$ long prefix \Rightarrow large sketch

- For short strings, keep the whole string
- Prefix sketches easy to index
 - Use Inverted Index
How do I Choose α?

- I need

$$|pf(s) \cap pf(t)| \neq \emptyset \Rightarrow$$

$$w[pf(s) \cap pf(t)] \geq 0 \Rightarrow$$

$$\theta = \alpha$$
Extend to Jaccard

- Jaccard(s, t) = \frac{w(s \cap t)}{w(s \cup t)} \geq \theta \Rightarrow \frac{w(s \cap t)}{w(s \cup t)} \geq \theta w(s \cup t)

- w(s \cup t) = w(s) + w(t) - w(s \cap t)

\Rightarrow \ldots

\Rightarrow \ldots

w[pf(s) \cap pf(t)] \geq \beta - w[sf(s) \cap sf(t)]

\beta = \frac{\theta}{1 + \theta} \cdot [w(s) + w(t)]

- To avoid false negatives:

\quad w[pf(s) \cap pf(t)] > \beta - \alpha
Technicability

\[w[pf(s) \cap pf(t)] > \beta - \alpha \]

\[\beta = \theta / (1 + \theta) [w(s) + w(t)] \]

- \(\beta \) depends on \(w(s) \), which is unknown at prefix construction time
- Use length filtering
 - \(\theta \ w(t) \leq w(s) \leq w(t) / \theta \)
Extend to Edit Distance

- Let string s be a set of q-grams:
 - $s = \{q_{11}, q_{3}, q_{67}, q_{4}\}$
- Now the absolute position of q-grams matters:
 - Sort the set (e.g., lexicographically) but maintain positional information:
 - $s = \{(q_{3}, 2), (q_{4}, 4), (q_{11}, 1), (q_{67}, 3)\}$
 - Prefix sketch $\text{sig}(s) = \{(q_{3}, 2), (q_{4}, 4)\}$
Edit Distance Continued

- \(\text{ed}(s, t) \leq \theta \):
 - Length filter: \(\text{abs}(|s| - |t|) \leq \theta \)
 - Position filter: Common q-grams must have matching positions (within \(\pm \theta \))
 - Count filter: \(s \) and \(t \) must have at least
 \[
 \beta = [\max(|s|, |t|) - Q + 1] - Q \theta
 \]
 \(Q \)-grams in common
 \(s = \text{"Hello"} \) has 5-2+1 2-grams
 - One edit affects at most \(q \) q-grams
 "Hello" 1 edit affects at most 2 2-grams
Edit Distance Candidates

- Boils down to:
 1. Check the string lengths
 2. Check the positions of matching q-grams
 3. Check intersection size: $|s \cap t| \geq \beta$

- Very similar to Jaccard
Constructing the Prefix

- $|s \cap t| \geq \max(|s|, |t|) - q + 1 - q\theta$

- $|pf(s) \cap pf(t)| > \beta - \alpha$

\[\beta = \max(|s|, |t|) - q + 1 - q\theta \]

A total of $(|s| - q + 1)$ q-grams
Choosing α

\[|pf(s) \cap pf(t)| > \beta - \alpha \]
\[\beta = \max(|s|, |t|) - q + 1 - q\theta \]

- Set $\beta = \alpha$
 - $|pf(s)| \geq (|s|-q+1) - \alpha \Rightarrow$
 \[|pf(s)| = q\theta+1 \text{ q-grams} \]
 - If $ed(s, t) \leq \theta$ then $pf(s) \cap pf(t) \neq \emptyset$
Pros/Cons

- Provides a loose bound
 - Too many candidates
- Makes sense if strings are long
- Easy to construct, easy to compare
Mismatch Filter

- When dealing with edit distance:
 - **Position of mismatching** q-grams within pf(s), pf(t) conveys a lot of information

- Example:
 - Clustered edits:
 - s = “submit by **Dec.**”
 - t = “submit by **Sep.**”

