
K Nearest Neighbor Queries and KNN-Joins in

Large Relational Databases (Almost) for Free

Bin Yao, Feifei Li, Piyush Kumar
Computer Science Department, Florida State University, Tallahassee, FL, U.S.A.

{yao, lifeifei, piyush}@cs.fsu.edu

Abstract— Finding the k nearest neighbors (kNN) of a query
point, or a set of query points (kNN-Join) are fundamental
problems in many application domains. Many previous efforts to
solve these problems focused on spatial databases or stand-alone
systems, where changes to the database engine may be required,
which may limit their application on large data sets that are
stored in a relational database management system. Furthermore,
these methods may not automatically optimize kNN queries or
kNN-Joins when additional query conditions are specified. In
this work, we study both the kNN query and the kNN-Join in
a relational database, possibly augmented with additional query
conditions. We search for relational algorithms that require no
changes to the database engine. The straightforward solution
uses the user-defined-function (UDF) that a query optimizer
cannot optimize. We design algorithms that could be implemented
by SQL operators without changes to the database engine,
hence enabling the query optimizer to understand and generate
the “best” query plan. Using only a small constant number
of random shifts for databases in any fixed dimension, our
approach guarantees to find the approximate kNN with only
logarithmic number of page accesses in expectation with a
constant approximation ratio and it could be extended to find
the exact kNN efficiently in any fixed dimension. Our design
paradigm easily supports the kNN-Join and updates. Extensive
experiments on large, real and synthetic, data sets confirm the
efficiency and practicality of our approach.

I. INTRODUCTION

The k-Nearest Neighbor query (kNN) is a classical problem

that has been extensively studied, due to its many important

applications, such as spatial databases, pattern recognition,

DNA sequencing and many others. A more general version

is the kNN-Join problem [7], [8], [11], [31], [33]: Given a

data set P and a query set Q, for each point q ∈ Q we would

like to retrieve its k nearest neighbors from points in P .

Previous work has concentrated on the use of spatial

databases or stand-alone systems. In these solution method-

ologies, changes to the database engine maybe necessary; for

example, new index structures or novel algorithms need to

be incorporated into the engine. This requirement poses a

limitation when the data set is stored in a database in which

neither the spatial indices (such as the popular R-tree) nor the

kNN-Join algorithms are available. Another limitation of the

existing approaches that are outside the relational database, is

the lack of support for query optimization, when additional

query conditions are specified. Consider the query:

Retrieve the k nearest restaurants of q
with both Italian food and French wines.

The results of this query could be empty (in the case where

no restaurants offer both Italian food and French wines) and

the kNN retrieval is not necessary at all. It is well known

that when the data is stored in a relational database, for

various types of queries using only primitive SQL operators,

the sophisticated query optimizer built inside the database

engine will do an excellent job in finding a fairly good query

execution plan [4].

These advantages of storing and processing data sets in a

relational database motivate us to study the kNN query and

the kNN-Join problem in a relational database environment.

Our goal is to design algorithms that could be implemented

by the primitive SQL operators and require no changes to the

database engine. The benefits of satisfying such constraints

are threefold. First, kNN based queries could be augmented

with ad-hoc query conditions dynamically, and they are auto-

matically optimized by the query optimizer, without updating

the query algorithm each time for specific query conditions.

Second, such an approach could be readily applied on ex-

isting commercial databases, without incurring any cost for

upgrading or updating the database engine, e.g., to make it

support spatial indices. We denote an algorithm that satisfies

these two constraints as a relational algorithm. Finally, this

approach makes it possible to support the kNN-Join efficiently.

We would like to design algorithms that work well for data

in multiple dimensions and easily support dynamic updates

without performance degeneration.

The similar relational principle has been observed for other

problems as well, e.g., approximate string joins in relational

databases [15]. The main challenge in designing relational

algorithms is presented by the fact that a query optimizer

cannot optimize any user-defined functions (UDF) [15]. This

rules out the possibility of using a UDF as a main query

condition. Otherwise, the query plan always degrades to the

expensive linear scan or the nested-loop join approach, which

is prohibitive for large databases. For example,

SELECT TOP k * FROM Address A, Restaurant R

WHERE R.Type=‘Italian’ AND R.Wine=‘French’

ORDER BY Euclidean(A.X, A.Y, R.X, R.Y)

In this query, X and Y are attributes representing the

coordinates of an Address record or a Restaurant record.

“Euclidean” is a UDF that calculates the Euclidean distance

between two points. Hence, this is a kNN-Join query. Even

though this query does qualify as a relational algorithm, the

query plan will be a nested-loop join when there are restaurants

satisfying both the “Type” and “Wine” constraints, since the

query optimizer cannot optimize the UDF “Euclidean”. This

implies that we may miss potential opportunities to fully

optimize the queries. Generalizing this example to the kNN-

query problem, the UDF-based approach will degrade to the

expensive linear scan approach.

Our Contributions. In this work, we design relational algo-

rithms that can be implemented using primitive SQL operators

without the reliance on the UDF as a main query condition,

so that the query optimizer can understand and optimize. We

would like to support both approximate and exact kNN and

kNN-Join queries. More specifically,

• We formalize the problems of kNN queries and kNN-

Joins in a relational database (Section II).

• We provide a constant factor approximate solution based

on the Z-order values from a small, constant number of

randomly shifted copies of the database (Section III). We

provide the theoretical analysis to show that by using only

O(1) random shifts for data in any fixed dimension, our

approach gives an expected constant factor approximation

(in terms of the radius of the k nearest neighbor ball) with

only log N number of page accesses for the kNN query

where N is the size of data set P . Our approach can be

achieved with only primitive SQL operators.

• Using the approximate solution, we show how to get

exact results for a kNN query efficiently (Section IV).

Furthermore, we show that for certain types of data

distributions, our exact solution also only uses O(log N)
number of page accesses in any fixed dimension. The

exact solution is also easy to implement using SQL.

• We extend our algorithms to kNN-Join queries, which

can be achieved in relational databases without changes

to the engines (Section V).

• We show that our algorithms easily support float values,

data in arbitrary dimension and dynamic updates without

any changes to the algorithms (Section VI).

• We present a comprehensive experimental study, that

confirms the significant performance improvement of our

approach, against the state of the art (Section VII).

In summary, we show how to find constant approximations

for kNN queries in logarithm page accesses with a small

constant number of random shifts in any fixed dimension; our

approximate results lead to highly efficient search of the exact

answers, with a simple post-processing of the results. Finally,

our framework enables the efficient processing of kNN-Joins.

We survey the related work in Section VIII.

II. PROBLEM FORMULATION

Suppose that the data set P in a d dimensional space is

stored in a relational table RP . The coordinates of each point

p ∈ P are stored in d attributes {Y1, . . . , Yd}. Each point could

associate with other values, e.g., types of restaurants. These ad-

ditional attributes are denoted by {A1, . . . , Ag} for some value

g. Hence, the schema of RP is {pid, Y1, · · · , Yd, A1, · · · , Ag}
where pid corresponds to the point id from P .

kNN queries. Given a query point q and its coordinates

{X1, . . . , Xd}, let A=kNN(q, RP) be the set of k nearest

neighbors of q from RP and |x, y| be the Euclidean distance

between the point x and the point y (or the corresponding

records for the relational representation of the points), then:

(A ⊆ RP)∧(|A| = k)∧(∀a ∈ A, ∀r ∈ RP−A, |a, q| ≤ |r, q|).

kNN-Join. In this case, the query is a set of points denoted

by Q, and it is stored in a relational table RQ. The schema of

RQ is {qid, X1, · · · , Xd, B1, · · · , Bh}. Each point q in Q is

represented as a record s in RQ, and its coordinates are stored

in attributes {X1, . . . , Xd} of s. Additional attributes of q,

are represented by attributes {B1, · · · , Bh} for some value h.

Similarly, qid corresponds to the point id from Q. The goal

of the kNN-Join query is to join each record s from RQ with

its kNN from RP , based on the Euclidean distance defined by

{X1, . . . , Xd} and {Y1, . . . , Yd}, i.e., for ∀s ∈ Q, we would

like to produce pairs (s, r), for ∀r ∈ kNN(s, Rp).

Other query conditions. Additional, ad-hoc query condi-

tions could be specified by any regular expression, over

{A1, · · · , Ag} in case of kNN queries, or both {A1, · · · , Ag}
and {B1, · · · , Bh} in case of kNN-Join queries. The relational

requirement clearly implies that the query optimizer will be

able to automatically optimize input queries based on these

query conditions (see our discussion in Section VII).

