
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Group Enclosing Queries
Feifei Li, Bin Yao, Piyush Kumar

Abstract—Given a set of points P and a query set Q, a group enclosing query (GEQ) fetches the point p∗ ∈ P such that the maximum
distance of p∗ to all points in Q is minimized. This problem is equivalent to the Min-Max case (minimizing the maximum distance) of
aggregate nearest neighbor queries for spatial databases [27]. This work first designs a new exact solution by exploring new geometric
insights, such as the minimum enclosing ball, the convex hull and the furthest voronoi diagram of the query group. To further reduce
the query cost, especially when the dimensionality increases, we turn to approximation algorithms. Our main approximation algorithm
has a worst case

√
2-approximation ratio if one can find the exact nearest neighbor of a point. In practice, its approximation ratio never

exceeds 1.05 for a large number of data sets up to six dimension. We also discuss how to extend it to higher dimensions (up to 74 in our
experiment) and show that it still maintains a very good approximation quality (still close to 1) and low query cost. In fixed dimensions,
we extend the

√
2-approximation algorithm to get a (1 + ǫ)-approximate solution for the GEQ problem. Both approximation algorithms

have O(log N + M) query cost in any fixed dimension, where N and M are the sizes of the data set P and query group Q. Extensive
experiments on both synthetic and real data sets, up to 10 million points and 74 dimensions, confirm the efficiency, effectiveness and
scalability of the proposed algorithms, especially their significant improvement over the state-of-the-art method.

Index Terms—Aggregate nearest neighbor, approximate nearest neighbor, minmax nearest neighbor, nearest neighbor

✦

1 INTRODUCTION

Aggregate nearest neighbor queries represent a class of
important query types that are defined by taking the
minimum over the combination of some aggregate oper-
ators, such as the SUM, AVG, MAX, and the fundamental
nearest neighbor search [27]. These queries are defined
over two data sets, the data set P and a query data
set Q. Such queries could be generally interpreted as a
minimizing optimization problem defined on the nearest
neighbor search. For example, when the aggregate oper-
ator is the SUM, the aggregate nearest neighbor query
is equivalent to the group nearest neighbor query [26]
where the goal is to find a point from P that has the
minimum SUM distance to all query points in Q. Papa-
dias et al. have given a complete, thorough treatment
to a number of aggregate nearest neighbor queries in
spatial databases [27]. While being general enough to
cover different aggregate operators, its generality also
means that important opportunities could be overlooked
to optimize query algorithms for specific operators. For
instance, the state of the art [27] is limited by heuristics
that may yield very high query cost in certain cases,
especially for data sets and queries in higher (more than
two) dimensions. Motivated by this observation, this
work focuses on one specific aggregate operator, namely
the MAX, for the aggregate nearest neighbor queries in
large databases and designs methods that significantly
reduce the query cost compared to the MBM (Minimum
Bounding Method) algorithm from [27]. Following the

• All authors are with the Computer Science Department at
Florida State University, Tallahassee, FL 32306-4530. E-mail:
{lifeifei,yao,piyush}@cs.fsu.edu. Feifei Li and Bin
Yao were partially supported by NSF Grant IIS-0916488. Piyush Kumar
was partially supported by NSF through CAREER Grant CCF-0643593
and the Air Force Young Investigator Program.

p3

p1

p2
p5

p6

p7

p8q1

q3

p4

q2

Geq(P = {p1, . . . , p8}, Q = {q1, q2, q3})= p3,
the enclosing distance is ||q1 − p3||.

Fig. 1. A group enclosing query example.

previous instance when studying a specific aggregate
type for aggregate nearest neighbor queries (e.g., group
nearest neighbor queries for the SUM operator [24], [26]),
we designate a query name, the group enclosing query
(GEQ), for an aggregate nearest neighbor query with
the MAX operator. An example of the GEQ problem is
illustrated in Figure 1.

Specifically, with the reference to Figure 1, suppose
the cross points are the database (denoted as P) and
the points in black-filled circles form the group of query
points (denoted as Q), our goal in GEQ is to find one
point p∗ ∈ P such that p∗ has the smallest distance to
enclose all points from Q, where using a point p ∈ P to
enclose Q refers to finding a ball centered at p with the
smallest possible radius to cover all points from Q. For
example, the answer to the GEQ instance in Figure 1 is
p3 as indicated. In general, we assume that |P | = N and
|Q| = M . This query has many important and practical
applications, for example:

Example 1 A group of people is trying to meet in one
place. Given a large number of candidates, their goal is
to minimize the longest distance traveled by anyone.

