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Introduction

KNN queries and KNN-Joins:
spatial databases, pattern recognition, DNA sequencing.

Our goal: design relational algorithms for KNN and KNN-Joins.

Augmented with ad-hoc query conditions and optimized by
the query optimizer.

Readily applied on relational databases without updating the
engine.

Do it in SQL!
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Previous work on kNN and kNN-Join

iDistance for high dimensions.

Balanced box decomposition tree

the iJoin algorithm

Exact kNN solution:
R-tree for low dimensions

LSB-tree

Approximate kNN solution:

Locality sensitive hashing

Medrank

the Gorder algorithm

kNN-Join solution:
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Problem formulation

Data set P stored in table RP : {pid, Y1, · · · , Yd, A1, · · · , Ah}.
Query set Q stored in table RQ: {qid,X1, · · · , Xd, B1, · · · , Bg}.
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Problem formulation

KNN queries: let A = kNN(q,RP ),

(A ⊆ RP ) ∧ (|A| = k) ∧ (∀a ∈ A,∀r ∈ RP −A, |a, q| ≤ |r, q|).

KNN-Join:
for ∀s ∈ Q, produce k pairs (s, r), for ∀r ∈ kNN(s, Rp).

Approximate k nearest neighbors:
Suppose q’s kth nn from P is p∗ and r∗ = |q, p∗|,
p be the kth NN of q for some kNN algorithm A and rp = |q, p|,
(p, rp) ∈ Rd × R is (1 + ε)-approximate solution of kNN if
r∗ ≤ rp ≤ (1 + ε)r∗.

Data set P stored in table RP : {pid, Y1, · · · , Yd, A1, · · · , Ah}.
Query set Q stored in table RQ: {qid,X1, · · · , Xd, B1, · · · , Bg}.
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z-value of a point:
For point (2, 6), binary representation is (010, 110), z-value is
011100 = 28.
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Z-value and Z-order curve

z-value of a point:
For point (2, 6), binary representation is (010, 110), z-value is
011100 = 28.

A well-known approach:

Map points in a multi-dimensional space into one dimension
by using z-values.

Translate the kNN search into one dimensional range search
on the z-values.
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Approximation by random shifts

Z-values preserve the spatial locality, but not always the case.

Our idea: produce α randomly shifted copies of the input data
set (P 0, . . . , Pα) and repeat the one dimensional range search
(γ = O(k) points up and down next to the q) for each copy.
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Approximation by random shifts

Z-values preserve the spatial locality, but not always the case.

−→v
q

γ = 2
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Our idea: produce α randomly shifted copies of the input data
set (P 0, . . . , Pα) and repeat the one dimensional range search
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Retrieve the kNN from the unioned candidates of the α copies.
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Approximation by random shifts

Z-values preserve the spatial locality, but not always the case.

Our idea: produce α randomly shifted copies of the input data
set (P 0, . . . , Pα) and repeat the one dimensional range search
(γ = O(k) points up and down next to the q) for each copy.

Retrieve the kNN from the unioned candidates of the α copies.

Theorem 1:
Using α = O(1) and γ = O(k), zχ-kNN guarantees
an expected constant factor approximate kNN result with
O(logf

N
B + k/B) number of page accesses (clustered index

on z-values ).
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Approximation algorithm

Candidates C = ∅;
For i = 0, . . . , α {

Find zip as the successor of zq+vi in P i;

Let Ci be γ points up and down next to zip in P i;

For each point p in Ci, let p = p− vi;
C = C

⋃
Ci;

}
Let Aχ = kNN(q, C) and output Aχ.

zχ-kNN (point q, point sets {P 0, . . . , Pα})
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SQL statement for approximation algorithm

SELECT TOP k * FROM
(SELECT TOP γ + 1 * FROM RP ,

(SELECT TOP 1 zval FROM RP
WHERE RP .zval ≥ q.zval
ORDER BY RP .zval ASC ) AS T

WHERE RP .zval≥T.zval
ORDER BY RP .zval ASC

UNION
SELECT TOP γ * FROM RP
WHERE RP .zval < T.zval
ORDER BY RP .zval DESC ) AS C