Approximate k nearest neighbors. Suppose q’s kth nearest

neighbor from P is p∗ and r∗ = |q, p∗|. Let p be the kth

nearest neighbor of q for some kNN algorithm A and rp =
|q, p|. Given ǫ > 0 (or c > 1), we say that (p, rp) ∈ R

d × R

is a (1 + ǫ)-approximate (or c-approximate) solution to the

kNN query kNN(q, P) if r∗ ≤ rp ≤ (1 + ǫ)r∗ (or r∗ ≤ rp ≤
cr∗ for some constant c). Algorithm A is called a (1 + ǫ)-
approximation (or c-approximation) algorithm.

Similarly for kNN-Joins, an algorithm that finds a kth

nearest neighbor point p ∈ P for each query point q ∈ Q,

that is at least a (1 + ǫ)-approximation or c-approximation

w.r.t kNN(q, P) is a (1 + ǫ)-approximate or c-approximate

kNN-Join algorithm. The result by this algorithm is referred

to as a (1 + ǫ)-approximate or c-approximate join result.

Additional notes. The default value for d in our running

examples is two, but, our proofs and algorithms are presented

for any fixed dimension, d. We focus on the case where the

coordinates for points are always integers. Handling floating

points coordinates is discussed in Section VI. Our approach

easily supports updates, which is also discussed in Section

VI. The number of records in RP and RQ are denoted by

N = |RP | and M = |RQ| respectively. We assume that each

page can store maximally B records from either RP or RQ,

and the fan-out of a B+ tree is f . Without loss of generality,

we assume that points in P are all in unique locations. For the

general case, our algorithms can be easily adapted by breaking

the ties arbitrarily.

III. APPROXIMATION BY RANDOM SHIFTS

The z-value of a point is calculated by interleaving the

binary representations of its coordinate values from the most

significant bit (msb) to the least significant bit (lsb). For

example, given a point (2, 6) in a 2-d space, the binary

representation of its coordinates is (010, 110). Hence, its z-

value is 011100 = 28. The Z-order curve for a set of points

P is obtained by connecting the points in P by the numerical

order of their z-values and this produces the recursively Z-

shaped curve. A key observation for the computation of z-

value is that, it only requires simple bit-shift operations which

are readily available or easily achievable in most commercial

database engines. For a point p, zp denotes its z-value.

Our idea utilizes the z-values to map points in a multi-

dimensional space into one dimension, and then translate the

kNN search for a query point q into one dimensional range

search on the z-values around the q’s z-value. In most cases,

z-values preserve the spatial locality and we can find q’s kNN

in a close neighborhood (say γ positions up and down) of its

z-value. However, this is not always the case. In order to get

a theoretical guarantee, we produce α, independent, randomly

shifted copies of the input data set P and repeat the above

procedure for each randomly shifted version of P .

Specifically, we define the “random shift” operation, as

shifting all data points in P by a random vector −→v ∈ R
d.

This operation is simply p + −→v for all p ∈ P , and denoted

as P + −→v . We independently at random generate α number

of vectors {−→v1, . . . ,
−→vα} where ∀i ∈ [1, α], −→vi ∈ R

d. Let

P i = P +−→vi , P 0 = P and −→v0 =
−→
0 . For each P i, its points are

sorted by their z-values. Note that the random shift operation

is executed only once for a data set P and used for subsequent

queries. Next, for a query point q and a data set P , let zp be

the successor z-value of zq among all z-values for points in

P . The γ-neighborhood of q is defined as the γ points up

and down next to zp. For the special case, when zp does not

have γ points before or after, we simply take enough points

after or before zp to make the total number of points in the

γ-neighborhood to be 2γ + 1, including zp itself. Our kNN

query algorithm essentially finds the γ-neighborhood of the

query point qi = q+−→vi in P i for i ∈ [0, α] and select the final

top k from the points in the unioned (α+1) γ-neighborhoods,

with a maximum (α + 1)(2γ + 1) number of distinct points.

We denote this algorithm as the zχ-kNN algorithm and it is

shown in Algorithm 1. It is important to note that in Line

5, we obtain the original point from its shifted version if it

is selected to be a candidate in one of the γ-neighborhoods.

This step simplifies the final retrieval of the kNN from the

candidate set C. It also implies that the candidate sets Ci’s

may contain duplicate points, i.e., a point may be in the γ-

neighborhood of the query point in more than one randomly

shifted versions.

The zχ-kNN is clearly very simple and can be implemented

efficiently using only (α+1) one-dimensional range searches,

each requires only logarithmic IOs w.r.t the number of pages

occupied by the data set (N/B) if γ is some constant. More

importantly, we can show that, with α = O(1) and γ = O(k),
zχ-kNN gives a constant approximation kNN result in any

fixed dimension d, with only O(logf
N
B +k/B) page accesses.

In fact, we can show these results with just α = 1 and

Algorithm 1: zχ-kNN (point q, point sets {P 0, . . . , Pα})

Candidates C = ∅;1

for i = 0, . . . , α do2

Find zi
p as the successor of zq+−→vi

in P i;3

Let Ci be γ points up and down next to zi
p in P i;4

For each point p in Ci, let p = p −−→vi ;5

C = C
⋃

Ci;6

Let Aχ = kNN(q, C) and output Aχ.7

γ = k. In this case, let P ′ be a randomly shifted version of the

point set P , q′ be the correspondingly shifted query point and

Aq′ be the k nearest neighbors of q′ in P ′. Note that Aq′ = A.

Let points in P ′ be {p1, p2, . . . , pN} and they are sorted by

their z-values. The successor of zq′ w.r.t the z-values in P ′ is

denoted as pτ for some τ ∈ [1, N]. Clearly, the candidate set

C in this case is simply C = {pτ−k, . . . , pτ+k}. Without loss

of generality, we assume that both τ − k and τ + k are within

the range of [1, N], otherwise we can simply take additional

points after or before the successor as explained above in the

algorithm description. We use B(c, r) to denote a ball with

center c and radius r and let rad(p, S) be the distance from

the point p to the farthest point in a point set S. We first show

the following lemmas in order to claim the main theorem.

Lemma 1 Let M be the smallest box, centered at q′ contain-

ing Aq′ and with side length 2i (where i is assumed w.l.o.g to

be an integer > 0) which is randomly placed in a quadtree T
(associated with the Z-order). If the event Ej is defined as M
being contained in a quadtree box MT with side length 2i+j ,

and MT is the smallest such quadtree box, then

Pr(Ej) ≤

(

1 −
1

2j

)d
dj−1

2
j2−j

2

Proof: The proof is in the paper’s full version [32].

Lemma 2 The zχ-kNN algorithm gives an approximate k-

nearest neighbor ball B(q′, rad(q′, C)) using q′ and P ′ where

rad(q′, C) is at most the side length of MT . Here MT is the

smallest quadtree box containing M , as defined in Lemma 1.

Proof: zχ-kNN scans at least pτ−k . . . pτ+k, and picks

the top k nearest neighbors to q among these candidates.

Let a be the number of points between pτ and the point

with the largest z-value in B(q′, rad(q′,Aq′)), the exact k-

nearest neighbor ball of q′. Similarly, let b be the number

of points between pτ and the point with the smallest z-

value in B(q′, rad(q′,Aq′)). Clearly, a + b = k. Note that

B(q′, rad(q′,Aq′)) ⊂ M is contained inside MT , hence

the number of points inside MT ≥ k. Now, pτ . . . pτ+k

must contain a points inside MT . Similarly, pτ−k . . . pτ must

contain at least b points from MT . Since we have collected at

least k points from MT , rad(q′, C) is upper bounded by the

side length of MT .

Lemma 3 MT is only constant factor larger than M in

expectation.

Proof: The expected side length of MT is:

E[2i+j] ≤
∞
∑

j=1

2i+j Pr(Ej) ≤ 2i
∞
∑

j=1

(1 −
1

2j
)ddj−12

3j−j2

2 ,

where Lemma 1 gives Pr(Ej). Using Taylor’s approximation:

(

1 −
1

2j

)d

≤
(

1 − d2−j
(

1 + 2−1−j
)

+ d22−2j−1
)

and substituting it in the expectation calculation, we can show

that E[2i+j] is O(2i). The detail is in the full version [32].

These lemmas lead to the main theorem for zχ-kNN.

Theorem 1 Using α = O(1), or just one randomly shifted

copy of P , and γ = O(k), zχ-kNN guarantees an expected

constant factor approximate kNN result with O(logf
N
B +k/B)

number of page accesses.

Proof: The IO cost follows directly from the fact that

the one dimensional range search used by zχ-kNN takes

O(logf
N
B + k/B) number of page accesses with a B-tree

index. Let q be the point for which we just computed the

approximate k-nearest neighbor ball B(q′, rad(q′, C)). From

Lemma 2, we know that rad(q′, C) is at most the side length

of MT . From Lemma 3 we know that the side length of MT

is at most constant factor larger than rad(q′,Aq′) in P ′, in

expectation. Note that rad(q,Aq) in P equals rad(q′,Aq′)
in P ′. Hence our algorithm, in expectation, computes an

approximate k-nearest neighbor ball that is only a constant

factor larger than the true k-nearest neighbor ball.