 - Non-clustered edits:
 - s = “**sabmit be Set.**”
 - t = “**submit by Sep.**”

 - 4 mismatching 2-grams
 - 2 edits can fix all of them

 - 6 mismatching 2-grams
 - Need 3 edits to fix them
Mismatch Filter Continued

- What is the minimum edit operations that cause the mismatching q-grams between s and t?
 - This number is a lower-bound on \(\text{ed}(s, t) \)
 - It is equal to the minimum edit operations it takes to **destroy** every mismatching q-gram
 - We can compute it using a greedy algorithm
 - We need to sort q-grams by position first (\(n \log n \))
Mismatch Condition

- Fourth edit distance pruning condition:
 4. Mismatched q-grams in prefixes must be destroyable with at most θ edits
Pros/Cons

- Much tighter bound
- Expensive (sorting), but prefixes relatively short
- Needs long prefixes to make a difference
Minhash

- So far we **sort** q-grams
 - What if we **hash** instead?

- **Minhash construction:**
 - Given a string $s = \{q_1, \ldots, q_m\}$
 - Use k functions h_1, \ldots, h_k from independent family of hash functions, $h_i: q \rightarrow [0, 1]$
 - Hash s, k times and keep the k q-grams q that hash to the smallest value each time
 - $\text{sig}(s) = \{q_{mh1}, q_{mh2}, \ldots, q_{mhk}\}$
How to use minhash

● Example:
 ● $s = \{q_4, q_1, q_2, q_7\}$
 ● $h_1(s) = \{0.01, 0.87, 0.003, 0.562\}$
 ● $h_2(s) = \{0.23, 0.15, 0.93, 0.62\}$
 ● $\text{sig}(s) = \{0.003, 0.15\}$

● Given two sketches $\text{sig}(s), \text{sig}(t)$:
 ● $\text{Jaccard}(s, t)$ is the percentage of hash-values in $\text{sig}(s)$ and $\text{sig}(t)$ that match
 ● Probabilistic: (ε, δ)-guarantees \Rightarrow False negatives
Pros/Cons

- Has false negatives
- To drive errors down, sketch has to be pretty large
 - long strings
- Will give meaningful estimations only if actual similarity between two strings is large
 - good only for large θ
PartEnum

- Lower bounds Hamming distance:
 - \(\text{Jaccard}(s, t) \geq \theta \Rightarrow H(s, t) \leq 2|s| \frac{(1 - \theta)}{(1 + \theta)} \)

- Partitioning strategy based on pigeonhole principle:
 - Express strings as vectors
 - Partition vectors into \(\theta + 1 \) partitions
 - If \(H(s, t) \leq \theta \) then at least one partition has hamming distance zero.
 - To boost accuracy create all combinations of possible partitions
Example

\[\text{sig}(s) = h(\text{sig}_1) \cup h(\text{sig}_2) \cup \ldots \]
Pros/Cons

- Gives guarantees
- Fairly large sketch
- Hard to tune three parameters
 - Actual data affects performance
Compression
(BJL+09)
A Global Approach

- For disk resident lists:
 - Cost of disk I/O vs Decompression tradeoff
 - Integer compression
 - Golomb, Delta coding
 - Sorting based on non-integer weights??

- For main memory resident lists:
 - Lossless compression not useful
 - Design lossy schemes
Simple strategies

- Discard lists:
 - Random, Longest, Cost-based
 - Discarding lists tag-of-war:
 - Reduce candidates: ones that appear only in the discarded lists disappear
 - Increase candidates: Looser threshold θ to account for discarded lists

- Combine lists:
 - Find similar lists and keep only their union
Combining Lists

- Discovering candidates:
 - Lists with high Jaccard containment/similarity
 - Avoid multi-way Jaccard computation:
 - Use minhash to estimate Jaccard
 - Use LSH to discover clusters

- Combining:
 - Use cost-based algorithm based on query workload:
 - Size reduction
 - Query time reduction
 - When we meet both budgets we stop
General Observation