More applications could be listed to demonstrate the
usefulness of this query and more examples are available
from the prior study [27]. Intuitively, in contrast to many

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

existing variants of the nearest neighbor queries that ask
for the best answer of the average case [24], [26], [36], the
GEQ problem searches for the best answer of the worst
case. This problem becomes even more difficult if the
query group is large as well.

The state of the art method for the GEQ problem
is the Minimum Bounding Method (MBM) from [27].
The principal methodology adopted by the MBM is the
triangle inequality. It is a heuristic method that has
O(N + M) query cost. In practice, its query cost has
only been studied in the two-dimensional space. Our
experiments over a large number of data sets in Section
7 suggests that the MBM algorithm may lead to high
query cost for large data sets and more importantly, its
performance degrades significantly with the increase of
the dimensionality.

In fact, it is easy to see that any exact search method
for the GEQ problem will inevitably suffer from the curse
of the dimensionality, since the classical nearest neighbor
search is a special instance of the GEQ problem (when Q
has only one point). Hence, for data sets in high dimen-
sions, similar to the motivation of doing approximate
nearest neighbor search instead of retrieving the exact
nearest neighbor in high dimensions [15], [20] (where
almost all exact methods degrade to the expensive linear
scan of the entire data set), finding efficient and effective
approximation algorithms is the best alternative.

Our Contributions. This work presents new, efficient
algorithms, including both exact and approximate ver-
sions, for the GEQ problem that significantly outperform
the state of the art, the MBM algorithm. Specifically,

• We present a new exact search method for the GEQ

problem in Section 4 that instantiates several new
geometric insights, such as the minimum enclosing
ball, the convex hull and the furthest voronoi dia-
gram of the query group, to achieve higher pruning
power than the MBM approach.

• We design a
√

2-approximation (worst case approxi-
mation ratio in any dimensions) algorithm in Section
5.1, if one can find the exact nearest neighbor of
a point and the minimum enclosing ball of Q. Its
asymptotic query cost is O(log N + M) in any fixed
dimensions. Our idea is to reduce the GEQ problem
to the classical nearest neighbor search by utilizing
the center of the minimum enclosing ball for Q.

• We extend the above idea to a (1+ǫ)-approximation
algorithm in any fixed dimension in Section 5.2. This
algorithm has a strong theoretical interest and it also
achieves the optimal O(log N +M) query cost in any
fixed dimension.

• We extend the same idea from the
√

2-approximate
algorithm to much higher dimensions in Section
5.3, since it is impossible to find the exact nearest
neighbor efficiently and the exact minimum enclos-
ing ball in high dimensions in practice. We leverage
on the latest, practical approximate nearest neighbor
search method (the LSB-tree [31]) and the (1 + ǫ)-

Symbol Description
||p − q|| Euclidean distance between p and q
| · | Size of a set
⊂,⊆ Both set and geometric containment
B(c, r) The ball centered at c with radius r
CQ Q’s convex hull as an ordered set of vertices

and the corresponding convex polygon
fn(q, P) The furthest neighbor of q in P
FC(q) The furthest voronoi cell of q
GEQ (P, Q) GEQ instance on P and Q
MEB(Q) Minimum enclosing ball of Q
MEB(p, Q) Minimum ball centers at p containing Q
maxEdist MBR u’s max enclosing distance to Q
minEdist MBR u’s min enclosing distance to Q
nn(q, P) The nearest neighbor of q in P
N, M |P | and |Q| respectively
p1p2 A line segment between p1 and p2

p1p2 · · · ptp1 The convex polygon by {p1p2, . . . , ptp1}
p∗ The optimal answer to GEQ (P, Q)
rp The enclosing distance of p w.r.t Q
r∗ GEQ (P, Q)’s best enclosing distance (rp∗)

TABLE 1
Notation used.

approximate minimum enclosing ball algorithm [22]
in high dimensions. It shows that we can still ob-
tain an efficient (

√
5 +

√
2ǫ)-approximation (with

constant probability) in high dimensions that works
extremely well in practice.

• We discuss the challenges when Q becomes large
and disk-based in Section 6.1, and show how to
adapt our algorithms to handle this case efficiently.
We also present an interesting variation of the GEQ

problem, the constrained GEQ, in Section 6.2.
• We demonstrate the efficiency, effectiveness and

scalability of our algorithms with extensive experi-
ments in Section 7. These results show that both our
exact and approximate methods have significantly
outperformed the MBM method up to 6 dimensions.
Beyond 6 dimensions and up to very high dimen-
sions (d = 74), our approximate algorithm is still
efficient and effective, with an average approxima-
tion ratio that is close to 1 and very low IO cost.

We formalize the problem in Section 2, survey the
related work in Section 3 and conclude in Section 8.