Algorithm 1 clearly indicates that zχ-kNN only relies on

one dimensional range search as its main building block (Line

4). One can easily implement this algorithm with just SQL

statements over tables that store the point sets {P 0, . . . , Pα}.

We simply use the original data set P to demonstrate the

translation of the zχ-kNN into SQL. Specifically, we pre-

process the table RP so that an additional attribute zval is

introduced. A record r ∈RP uses {Y1, . . . , Yd} to compute

its z-value and store it as the zval. Next, a clustered B+-tree

index is built on the attribute zval over the table RP . This also

implies that records in RP are sorted by the zval attribute. For

a given query point q, we first calculate its z-value (denoted

as zval as well) and then, we find the successor record of q
in RP , based on the zval attribute of Rp and q. In the sequel,

we assume that such a successor record always exists. In the

special case, when q’s z-value is larger than all the z-values

in RP , we simply take its predecessor instead. This technical

detail will be omitted. The successor can be found by:

SELECT TOP 1 * FROM RP WHERE RP .zval ≥ q.zval

Note that TOP is a ranking operator that becomes part of

the standard SQL in most commercial database engines. For

example, Microsoft SQL Server 2005 has the TOP operator

available. Recent versions of Oracle, MySQL, and DB2 have

the LIMIT operator which has the same functionality. Since

table RP has a clustered B+ tree on the zval attribute, this

query has only a logarithmic cost (to the size of RP) in terms

of the IOs, i.e., O(logf
N
B). Suppose the successor record is

rs, in the next step, we retrieve all records that locate within

γ positions away from rs. This can be done as:

SELECT * FROM

(SELECT TOP γ * FROM RP WHERE RP .zval

> rs.zval ORDER BY RP .zval ASC

UNION

SELECT TOP γ * FROM RP WHERE RP .zval

< rs.zval ORDER BY RP .zval DESC) AS C

Again, due to the clustered B+ tree index on the zval,

this query is essentially a sequential scan around rs, with a

query cost of O(logf
N
B + γ

B). The first SELECT clause of

this query is similar to the successor query as above. The

second SELECT clause is also similar but the ranking is in

descending order of the zval. However, even in the second

case, the query optimizer is robust enough to realize that with

the clustered index on the zval, no ranking is required and it

simply sequentially scans γ records backwards from rs.

The final step of our algorithm is to simply retrieve the top

k records from these 2γ + 1 candidates (including rs), based

on their Euclidean distance to the query point q. Hence, the

UDF ‘Euclidean’ is only applied in the last step with 2γ + 1
number of records. The complete algorithm can be expressed

in one SQL statement as follows:

1 SELECT TOP k * FROM

2 (SELECT TOP γ + 1 * FROM RP ,

3 (SELECT TOP 1 zval FROM RP

4 WHERE RP .zval ≥ q.zval

5 ORDER BY RP .zval ASC) AS T

6 WHERE RP .zval≥T.zval

7 ORDER BY RP .zval ASC

8 UNION

9 SELECT TOP γ * FROM RP

10 WHERE RP .zval < T.zval

11 ORDER BY RP .zval DESC) AS C

12 ORDER BY Euclidean(q.X1,q.X2,C.Y1,C.Y2) (Q1)

For all SQL environments, line 3 to 5 need to be copied

into the FROM clause in line 9. We omit this from the SQL

statement to shorten the presentation. In the sequel, for similar

situations in all queries, we choose to omit this. Essentially,

line 2 to line 11 in Q1 select the γ-neighborhood of q in P ,

which will be the candidate set for finding the approximate

kNN of q using the Euclidean UDF by line 1 and 12.

In general, we can pre-process {P 1, . . . , Pα} similarly to

get the randomly shifted tables {R1
P , . . . , Rα

P } of RP , the

above procedure could be then easily repeated and the final

answer is the top k selected based on applying the Euclidean

UDF over the union of the (α+1) γ-neighborhoods retrieved.

The whole process could be done in just one SQL by repeating

line 2 to line 11 on each randomly shifted table and unioning

them together with the SQL operator UNION.

In the work by Liao et al. [23], using Hilbert-curves a

set of d + 1 deterministic shifts can be done to guarantee

a constant factor approximate answer but in this case the

space requirement is high, O(d) copies of the entire point

set is required, and the associated query cost is increased by

a multiplicative factor of d. In contrast, our approach only

requires O(1) shifts for any dimension and can be adapted

to yield exact answers. In practice, we just use the optimal

value of α = min(d, 4) that we found experimentally to

give the best results for any fixed dimension. In addition, z-

values are much simpler to calculate than the Hilbert values,

especially in higher dimensions, making it suitable for the SQL

environment. Finally, we emphasize that randomly shifted

tables {R1
P , . . . , Rα

P } are generated only once and could be

used for multiple, different queries.

IV. EXACT kNN RETRIEVAL

The zχ-kNN algorithm finds a good approximate solution

in O(logf
N
B + k/B) number of IOs. We denote the kNN

result from the zχ-kNN algorithm as Aχ. One could further

retrieve the exact kNN results based on Aχ. A straightforward

solution is to perform a range query using the approximate

kth nearest neighbor ball of Aχ, B(Aχ). It is defined as the

ball centered at q with the radius rad(q,Aχ), i.e., B(Aχ) =
B(q, rad(q,Aχ)). Clearly, rad(q,Aχ) ≥ r∗. Hence, the exact

kNN points are enclosed by B(Aχ). This implies that we can

find the exact kNN for q by:

SELECT TOP k * FROM RP

WHERE Euclidean(q.X1,q.X2,RP .Y1,RP .Y2)≤ rad(p,Aχ)
ORDER BY Euclidean(q.X1,q.X2,RP .Y1,RP .Y2) (Q2)

This query does reduce the number of records participated in

the final ranking procedure with the Euclidean UDF. However,

it still needs to scan the entire table RP to calculate the

Euclidean UDF first for each record, thus becomes very

expensive. Fortunately, we can again utilize the z-values to

find the exact kNN based on Aχ much more efficiently.

We define the kNN box for Aχ as the smallest box that

fully encloses B(Aχ), denoted as M(Aχ). Generalizing this

notation, let Aχ
i be the kNN result of zχ-kNN when it is

applied only on table Ri
P and M(Aχ

i) and B(Aχ
i) be the

corresponding kNN box and kth nearest neighbor ball from

table Ri
P . The exact kNN results from all table Ri

P ’s are the

same and they are always equal to A. In the sequel, when the

context is clear, we omit the subscript i from Aχ
i .

An example of the kNN box is shown in Figure 1(a). In

this case, the zχ-kNN algorithm on this table RP returns the

kNN result as Aχ = {p1, p2, p4} for k = 3 and p4 is the kth

nearest neighbor. Hence, B(Aχ) = B(q, |q, p4|), shown as the

solid circle in Figure 1(a). The kNN box M(Aχ) is defined by

the lower-left and right-upper corner points δℓ and δh, i.e., the

∆ points in Figure 1(a). As we have argued above, the exact

kNN result must be enclosed by B(Aχ), hence, also enclosed

by M(Aχ). In this case, the exact kNN result is {p1, p2, p3}
and the dotted circle in Figure 1(a) is the exact kth nearest

neighbor ball B(A).

Lemma 4 For a rectangular box M and its lower-left and

upper-right corner points δℓ, δh, ∀p ∈ M , zp ∈ [zℓ, zh], where

zp stands for the z-value of a point p and zℓ, zh correspond

to the z-values of δℓ and δh respectively (See Figure 1(a)).

Proof: Consider 2-d points, let p.X and p.Y be the

coordinate values of p in x-axis and y-axis respectively. By

p ∈ M , we have p.X ∈ [δℓ.X, δh.X] and p.Y ∈ [δℓ.Y, δh.Y].
Since the z-value of a point is obtained by shuffling bits of

its coordinate values from the msb to the lsb in an alternating

p4

zp1

γ

zp4zℓ zp3zhzp2 zp5

γ
z-val

p5

zq

r∗

rp

δh

δℓ

qp1

p2

p3

(a) kNN box.

p5

p8

p9

p7

qp1

p2

p3

δh

δℓ

p4

p6

γh

γℓ

(b) Aχ = A.

Fig. 1. kNN box: definition and exact search.

fashion, this immediately implies that zp ∈ [zℓ, zh]. The case

for higher dimensions is similar.