- V-grams, sketches and compression use the distribution of q-grams to optimize
 - Zipf distribution
 - A small number of lists are very long
 - Those lists are fairly unimportant in terms of string similarity
 - A q-gram is meaningless if it is contained in almost all strings
Selectivity Estimation for Selection Queries
The Problem

- Estimate the number of strings with:
 - Edit distance smaller than θ
 - Cosine similarity higher than θ
 - Jaccard, Hamming, etc…

- Issues:
 - Estimation accuracy
 - Size of estimator
 - Cost of estimation
Flavors

- Edit distance:
 - Based on clustering (JL05)
 - Based on min-hash (MBK+07)
 - Based on wild-card q-grams (LNS07)

- Cosine similarity:
 - Based on sampling (HYK+08)
Edit Distance

- Problem:
 - Given query string s
 - Estimate number of strings $t \in D$
 - Such that $ed(s, t) \leq \theta$
Clustering - Sepia

- Partition strings using clustering:
 - Enables pruning of whole clusters
- Store per cluster histograms:
 - Number of strings within edit distance 0, 1, …, \(\theta \) from the cluster center
- Compute global dataset statistics:
 - Use a training query set to compute frequency of data strings within edit distance 0, 1, …, \(\theta \) from each query
- Given query:
 - Use cluster centers, histograms and dataset statistics to estimate selectivity
Minhash - VSol

- We can use Minhash to:
 - Estimate $\text{Jaccard}(s, t) = \frac{|s \cap t|}{|s \cup t|}$
 - Estimate the size of a set $|s|$
 - Estimate the size of the union $|s \cup t|$
VSoI Estimator

- Construct one inverted list per q-gram in D and compute the minhash sketch of each list:

Inverted list

- Minhash
Selectivity Estimation

- Use edit distance count filter:
 - If \(ed(s, t) \leq \theta \), then \(s \) and \(t \) share at least
 \[
 \beta = \max(|s|, |t|) - q + 1 - q\theta
 \]
 - \(q \)-grams

- Given query \(t = \{q_1, \ldots, q_m\} \):
 - We have \(m \) inverted lists
 - Any string contained in the intersection of at least \(\beta \) of these lists passes the count filter
 - Answer is the size of the union of all non-empty \(\beta \)-intersections (there are \(m \) choose \(\beta \) intersections)
Example

- $\theta = 2$, $q = 3$, $|t| = 14 \Rightarrow \beta = 6$

- Look at all subsets of size 6

- $A = \left| \bigcup_{\{i_1, \ldots, i_6\} \in \binom{10}{6}} (t_{i_1} \cap t_{i_2} \cap \ldots \cap t_{i_6}) \right|$
The m-β Similarity

- We do not need to consider all subsets individually.
- There is a closed form estimation formula that uses minhash.
- Drawback:
 - Will overestimate results since many β-intersections result in duplicates.
OptEQ – wild-card q-grams

- Use extended q-grams:
 - Introduce wild-card symbol ‘?’
 - E.g., “ab?” can be:
 - “aba”, “abb”, “abc”, …

- Build an extended q-gram table:
 - Extract all 1-grams, 2-grams, …, q-grams
 - Generalize to extended 2-grams, …, q-grams
 - Maintain an extended q-grams/frequency hashtable
Example

Dataset

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td></td>
</tr>
<tr>
<td>sigmod</td>
<td>vldb</td>
</tr>
<tr>
<td>icde</td>
<td>...</td>
</tr>
</tbody>
</table>

q-gram table

<table>
<thead>
<tr>
<th>q-gram</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>10</td>
</tr>
<tr>
<td>bc</td>
<td>15</td>
</tr>
<tr>
<td>de</td>
<td>4</td>
</tr>
<tr>
<td>ef</td>
<td>1</td>
</tr>
<tr>
<td>gh</td>
<td>21</td>
</tr>
<tr>
<td>hi</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>?b</td>
<td>13</td>
</tr>
<tr>
<td>a?</td>
<td>17</td>
</tr>
<tr>
<td>?c</td>
<td>23</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>abc</td>
<td>5</td>
</tr>
<tr>
<td>def</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Assuming Replacements Only