ORDER BY Euclidean(q.X1,q.X2,C.Y1,C.Y2)
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SQL statement for approximation algorithm
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Exact KNN retrieval: naive solution

The exact kNN points are enclosed by the approximate kth
nearest neighbor ball.
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Exact KNN retrieval: naive solution

SELECT TOP k * FROM RP
WHERE Euclidean(q.X1,q.X2,RP .Y1,RP .Y2)≤ rad(p,Aχ)
ORDER BY Euclidean(q.X1,q.X2,RP .Y1,RP .Y2)

The exact kNN points are enclosed by the approximate kth
nearest neighbor ball.
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Exact KNN retrieval: naive solution

SELECT TOP k * FROM RP
WHERE Euclidean(q.X1,q.X2,RP .Y1,RP .Y2)≤ rad(p,Aχ)
ORDER BY Euclidean(q.X1,q.X2,RP .Y1,RP .Y2)

The exact kNN points are enclosed by the approximate kth
nearest neighbor ball.

Can we do better?
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Exact KNN retrieval

M
k = 3
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Exact KNN retrieval

Lemma 4: For a rectangular box M and its lower-left and upper-
right corner points δ`, δh, ∀p ∈M , zp ∈ [z`, zh], where zp stands
for the z-value of a point p and z`, zh correspond to the z-values
of δ` and δh respectively.

M
k = 3

approximate kth nn ball

exact kth nn ball
approximate
kth nn box



11-6

Exact KNN retrieval
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points of M(Aχ). For all p ∈ A, zp ∈ [z`, zh].
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Exact KNN retrieval

Let γ` and γh denote the left and right γ-th points close to
the query point, if zγ`

≤ z` and zγh
≥ zh in at least one of

the α tables, Aχ = A
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Exact KNN retrieval

If not, we can find A by doing a range query with [zj` , z
j
h] on any

of the α tables. Ideally, we use the table with smallest [zj` , z
j
h].
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KNN-join, higher dimensions and updates

Deal with data in any dimension: without changing the frame-
work; for large dimensionality (say d > 20), using LSH-based
method.

Updates: for deletion, delete record r based on its pid from
all talbes R0, . . . ,Rα; for insertion, calculate the z-values of
the point for all randomly shifted versions, insert them into
corresponding tables.

Our approach can easily and efficiently support join queries.
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Experiment Setup

All algorithms are implemented in Microsoft SQL Server 2005.
Experiments are conducted on an Intel Xeon CPU @ 2.33GHz.
The memory of the SQL Server is set to 1.5GB.

Real data sets: points representing the road-networks for states
in USA

Two synthetic data sets: uniform points and random clustered
points.

Compare against the Medrank and iDistance algorithms (im-
plemented by SQL statement and store precedure).
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Experiment Setup

The default experimental parameters are summarized below

Symbol Definition Default Value
k number of neighbors 10
N size of points set 1,000,000
α randomly shifted copies 2
γ number of points up and down 2k
d dimensionality 2
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Results for the kNN query: approximation quality
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Results for the kNN query: running time



20-1

Conclusions

Presented a constant approximation for the kNN query, with loga-
rithmic page accesses in any fixed dimension and extended it to the
exact solution, both using just O(1) random shifts.
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Conclusions

Presented a constant approximation for the kNN query, with loga-
rithmic page accesses in any fixed dimension and extended it to the
exact solution, both using just O(1) random shifts.

Our approach naturally supports kNN-Joins.

No changes are required for different dimensions, and the up-
date is trivial.

Study other related, interesting queries in this framework, e.g.,
the reverse nearest neighbor queries.

Examine the relational algorithms to the data space other than
the Lp-norms, such as the road networks.

Future research:

All the algorithms can be implemented by SQL operators in rela-
tional databases.
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The End
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