Lemma 4 implies that the z-values of all exact kNN points

will be bounded by the range [zℓ, zh], where zℓ and zh are the

z-values for the δℓ and δh points of M(Aχ), in other words:

Corollary 1 Let zℓ and zh be the z-values of δℓ and δh points

of M(Aχ). For all p ∈ A, zp ∈ [zℓ, zh].

Proof: By B(A) ⊂ M(Aχ) and Lemma 4.

Consider the example in Figure 1(a), Corollary 1 guarantees

that zpi for i ∈ [1, 5] and zq are located between zℓ and zh

in the one-dimensional z-value axis. The zχ-kNN essentially

searches γ number of points around both the left and the right

of zq in the z-value axis, for α number of randomly shifted

copies of P , including P itself. However, as shown in Figure

1(a), it may still miss some of the exact kNN points. Let γℓ

and γh denote the left and right γ-th points respectively for this

search. In this case, let γ = 2, zp3 is outside the search range,

specifically, zp3 > zγh
. Hence, zχ-kNN could not find the

exact kNN result. However, given Corollary 1, an immediate

result is that one can guarantee to find the exact kNN result by

considering all points with their z-values between zℓ and zh

of M(Aχ). In fact, if zγℓ
≤ zℓ and zγh

≥ zh in at least one of

the table Ri’s for i = 0, . . . , α, we know for sure that zχ-kNN

has successfully retrieved the exact kNN result; otherwise it

may have missed some exact kNN points. The case when zℓ

and zh are both contained by zγℓ
and zγh

of the M(Aχ) in

one of the randomly shifted tables is illustrated in Figure 1(b).

In this case, in one of the (α+1) randomly shifted tables, the

z-order curve passes through zγℓ
first before any points in

M(Aχ) (i.e., zγℓ
≤ zℓ) and it comes to zγh

after all points

in M(Aχ) have been visited (i.e., zγh
≥ zh). As a result, the

candidate points considered by zχ-kNN include every point

in A and the kNN result from the algorithm zχ-kNN will be

exact, i.e., Aχ = A.

When this is not the case, i.e., either zi
ℓ < zi

γℓ
or zi

h > zi
γh

or both in all tables Ri
P ’s for i = 0, . . . , α, Aχ might not be

equal to A. To address this issue, we first choose one of the

table R
j
P such that its M(Aχ

j) contains the least number of

points among kNN boxes from all tables; then the candidate

points for the exact kNN search only need to include all points

contained by this box, i.e., M(Aχ
j) from the table R

j
P .

To find the exact kNN from the box M(Aχ
j), we utilizing

Lemma 4 and Corollary 1. In short, we calculate the zj
ℓ and

Algorithm 2: z-kNN (point q, point sets {P 0, . . . , Pα})

Let Aχ
i be kNN(q, Ci) where Ci is from Line 4 in the1

zχ-kNN algorithm;

Let zi
ℓ and zi

h be the z-values of the lower-left and2

upper-right corner points for the box M(Aχ
i);

Let zi
γℓ

and zi
γh

be the lower bound and upper bound of3

the z-values zχ-kNN has searched to produce Ci;

if ∃i ∈ [0, α], s.t. zi
γℓ

≤ zi
ℓ and zi

γh
≥ zi

h then4

Return Aχ by zχ-kNN as A;5

else6

Find j ∈ [0, α] such that the number of points in Rj
P7

with z-values in ∈ [zj
ℓ , z

j
h] is minimized;

Let Ce be those points and return A = kNN(q, Ce);8

zj
h of this box and do a range query with [zj

ℓ , z
j
h] on the zval

attribute in table R
j
P . Since there is a clustered index built

on the zval attribute, this range query becomes a sequential

scan in [zj
ℓ , z

j
h] which is very efficient. It essentially involves

logarithmic IOs to access the path from the root to the leaf

level in the B+ tree, plus some sequential IOs linear to the

number of points between zj
ℓ and zj

h in table R
j
P . The next

lemma is immediate based on the above discussion. Let zi
s

be the successor z-value to qi’s z-value in table Ri
P where

qi = q+−→vi , zi
p be the z-value of a point p in table Ri

P and Li

be the number of points in the range [zi
ℓ, z

i
h] from table Ri

P .

Lemma 5 For the algorithm zχ-kNN, if there exists at least

one i ∈ {0, . . . , α}, such that [zi
ℓ, z

i
h] ⊆ [zi

γℓ
, zi

γh
], then Aχ =

A; otherwise, we can find A ⊆ [zj
ℓ , z

j
h] for some table R

j
P

where j ∈ {0, . . . , α} and Lj = min{L0, . . . , Lα}.

These discussion leads to a simple algorithm for finding the

exact kNN based on zχ-kNN and it is shown in Algorithm 2.

We denote it as the z-kNN algorithm.

Figure 2 illustrates the z-kNN algorithm. In this case, α = 1,

In both table R0
P and R1

P , [zγℓ
, zγh

] does not fully contain

[zℓ, zh]. Hence, algorithm zχ-kNN does not guarantee to return

the exact kNN. Among the two tables, [z1
ℓ , z1

h] contains less

number of points than [z0
ℓ , z0

h] (in Figure 2, L1 < L0), hence

we do the range query using [z1
ℓ , z1

h] in table R1
P and apply the

“Euclidean” UDF on the records returned by this range query

to select the final, exact kNN records. Algorithm z-kNN can

be achieved using SQL alone. The first step is to check if

Aχ = A. This is equivalent to check if [zi
ℓ, z

i
h] ⊆ [zi

γℓ
, zi

γh
]

for some i. Note that we can calculate the coordinate values of

δi
ℓ and δi

h for any M(Aχ
i) easily with addition and subtraction,

given qi and Aχ
i , and convert them into the z-values (zi

ℓ and

zi
h) in SQL (we omit this detail for brevity). That said, this

checking on table Ri
P can be done via:

SELECT COUNT(*) FROM Ri
P

AS R

WHERE R.zval ≥ zi
ℓ
AND R.zval ≤ zi

h
AND R.pid NOT IN (SELECT pid FROM Ri

P AS R1

WHERE R1.zval ≥ zi
γℓ

AND R1.zval ≤ zi
γh
) (Q3)

z1
s

· · · zval

· · ·
· · ·
· · ·
· · ·
· · ·

R0
P

q0.zval

γ

γ z0
ℓ

z0
h

· · ·

· · ·

· · · zval

· · ·
· · ·

· · ·

· · ·
· · ·

γ

γ

R1
P

q1.zval

z1
ℓ

z1
h

L1L0

z0
s

Fig. 2. Exact search of kNN.

If this count equals 0, then [zi
ℓ, z

i
h] ⊆ [zi

γℓ
, zi

γh
]. One can

easily create one SQL statement to do this checking for all

tables. If there is at least one table with a count equal to 0
among R0

P , . . . , Rα
P , then we can can safely return Aχ as the

exact kNN result. Otherwise, we continue to the next step.

We first select the table (say R
j
P) with the smallest Li value.

This is done by (Q4), in which we find the value j. Then we

select the final kNN result from R
j
P among the records with

z-values between [zj
ℓ , z

j
h] via (Q5).

SELECT TOP 1 ID FROM

(SELECT 0 AS ID, COUNT(*) AS L FROM R0
P

AS R0

WHERE R0.zval ≥ z0
ℓ
AND R0.zval ≤ z0

h
UNION · · · UNION

SELECT α AS ID, COUNT(*) AS L FROM Rα
P AS Rα

WHERE Rα.zval ≥ zα
ℓ

AND Rα.zval ≤ zα
h

) AS T ORDER BY T.L ASC (Q4)

SELECT TOP k * FROM R
j
P

//The ID from Q4 is j

WHERE R
j
P
.zval ≥ z

j
ℓ
AND R

j
P
.zval ≤ z

j
h

ORDER BY Euclidean(qj.X1,q
j.X2,R

j
P
.Y1,R

j
P
.Y2) (Q5)

One can combine (Q3), (Q4) and (Q5) to get the exact

kNN result based on the approximate kNN result given by

(Q1) (the zχ-kNN algorithm).

Finally, we would like to highlight that theoretically, for

many practical distributions, the z-kNN algorithm still achieves

O(logf
N
B + k/B) number of page accesses to report the

exact kNN result in any fixed dimension. When Aχ = A,

this result is immediate by Theorem 1. When Aχ 6= A, the

key observation is that the number of “false positives” in the

candidate set Ce (line 8 in Algorithm 2) is bounded by some

constant O(k) for many practical data distributions. Hence, the

number of candidate points that the z-kNN algorithm needs

to check is still O(k), the same as the zχ-kNN algorithm.