- Given query q=“abcd”
- θ=2
- There are 6 base strings:
 - “??cd”, “?b?d”, “?bc?”, “a??d”, “a?c?”, “ab??”
- Query answer:
 - \(S_1 = \{ s \in D : s \in "??cd" \} \), \(S_2 = \{ s \in D : s \in "?b?d" \} \),
 \(S_3 = \{ \ldots \}, \ldots, S_6 = \{ \ldots \} \)
 - \(A = |S_1 \cup S_2 \cup S_3 \cup S_4 \cup S_5 \cup S_6| = \sum_{1 \leq n \leq 6} (-1)^{n-1} |S_1 \cap \ldots \cap S_n| \)
Replacement Intersection Lattice

\[A = \sum_{1 \leq n \leq 6} (-1)^{n-1} |S_1 \cap \ldots \cap S_n| \]

- Need to evaluate size of all 2-intersections, 3-intersections, …, 6-intersections
- Use frequencies from q-gram table to compute sum A
- Exponential number of intersections
- But ... there is well-defined structure
Replacement Lattice

- Build replacement lattice:

 ![Replacement Lattice Diagram]

- Many intersections are empty
- Others produce the same results
 - we need to count everything only once

- 2 ‘?’
- 1 ‘?’
- 0 ‘?’
General Formulas

- Similar reasoning for:
 - r replacements
 - d deletions

- Other combinations difficult:
 - Multiple insertions
 - Combinations of insertions/replacements

- But … we can generate the corresponding lattice algorithmically!
 - Expensive but possible
Hashed Sampling

- Used to estimate selectivity of TF/IDF, BM25, DICE

- Main idea:
 - Take a sample of the inverted index
 - Simply answer the query on the sample and scale up the result
 - Has high variance
 - We can do better than that
Visual Example

Inverted list

Sampled Inverted lists

Answer the query using the sample and scale up
Construction

- Draw samples deterministically:
 - Use a hash function $h: \mathbb{N} \rightarrow [0, 100]$
 - Keep ids that hash to values smaller than ϕ
 - This is called a bottom-K sketch

- Invariant:
 - If a given id is sampled in one list, it will always be sampled in all other lists that contain it
Example

- Any similarity function can be computed correctly using the sample
 - Not true for simple random sampling
Selectivity Estimation

- Any union of sampled lists is a $\varphi\%$ random sample
- Given query $t = \{q_1, \ldots, q_m\}$:
 - $A = \frac{|A_s| \cdot |q_1 \cup \ldots \cup q_m|}{|q_{s1} \cup \ldots \cup q_{sm}|}$:
 - A_s is the query answer size from the sample
 - The fraction is the actual scale-up factor
 - But there are duplicates in these unions!
- We need to know:
 - The distinct number of ids in $q_1 \cup \ldots \cup q_m$
 - The distinct number of ids in $q_{s1} \cup \ldots \cup q_{sm}$
Count Distinct

- Distinct $|q_{s1} \cup \ldots \cup q_{sm}|$ is easy:
 - Scan the sampled lists

- Distinct $|q_1 \cup \ldots \cup q_m|$ is hard:
 - Scanning the lists is the same as computing the exact answer to the query ... naively
 - We are lucky:
 - Each sampled list doubles up as a bottom-k sketch by construction!
 - We can use the list samples to estimate the distinct $|q_1 \cup \ldots \cup q_m|$
The Bottom-k Sketch