Referring back to Figure 1(b), the false positives in a kNN box

M(Aχ
i) are defined as those points p such that p 6∈ M(Aχ

i) but

zp ∈ [zi
ℓ, z

i
h]. For example, in Figure 1(b), the false positives

are {p8, p6, p7}. Note that p9 is not a false positive w.r.t this

kNN box as it is beyond the range [zi
ℓ, z

i
h].

Let P be a fixed distribution of points in a fixed d-

dimensional space, i.e., d is considered as a constant. Let P
be i.i.d. from P and its size be N ≫ k ≥ 1. We will call

this distribution a Doubling Distribution if it has the following

property: Let S be a d dimensional ball with center pi ∈ P and

radius r that contains k points. Then, the d dimensional ball S′

with center pi and radius 2r has at most νk points, for some

ν = O(1). This is a similar restriction to the doubling metric

restriction on metric spaces and has been used before [21].

Note that many distributions of points occurring in real data

sets, including uniform distribution satisfy this property.

Theorem 2 For doubling distributions, the expected number

of false positives for a kNN box M(Aχ
i) for all i ∈ {0, . . . , α}

is O(k); the number of points that are fully enclosed by

M(Aχ
i) is also O(k).

Proof: Without loss of generality, let ι be any fixed

value from 0 to α. Let MT be the smallest quadtree box

that contains M(Aχ
ι). Let d = 1. We will now show that

the number of points in MT is O(k). The expected number

of points in M(Aχ
ι) is at most kν 1

2
+ kν2 1

2

3

4
+ kν 1

2

1

4

7

8
+

. . . ≤ k
∑

∞

j=1

νj

2(j2+1)/2
= O(k), since ν = O(1). A similar

argument shows that as the dimension increases (but is still

O(1)), the expected number of points in M(Aχ
ι) is still O(k).

A two level expectation argument shows that the expected

number of points in MT is still O(k). The details of this

calculation are omitted for brevity. The points in MT are

consecutive in z-values and the Z-order curve enters the lower-

left corner and sweeps through the entire MT before it leaves

through the upper right corner of MT . Since, M(Aχ
ι) ⊂ MT ,

the curve passing through the lower left corner of M(Aχ
ι) and

ending at the upper right corner of M(Aχ
ι) can not go out of

MT . This implies that all the false positives are contained in

MT and hence the expected number of false positives is also

upper bounded by O(k) in expectation.

Corollary 2 For doubling distributions, the z-kNN algorithm,

using O(1) number of random shifts, retrieves the exact kNN

result with O(logf
N
B + k/B) number of page accesses for

data in any fixed dimension.

Our Theorem requires just 1 random shift. In practice, we

use several random shifts to amplify the probability of getting

smaller MT sizes (which in turn reduces the query cost), at the

expense of increasing storage cost. We explore this trade-off

in our experiments.

V. kNN-JOIN AND DISTANCE BASED θ-JOIN

An important feature for our approach is that we can easily

and efficiently support join queries. The basic principle of

finding the k nearest neighbors stays the same for the kNN-

Join query over two tables RQ and RP . However, the main

challenge is to achieve this using a single SQL statement. We

still generate R0
P , . . . , Rα

P in the same fashion. Concentrating

on the approximate solution, we need to perform the similar

procedure as shown in Section III to joining two tables (RQ

and Ri
P ’s). The general problem is to join each individual

record si from RQ to 2γ + 1 number of records from RP

around si’s successor (based on the z-value) record rs(si) in

RP ; and then for each such group (si and the 2γ + 1 records

around rs(si)) we need to select the top-k records based on

their Euclidean distances to si. A simple approach is to use

a store procedure to implement this idea, i..e, for each record

from RQ, we execute the zχ-kNN query from Section III.

If one would like to implement this join with just one SQL

statement, the observation is that the second step above is

equivalent to retrieving top k records in each group based on

some ranking functions and grouping conditions. This has been

addressed by all commercial database engines. For example, in

Microsoft SQL Server, this is achieved by the RANK() OVER

(PARTITION BY . . . ORDER BY . . .) clause. Conceptu-

ally, this clause assigns a rank number to each record involved

in one partition or group according to its sorted order in that

partition. Hence, we could simply select the tuple with the

rank number that is less than or equal to k from each group.

Oracle, MySQL and DB2 all have their own operators for

similar purposes.

We denote this query as the zχ-kNNJ algorithm. It is

important to note that in some engines, the query optimizer

may not do a good job in optimizing the top-k query for each

group. An alternative approach is to implement the same idea

with a store procedure, By the same argument as shown in

Section III, the following result is immediate.

Lemma 6 Using α = O(1) and γ = O(k), the zχ-kNNJ

algorithm guarantees an expected constant approximate kNN-

Join result in O
(

M
B (logf

N
B + k

B)
)

number of page accesses.

We could extend the exact z-kNN algorithm from Section

IV to derive SQL statements as the z-kNNJ algorithm for the

exact kNN-Join. We omit it for brevity.

Our approach is quite flexible and supports a variety of

interesting queries. In particular, we demonstrate how it could

be adopted to support the distance based θ-Join query, denoted

as the θ-DJoin. Our idea for the θ-DJoin is similar to the

principle adopted in [24]. This query joins each record si ∈
RQ with the set Aθ(si) which contains all records rj ∈ RP

such that |si, rj | ≤ θ for some specified θ value. Suppose

si corresponds to a query point q. An obvious observation

is that the furthest point (or record) to q in Aθ(si) always

has a distance that is at most θ. Hence, the ball B(q, θ)
completely encloses all points from Aθ(si). Let the θ-box

for a record si be the smallest box that encloses B(q, θ) and

denote it as M(Aθ(si)). Clearly, all points from Aθ(si) are

also fully enclosed by M(Aθ(si)). By Lemma 4, we have

for ∀p ∈ Aθ(si), zp ∈ [zℓ, zh], here zℓ and zh are the z-

values of the bottom-left and top-right corner points of the

box M(Aθ(si)). This becomes exactly the same problem as

the exact kNN search and similar ideas from z-kNN could

then be applied.

VI. FLOAT VALUES, HIGHER DIMENSIONS AND UPDATES

Our method easily supports the floating point coordinates by

computing the z-values explicitly for floating point coordinates

in the pre-processing phase. This is done via the same bit-

interleaving operation. The only problem with this approach

is that the number of bits required for interleaving d-single

precision co-ordinates is 256d, assuming IEEE 754 floating

point representation. To avoid such a long string we can use

the following trick: We fix the length of the interleaved Z-order

bits to be at most µd bits, where µ is a small constant. We scale

the input data such that all coordinates lie between (0, 1). We

then only interleave the first µ bits of each coordinate after the

decimal point. For most practical data sets, µ < 32 (equivalent

to more than 9 digits of precision in the decimal system).

There are no changes required to our framework for dealing

with data in any dimension. Though our techniques work for

any dimension, however, as d increases, the number of bits

required for the z-value also increases. This introduces storage

overhead as well as performance degradation (the fanout of the

clustered B+ tree on the zval attribute drops). Hence, for the

really large dimensionality (say d > 30) one should consider

using techniques that are specially designed for those purposes,

for example the LSH-based method [5], [14], [25], [30].

Another nice property of our approach is the easy and

efficient support of updates, both insertions and deletions. For

the deletion of a record r, we simply delete r based on its

pid from all tables R0, . . . , Rα. For an insertion of a record

r that corresponds to a point p, we calculate the z-values for

p0, . . . , pα, recall pi = p + −→vi . Next, we simply insert r into

all tables R0, . . . , Rα but with different z-values. The database

engine will take care of maintaining the clustered B+ tree

indices on the zval attribute in all these tables.

Finally, our queries are parallel-friendly as they execute

similar queries over multiple tables with the same schema.

VII. EXPERIMENT

We implemented all algorithms in a database server running

Microsoft SQL Server 2005. The state of the art algorithm for

the exact kNN queries in arbitrary dimension is the iDistance

[20] algorithm. For the approximate kNN, we compare against

the Medrank algorithm [12], since it is the state of the art

for finding approximate kNN in relatively low dimensions

and is possible to adapt it in the relational principle. We also

compared against the approach using deterministic shifts with

the Hilbert-curve [23], however, that method requires O(d)
shifts and computing Hilbert values in different dimensions.