- It is used to estimate the distinct size of arbitrary set unions (the same as FM sketch):
 - Take hash function $h: \mathbb{N} \rightarrow [0, 100]$
 - Hash each element of the set
 - The r-th smallest hash value is an unbiased estimator of count distinct:

\[h_r \]

\[r \]

\[0 \]

\[h_r \]

\[100 \]

\[? \]
Transformations/Synonyms (ACGK08)
Transformations

- No similarity function can be cognizant of domain-dependent variations
- Transformation rules should be provided using a declarative framework
 - We derive different rules for different domains
 - Addresses, names, affiliations, etc.
 - Rules have knowledge of internal structure
 - Address: Department, School, Road, City, State
 - Name: Prefix, First name, Middle name, Last name
Observations

- Variations are orthogonal to each other
 - Dept. of Computer Science, Stanford University, California
 - We can combine any variation of the three components and get the same affiliation

- Variations have general structure
 - We can use a simple generative rule to generate variations of all addresses

- Variations are specific to a particular entity
 - California, CA
 - Need to incorporate external knowledge
Augmented Generative Grammar

- G: A set of rules, predicates, actions

<table>
<thead>
<tr>
<th>Rule</th>
<th>Predicate</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><name> → <prefix> <first> <middle> <last></td>
<td></td>
<td>first; last</td>
</tr>
<tr>
<td><name> → <last>, <first> <middle></td>
<td></td>
<td>first; last</td>
</tr>
<tr>
<td><first> → <letter>.</td>
<td></td>
<td>letter</td>
</tr>
<tr>
<td><first> → F</td>
<td>F in Fnames</td>
<td>F</td>
</tr>
</tbody>
</table>

- Variable F ranges over a fixed set of values
 - For example all names in the database
- Given an input record r and G we derive “clean” variations of r (might be many)
Efficiency

- We do not need to generate and store all record transformations
 - Generate a combined sketch for all variations (the union of sketches)
 - Transformations have high overlap, hence the sketch will be small
- Generate a derived grammar on the fly
 - Replace all variables with constants from the database that are related to r (e.g., they are substrings of r or similar to r)
Conclusion
Conclusion

- Approximate selection queries have very important applications
- Not supported very well in current systems (think of Google Suggest)
- Work on approximate selections has matured greatly within the past 5 years
- Expect wide adoption soon!
Thank you!
References

- [BJL+09] Space-Constrained Gram-Based Indexing for Efficient Approximate String Search. Alexander Behm, Shengyue Ji, Chen Li, and Jiaheng Lu. ICDE 2009
- [CGK06] A Primitive Operator for Similarity Joins in Data Cleaning. Surajit Chaudhuri, Venkatesh Ganti, Raghav Kaushik. ICDE06
- [CCGX08] An Efficient Filter for Approximate Membership Checking. Kaushik Chakrabarti, Surajit Chaudhuri, Venkatesh Ganti, Dong Xin. SIGMOD08
References

- [JL05] Selectivity Estimation for Fuzzy String Predicates in Large Data Sets. Liang Jin, Chen Li. VLDB 2005.
- [JLL+09] Efficient Interactive Fuzzy Keyword Search. Shengyue Ji, Guoliang Li, Chen Li, and Jianhua Feng. WWW 2009
- [JLV08] SEPIA: Estimating Selectivities of Approximate String Predicates in Large Databases. Liang Jin, Chen Li, Rares Vernica. VLDBJ08
- [LNS07] Extending Q-Grams to Estimate Selectivity of String Matching with Low Edit Distance. Hongrae Lee, Raymond T. Ng, Kyuseok Shim. VLDB 2007
References

- [SK04] Efficient set joins on similarity predicates. Sunita Sarawagi, Alok Kirpal. SIGMOD 2004
- [XWL+08] Efficient similarity joins for near duplicate detection. Chuan Xiao, Wei Wang, Xuemin Lin, Jeffrey Xu Yu. WWW 2008
- [YWL08] Cost-Based Variable-Length-Gram Selection for String Collections to Support Approximate Queries Efficiently. Xiaochun Yang, Bin Wang, and Chen Li. SIGMOD 2008