Both become very expensive when d increases, especially in

a SQL environment. Hence, we focused on the comparison

against the Medrank algorithm. We would like to emphasize

they were not initially designed to be relational algorithms

that are tailored for the SQL operators. Hence, the results

here do not necessarily reflect their behavior when being used

without the SQL constraint. We implemented iDistance [20]

using SQL, assuming that the clustering step has been pre-

processed outside the database and its incremental, recursive

range exploration is achieved by a stored procedure. We built

the clustered B+ tree index on the one-dimensional distance

value in this approach. We used the suggested 120 clusters

with the k-means clustering method, and the recommended ∆r
value from [20]. For the Medrank, the pre-processing step is

to generate α random vectors, then create α one-dimensional

lists to store the projection values of the data sets onto the

α random vectors, lastly sort these α lists. We created one

clustered index on each list. In the query step, we leveraged

on the cursors in the SQL Server as the ‘up’ and ‘down’

pointers and used them to retrieve one record from each list in

every iteration. The query process terminates when there are k
elements have been retrieved satisfying the dynamic threshold

(essentially the TA algorithm [13]). Both steps are achieved

by using stored procedures. We did not implement the iJoin

algorithm [33], the state of the art method for kNN-Joins, us-

ing only SQL, as it is not clear if that is feasible. Furthermore,

it is based on iDistance and our kNN algorithm significantly

outperforms the SQL-version iDistance. All experiments were

executed on a Windows machine with an Intel 2.33GHz CPU.

The memory of the SQL Server is set to 1.5GB.

Data sets. The real data sets were obtained from [1]. Each data

set represents the road-networks for a state in United States.

We have tested California, New Jersey, Maryland, Florida and

others. They all exhibit similar results. Since the California

data set is the largest with more than 10 million points, we only

show its results. By default, we randomly sample 1 million

points from the California data set. We also generate two types

of synthetic data sets, namely, the uniform (UN) points, and the

random-clustered (R-Cluster) points. Note that the California

data set is in 2-dimensional space. For experiments in higher

dimensional space, we use the UN and R-Cluster data sets.

Setup. Unless otherwise specified, we measured an algo-

rithm’s performance by the wall clock time metric which is the

total execution time of the algorithm, i.e, including both the IO

cost and the CPU cost. By default, 100 queries were generated

for each experiment and we report the average for one query.

For both kNN and kNN-Join queries, the query point or the

query points are generated uniformly at random in the space

of the data set P . The default size of P is N = 106. The

default value for k is 10. We keep α = 2, randomly shifted

copies, for the UN data set and α = min{4, d}, randomly

shifted copies, for the California and R-Cluster data sets, and

set γ = 2k. These values of α and γ do not change for different

dimensions. For the Medrank algorithms, we set its α value

as 2 for experiments in two dimensions and 4 for d larger than

2. This is to make fair comparison with our algorithms (with

the same space overhead). The default dimensionality is 2.

A. Results for the kNN Query

0 2 3 4 5 6
0

0.04

0.08

0.12

α

R
u
n
n
in

g
 t
im

e
 (

s
e
c
s
)

z−kNN

z
χ
−kNN

UN California

Fig. 4. Impact of α on the running
time.

Impact of α. The number

of “randomly shifted” copies

has a direct impact on the

running time for algorithms

zχ-kNN and z-kNN, as well

as their space overhead. Its

effect on the running time is

shown in Figure 4. For the

zχ-kNN algorithm, we expect

its running time to increase linearly with α. Indeed, this

is the case in Figure 4. The running time for the exact z-

kNN algorithm has a more interesting trend. For the uniform

UN data set, its running time also increases linearly with

α, simply because it has to search more tables, and for

the uniform distribution more random shifts do not change

the probability of Aχ = A. This probability is essentially

Pr(∃i, [zi
ℓ, z

i
h] ⊆ [zi

γℓ
, zi

γh
]) and it stays the same in the

uniform data for different α values. The number of false

0 20 40 60 80 100

1

1.4

1.8

2.2

k

rp
/r

*

UN
California
R−Cluster

z
χ
−kNN Medrank

(a) Vary k.

0 1 3 5 7
1

2

3

4

5

N: X10
6

rp
/r

*

UN
California
R−Cluster

z
χ
−kNN Medrank

(b) Vary N .

2 3 4 5 6

1

1.5

2

2.5

3

α

rp
/r

*

UN
California
R−Cluster

z
χ
−kNN Medrank

(c) Vary α.

0 10 20 30 40 50

1

1.1

1.2

1.3

1.4

γ

rp
/r

*

UN
California
R−Cluster

z
χ
−kNN

(d) Vary γ.

Fig. 3. The approximation quality of the zχ-kNN and Medrank algorithm: average and the %5-%95 confidence interval.

positive points also does not change much for the uniform

data, when using multiple shifts. On the other hand, for a

highly skewed data set, such as California, increasing the

α value could bring significant savings, even though z-kNN

has to search more tables. This is due to two reasons. First,

in highly skewed data sets, more “randomly shifted” copies

increase the probability Pr(∃i, [zi
ℓ, z

i
h] ⊆ [zi

γℓ
, zi

γh
]). Second,

more shifts also help reduce the number of false positive points

around the kNN box, in at least one of the shifts. However,

larger α values also indicate searching more tables. We expect

to see a turning point, where the overhead of searching more

tables, when introducing additional shifts, starts to dominate.

This is clearly shown in Figure 4 for the z-kNN algorithm on

California, and α = 4 is the sweet spot. This result explains

our choice for the default value of α. On the storage side, the

cost is linear in α. However, since we only keep a small,

constant number of shifts in any dimension, such a space

overhead is small. The running time and the space overhead of

the Medrank algorithm increase linearly to α. Since its running

time is roughly 2 orders of magnitude more expensive than zχ-

kNN and z-kNN, we omitted it in Figure 4.

Approximation quality. We next study the approximation

quality of zχ-kNN, comparing against Medrank. For different

values of k (Figure 3(a)), N (Figure 3(b)), α (Figure 3(c)),

and γ (Figure 3(d)), Figure 3 confirms that zχ-kNN achieves

very good approximation quality and significantly outperforms

Medrank. For zχ-kNN, we plot the average together with the

5% − 95% confidence interval for 100 queries, and only the

average for the Medrank as it has a much larger variance. In

all cases, the average approximation ratio of zχ-kNN stays

below 1.1, and the worst cases never exceed 1.4. This is

usually two times better or more than Medrank. These results

also indicate that our algorithm not only achieves an excellent

expected approximation ratio as our theorem has suggested,

but also has a very small variance in practice, i.e., its worst

case approximation ratio is still very good and much better

than the existing method. Figure 3(a) and Figure 3(b) indicate

that the approximate ratio of zχ-kNN is roughly a constant over

k and N , i.e., it has a superb scalability. Figure 3(c) indicates

that the approximation quality of zχ-kNN improves when more

“randomly shifted” tables are used. However, for all data sets,

even with α = 2, its average approximation ratio is already

around 1.1. Figure 3(d) reveals that increasing γ slightly does

improve the approximation quality of zχ-kNN, but not by too

much. Hence, a γ value that is close to k (say 2k) is good

enough. Finally, another interesting observation is that, for the

California and the R-Cluster data sets, four random shifts are

enough to ensure zχ-kNN to give a nice approximation quality.

For the UN data set, two shifts already make it give an approx-

imation ratio that is almost 1. This confirms our theoretical

analysis, that in practice O(1) shift for zχ-kNN is indeed good

enough. Among the three data sets, not surprisingly, the UN

data set consistently has the best approximation quality and

the skewed data sets give slightly worse results. Increasing α
values does bring the approximation quality of Medrank closer

to zχ-kNN (Figure 3(c)), however, zχ-kNN still achieves much

better approximation quality.

Running time. Next we test the running time (Figure 5

in next page) of different algorithms for the kNN queries,

using default values for all parameters, but varying k and

N . Since both California and R-Cluster are skewed, we only

show results from California. Figure 5 immediately tells that

both the zχ-kNN and the z-kNN significantly outperform other

methods by one to three orders of magnitude, including the

brute-force approach BF (the SQL query using the “Euclidean”

UDF directly), on millions of points and varying k. In many

cases, the SQL version of the Medrank method is even worse

than the BF approach, because retrieving records from multiple

tables by cursors in a sorted order, round-by-round fashion

is very expensive in SQL; and updating the candidate set in

Medrank is also expensive by SQL. The zχ-kNN has the best

running time followed by the z-kNN. Both of them outperform

the iDistance method by at least one order of magnitude. In

most cases, both the zχ-kNN and the z-kNN take as little as

0.01 to 0.1 second, for a k nearest neighbor query on several

millions of records, for k ≤ 100. Interestingly enough, both

Figure 5(a) and 5(b) suggest, that the running time for both

the zχ-kNN and the z-kNN increase very slowly, w.r.t the

increment on the k value. This is because the dominant cost

for both algorithms, is to identify the set of candidate points,

using the clustered B+ tree. The sequential scan (with the

range depending on the k value) around the successor record

is extremely fast, and it is almost indifferent to the k values,

unless there is a significant increase. Figure 5(c) and 5(d)

indicate that the running time of all algorithms increase with

larger N values. For the California data set, as the distribution

is very skewed, the chance that our algorithms have to scan

more false positives and miss exact kNN results is higher.

0 20 40 60 80 100
10

−3

10
−2

10
−1

10
0

10
1

k

R
u
n
n
in

g
 t
im

e
 (

s
e
c
s
)

BF iDistance z−kNN z
χ
−kNN Medrank

(a) Vary k: UN.

0 20 40 60 80 100
10

−2

10
−1

10
0

10
1

10
2

k

R
u
n
n
in

g
 t
im

e
 (

s
e
c
s
)

BF iDistance z−kNN z
χ
−kNN Medrank

(b) vary k: California.

0 1 3 5 7
10

−2

10
−1

10
0

10
1

N:X10
6

R
u
n
n
in

g
 t
im

e
 (

s
e
c
s
)

BF iDistance z−kNN z
χ
−kNN Medrank

(c) vary N : UN.

0 1 3 5 7
10

−2

10
−1

10
0

10
1

10
2

N:X10
6

R
u
n
n
in

g
 t
im

e
 (

s
e
c
s
)

BF iDistance z−kNN z
χ
−kNN Medrank

(d) vary N : California.

Fig. 5. kNN queries: running time of different algorithms, default N = 106, k = 10, d = 2, α = 2, γ = 2k.

Hence, the zχ-kNN and the z-kNN have higher costs than their

performance in the UN data set. Nevertheless, Figure 5(c) and

5(d) show that zχ-kNN and z-kNN have excellent scalability

comparing to other methods, w.r.t the size of the database. For

example, for 7 million records, they still just take less than 0.1
second.

Effect of dimensionality. We next investigate the impact of

dimensionality to our algorithms, compared to the BF and the

SQL-version of the iDistance and Medrank methods, using

the UN and R-Cluster data sets. The running time for both

data sets are similar, hence we only report the result from

R-Cluster. Figure 6(a) indicates that the SQL version of the

Medrank method is quite expensive. The BF method’s running

time increases slowly with the dimensionality. This is expected

since the IOs contribute the dominant cost. Increasing the

dimensionality does not significantly affect the total number

of pages in the database. The running time of zχ-kNN and z-

kNN do increase with the dimensionality, but at a much slower

pace compared to the SQL-versions of the iDistance, Medrank

and BF. When the dimension exceeds eight, the performance

of the SQL version iDistance becomes worse than the BF

method. When dimensionality becomes 10, our algorithms

provide more than two orders of magnitude performance gain,

compared to the BF, the iDistance and the Medrank methods,

for both the uniform and the skewed data sets. Finally, we

study the approximation quality of the zχ-kNN algorithm,

compared against the Medrank when dimensionality increases

and the result is shown in Figure 6(b). For zχ-kNN, we

show its average as well as the 5%-95% confidence interval.

Clearly, zχ-kNN gives excellent approximation ratios across

all dimensions and consistently outperforms the Medrank

algorithm by a large margin. Furthermore, similar to results

in two dimension from Figure 3, zχ-kNN has a very small

variance in its approximation quality across all dimensions.

For example, its average approximation ratio is 1.2 when

d = 10, almost two times better than Medrank; and its

worst case is below 1.4 which is still much better than the

approximation quality of the Medrank.

B. Results for the kNN-Join Query

In this section, we study the kNN-Join queries, by com-

paring the zχ-kNNJ algorithm to the BF SQL query that uses

the UDF “Euclidean” as a major join condition (as shown

in Section I). By default, M = |Q| = 100. Similar to

0 2 4 6 8 10
10

−2

10
−1

10
0

10
1

10
2

Dimensionality

R
u

n
n

in
g

 t
im

e
 (

s
e

c
s
)

BF iDistance z−kNN z
χ
−kNN Medrank

(a) Running time:R-Cluster.

0 2 4 6 8 10

1

1.5

2

2.5

Dimensionality

rp
/r

*

UN
R−Cluster

z
χ
−kNN Medrank

(b) Approximation Quality

Fig. 6. kNN queries: impact of the dimensionality.

0 2 4 6
0

500

1000

1500

2000

2500

N:X10
6

R
u
n
n
in

g
 t
im

e
 (

s
e
c
s
)

BF

z
χ
−kNNJ

UN R−Cluster

(a) Vary N.

0 2 4 6 8 10
0

200

400

600

Dimensionality

R
u

n
n

in
g

 t
im

e
 (

s
e

c
s
)

BF

z
χ
−kNNJ

UN R−Cluster

(b) Vary dimensionality.

Fig. 7. kNN-Join running time: zχ-kNNJ vs BF.

results between zχ-kNN and z-kNN in the kNN queries, the

exact version of this algorithm (i.e., z-kNNJ) has very similar

performance (in terms of the running time) to the zχ-kNNJ.

For brevity, we focus on the zχ-kNNJ algorithm. Figure 7

shows the running time of the kNN-Join queries, using either

the zχ-kNNJ or the BF when we vary either N or d on UN

and R-Cluster data sets. In all cases, zχ-kNNJ is significantly

better than the BF method, which essentially reduces to the

nested loop join. Both algorithms are not sensitive to varying

k values up to k = 100 and we omitted this result for brevity.

However, the BF method does not scale well with larger

databases as shown by Figure 7(a). The zχ-kNNJ algorithm, on

the contrary, has a much slower increase in its running time

when N becomes larger (up-to 7 million records). Finally,

in terms of dimensionality (Figure 7(b)), both algorithms are

more expensive in higher dimensions. However, once again,

the zχ-kNNJ algorithm has a much slower pace of increment.

We also studied the approximation quality for zχ-kNNJ. Since

it is developed based on the same idea as the the zχ-kNN

algorithm, their approximation qualities are the same. Hence,

the results were not shown.

C. Updates and Distance Based θ-Join

We also performed experiments on the distance based θ-

Join queries. That too, has very good performance in practice.

As discussed in Section VI, our methods easily supports

updates, and the query performance is not affected by dynamic

updates. Many existing methods for kNN queries could suffer

from updates. For example, the performance of the iDistance

method depends on the quality of the initial clusters. When

there are updates, dynamically maintaining good clusters is a

very difficult problem [20]. This is even harder to achieve in

a relational database with only SQL statements. Medrank is

also very expensive to support ad-hoc updates [12].

D. Additional Query Conditions

Finally, another benefit of being relational is the easy

support for additional, ad-hoc query conditions. We have

verified this with both the zχ-kNN and z-kNN algorithms, by

augmenting additional query predicates and varying the query

selectivity of those predicates. When databases have meta-data

(some statistical information on different attributes) available

for estimating the query selectivity, the query optimizer is able

to perform further pruning based on those additional query

conditions. This is a natural result as both the zχ-kNN and z-

kNN algorithms are implemented by standard SQL operators.

VIII. RELATED WORKS

The nearest neighbor query with Lp norms has been ex-

tensively studied. In the context of spatial databases, R-tree

provides efficient algorithms using either the depth-first [29] or

the best-first [18] approach. These algorithms typically follow

the branch and bound principle based on the MBRs in an

R-tree index [6], [16]. Some commercial database engines

have already incorporated the R-tree index into their systems.

However, there are still many already deployed relational

databases in which such features are not available. Also, the

R-tree family has relatively poor performance for data beyond

six dimensions and the kNN-join with the R-tree is most likely

not available in the engines even if R-tree is available.

Furthermore, R-tree does not provide any theoretical guar-

antee on the query costs for nearest neighbor queries (even

for approximate versions of these queries). Computational

geometry community has spent considerable efforts in design-

ing approximate nearest neighbor algorithms [2], [9]. Arya

et al. [2] designed a modification of the standard kd-tree,

called the Balanced Box Decomposition (BBD) tree that

can answer (1 + ǫ)-approximate nearest neighbor queries in

O(1/ǫd log N). BBD-tree takes O(N log N) time to build.

BBD trees are certainly not available in any database engine.

Practical approximate nearest neighbor search methods do

exist. One is the well-known locality sensitive hashing (LSH)

[14], where data in high dimensions are hashed into random

buckets. By carefully designing a family of hash functions

to be locality sensitive, objects that are closer to each other

in high dimensions will have higher probability to end up in

the same bucket. The drawback of the basic LSH method is

that in practice, large number of hash tables may be needed

to approximate nearest neighbors well [25] and successful

attempts have been made to improve the performance of the

LSH-based methods [5], [30]. The LSH-based methods are

designed for data in extremely high dimensions (typically

d > 30 and up-to 100 or more). It is not optimized for data in

relatively low dimensions. Our focus in this work is to design

relational algorithms that are tailored for the later (2 to 10
dimensions). Another approximate method that falls into this

class is the Medrank method [12]. In this method, elements are

projected to a random line, and ranked based on the proximity

of the projections to the projection of the query. Multiple

random projections are performed and the aggregation rule

picks the database element that has the best median rank. A

limitation of both the LSH-based methods and the Medrank

method is that they can only give approximate solutions and

could not help for finding the exact solutions. Note that for any

approximate kNN algorithm, it is always possible to, in a post-

processing step, retrieve the exact kNN result by a range query

using the distance between q and the kth nearest neighbor from

the approximate solution. However, it no longer guarantees any

query costs provided by the approximate algorithm, as it was

not designed for the range query which, in high dimensional

space, often requires scanning the entire database.

Another method is to utilize the space-filling curves and

map the data into one dimensional space, represented by the

work of Liao et al. [23]. Specifically, their algorithm uses

O(d + 1) deterministic shifted copies of the data points and

stores them according to their positions along a Hilbert curve.

Then it is possible to guarantee that a neighbor within an

O(d1+1/t) factor of the exact nearest neighbor, can be returned

for any Lt norm with at most O((d+1) log N) page accesses.

Our work is inspired by this approach [10], [23], however, with

significant differences. We adopted the Z-order for the reason

that the Z-value of any point can be computed using only the

bit shuffle operation. This can be easily done in a relational

database. More importantly, we use random shifts instead

of deterministic shifts. Consequently, only O(1) shifts are

needed to get an expected constant approximation result, using

only O(log N) page accesses for any fixed dimensions. In

practice, our approximate algorithm gives orders of magnitude

improvement in terms of its efficiency, and at the same time

guarantees much better approximation quality comparing to

adopting existing methods by SQL. In addition, our approach

supports efficient, exact kNN queries. It obtains the exact kNN

for certain types of distributions using only O(log N) page

accesses for any dimension, again using just O(1) random

shifts. Our approach also works for kNN-Joins.

Since we are using Z-values to transform points from higher

dimensions to one dimensional space, a related work is the

UB-Tree [28]. Conceptually, the UB-Tree is to index Z-values

using B-Tree. However, they [28] only studied range query

algorithms and they did not use random shifts to generate the

Z-values. To the best of our knowledge, the only prior work on

kNN queries in relational databases was [3]. However, it has

a fundamentally different focus. Their goal is to explore ways

to improve the query optimizer inside the database engine to

handle kNN queries. In contrast, our objective is to design

SQL-based algorithms outside the database engine.

The state of the art technique for retrieving the exact k

nearest neighbors in high dimensions is the iDistance method

[20]. Data is first partitioned into clusters by any popular

clustering method. A point p in a cluster ci is mapped to

a one-dimensional value, which is the distance between p and

ci’s cluster center. Then, kNN search in the original high

dimensional data set could be translated into a sequence of

incremental, recursive range queries, in these one dimensional

distance values [20], that gradually expands its search range

until kNN is guaranteed to be retrieved. Assuming that the

clustering step has been performed outside the database and

the incremental search step is achieved in a stored procedure,

one can implement a SQL-version of the iDistance method.

However, as it was not designed to be a SQL-based algorithm,

our algorithm outperforms this version of the iDistance method

as shown in Section VII.

Finally, the kNN-Join has also been studied [7], [8], [11],

[31], [33]. The latest results are represented by the iJoin algo-

rithm [33] and the Gorder algorithm [31]. The first approach

is based on the iDistance, and it extends the iDistance method

to support the kNN-Join. The extension is non-trivial and it is

not clear how to extend it into a relational algorithm using only

SQL statements. Gorder is a block nested loop join method

that exploits sorting, join scheduling and distance computation

filtering and reduction. Hence, it is an algorithm to be imple-

mented inside the database engine, which is different from our

objectives. Other join queries are considered for spatial data

sets as well, such as the distance join [17], [18], multiway

spatial join [26] and others. Interested readers are referred to

the article by Jacox et al. [19]. Finally, the distance-based

similarity join in GPU with the help of z-order curves was

investigated in [24].

IX. CONCLUSION

This work revisited the classical kNN-based queries. We

designed efficient algorithms that can be implemented by

SQL operators in large relational databases. We presented a

constant approximation for the kNN query, with logarithmic

page accesses in any fixed dimension and extended it to

the exact solution, both using just O(1) random shifts. Our

approach naturally supports kNN-Joins, as well as other inter-

esting queries. No changes are required for our algorithms for

different dimensions, and the update is almost trivial. Several

interesting directions are open for future research. One is to

study other related, interesting queries in this framework, e.g.,

the reverse nearest neighbor queries. The other is to examine

the relational algorithms to the data space other than the Lp

norms, such as the important road networks [22], [27].

X. ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their

valuable comments that improve this work. Bin Yao and Feifei

Li are supported in part by Start-up Grant from the Computer

Science Department, FSU. Piyush Kumar is supported in part

by NSF grant CCF-0643593.

REFERENCES

[1] Open street map. http://www.openstreetmap.org.
[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu.

An optimal algorithm for approximate nearest neighbor searching in
fixed dimensions. Journal of ACM, 45(6):891–923, 1998.

[3] A. W. Ayanso. Efficient processing of k-nearest neighbor queries over

relational databases: A cost-based optimization. PhD thesis, 2004.
[4] B. Babcock and S. Chaudhuri. Towards a robust query optimizer: a

principled and practical approach. In SIGMOD, 2005.
[5] M. Bawa, T. Condie, and P. Ganesan. Lsh forest: self-tuning indexes

for similarity search. In WWW, 2005.
[6] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The R∗-

tree: an efficient and robust access method for points and rectangles. In
SIGMOD, 1990.

[7] C. Böhm and F. Krebs. High performance data mining using the nearest
neighbor join. In ICDM, 2002.

[8] C. Böhm and F. Krebs. The k-nearest neighbour join: Turbo charging
the kdd process. Knowl. Inf. Syst., 6(6):728–749, 2004.

[9] T. M. Chan. Approximate nearest neighbor queries revisited. In SoCG,
1997.

[10] T. M. Chan. Closest-point problems simplified on the ram. In SODA,
2002.

[11] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos.
Closest pair queries in spatial databases. In SIGMOD, 2000.

[12] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search and
classification via rank aggregation. In SIGMOD, 2003.

[13] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for
middleware. In PODS, 2001.

[14] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high
dimensions via hashing. In VLDB, 1999.

[15] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan,
and D. Srivastava. Approximate string joins in a database (almost) for
free. In VLDB, 2001.

[16] A. Guttman. R-trees: a dynamic index structure for spatial searching.
In SIGMOD, 1984.

[17] G. R. Hjaltason and H. Samet. Incremental distance join algorithms for
spatial databases. In SIGMOD, 1998.

[18] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases.
ACM Trans. Database Syst., 24(2), 1999.

[19] E. H. Jacox and H. Samet. Spatial join techniques. ACM Trans. Database
Syst., 32(1), 2007.

[20] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. iDistance:
An adaptive B+-tree based indexing method for nearest neighbor search.
ACM Trans. Database Syst., 30(2):364–397, 2005.

[21] D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-
restricted metrics. In STOC, 2002.

[22] M. Kolahdouzan and C. Shahabi. Voronoi-based k nearest neighbor
search for spatial network databases. In VLDB, 2004.

[23] S. Liao, M. A. Lopez, and S. T. Leutenegger. High dimensional
similarity search with space filling curves. In ICDE, 2001.

[24] M. D. Lieberman, J. Sankaranarayanan, and H. Samet. A fast similarity
join algorithm using graphics processing units. In ICDE, 2008.

[25] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe
LSH: efficient indexing for high-dimensional similarity search. In VLDB,
2007.

[26] N. Mamoulis and D. Papadias. Multiway spatial joins. ACM Trans.

Database Syst., 26(4):424–475, 2001.
[27] D. Papadias, M. L. Yiu, N. Mamoulis, and Y. Tao. Nearest neighbor

queries in network databases. In Encyclopedia of GIS. 2008.
[28] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and R. Bayer.

Integrating the ub-tree into a database system kernel. In VLDB, 2000.
[29] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries.

In SIGMOD, 1995.
[30] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency in high-

dimensional nearest neighbor search. In SIGMOD, 2009.
[31] C. Xia, H. Lu, B. C. Ooi, and J. Hu. Gorder: an efficient method for

KNN join processing. In VLDB, 2004.
[32] B. Yao, F. Li, and P. Kumar. K nearest neighbor queries and knn-joins

in large relational databases (almost) for free. Technical report, 2009.
www.cs.fsu.edu/∼lifeifei/papers/nnfull.pdf.

[33] C. Yu, B. Cui, S. Wang, and J. Su. Efficient index-based KNN join
processing for high-dimensional data. Inf. Softw. Technol., 49(4):332–
344, 2007.