2 PROBLEM FORMULATION

Let P and Q denote the database and the query group
respectively, d-dimensional Euclidean space. The Eu-
clidean distance between two points p and q is denoted
by ||p − q||. Let B(c, r) denote the ball centered at c
with radius r. We use MEB(Q) to denote the minimum
enclosing ball for a set of points Q. MEB(Q) is the small-
est (measured by r) ball B(c, r) such that Q ⊆ B(c, r).
In this context, the operator ⊆ refers to the geometric
containment, i.e., every point in Q is fully contained by
the ball defined by B(c, r). If the center is fixed at p,
MEB(p, Q) denotes the smallest ball centered at p that
encloses all points in Q. The enclosing distance of p
w.r.t Q is rp,Q = maxq∈Q ||p − q||. Immediately, rp,Q is
the radius of MEB(p, Q). In the sequel, the subscript Q
in rp,Q will be omitted when the context is clear. An
ordered list of points p1p2 · · · ptp1 represents a convex

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

polygon defined by line segments {p1p2, p2p3, . . . , ptp1}
with t vertices. The convex hull of Q is represented
by a subset of its vertices as an ordered set of points
CQ = {qc1

, . . . , qcx
} where qci

∈ Q for some x ∈ [1, |Q|].
The convex polygon associated with the convex hull of
Q is simply qc1

qc2
· · · qcx

qc1
and it is also denoted by CQ.

The nearest neighbor of q in the point set P is denoted
as nn(q, P). Finally, let |P | = N and |Q| = M where
| · | is the cardinality of a set. Table 1 provides a quick
reference to our main notations.

Group Enclosing Query (GEQ). For a set of points P =
{p1, p2, . . . , pN} and a query set Q = {q1, q2, . . . , qM},
find the point p∗ ∈ P such that the radius r∗ of the ball
MEB(p∗, Q) is minimized, i.e., the enclosing distance of
p∗ w.r.t Q is minimal among all points in P . Formally, it
amounts to the following optimization problem:

r∗ := min
p∈P

max
q∈Q

||p − q|| (1)

Ties are broken arbitrarily in Equation 1. It follows that
p∗ and r∗ are the center and radius of the minimum
enclosing ball of Q centered at point p∗ ∈ P . Henceforth,
we use GEQ (P, Q) to denote an instance of this problem.
Note that this problem can be trivially solved in O(NM)
cost. It can also be thought of as finding the minimum
enclosing ball of Q subject to the constraint that the
center can lie only on one of the points in P .

Given any value ǫ > 0 (or a constant a), we say
that (p, rp) ∈ R

d × R is a (1 + ǫ)-approximate (or a-
approximate) solution to the GEQ problem for the in-
stance on (P, Q) if and only if

r∗ ≤ rp ≤ (1 + ǫ)r∗ (or r∗ ≤ rp ≤ ar∗) (2)

In the rest of this paper, for the ease of illustration,
some of our running examples in Figures will be based
on two dimensions, but our discussion and algorithms
apply to data sets and query sets in any fixed dimension.

3 BACKGROUND AND RELATED WORK

R-tree [17] and its variants (e.g., R∗-tree [8]) have been
the most widely deployed indexing structure for the
spatial database, or data in multi-dimensions in general.
Intuitively, R-tree is an extension of the B-tree to higher
dimensions. Points are grouped into minimum bounding
rectangles (MBRs) which are recursively grouped into
MBRs in higher levels of the tree. The grouping is based
on data locality and bounded by the page size. An
example of the R-tree is illustrated in Figure 2. Two
important query types that we leverage on R-tree are
nearest neighbor (NN) queries and range queries.

NN search has been extensively studied [5], [12], [15],
[19]–[21], [30] and many related works therein. In partic-
ular R-tree demonstrates efficient algorithms using either
the depth-first [30] and the best-first [19] approach. The
main idea behind these algorithms is to utilize branch
and bound pruning techniques based on the relative

p10

N6

p4

p10

q

p6

minmaxdist(q,N1)
mindist(q,N1)p3

maxdist(q,N1)

N2N5

N6

p1 p2

p8 p9

p7

p11

p12

N1 N2

N3 N4

The R-tree

p1 p2 p3

N3
N1

N4p4

p5

p5 p6

p7 p9p8

p12p11

N5

Fig. 2. The R-tree.

distances between a query point q to a given MBR N
(e.g., minmaxDist, minDist, see Figure 2).

Range query is to return all points that are fully
contained by the query rectangle (or the query ball). R-
tree has good performance for answering range queries
in practice [10], [28], [32], for data sets in relatively low
dimensions. The basic idea is to search through all MBRs
that intersect with the query rectangle (or ball).

Unfortunately, the worst case query costs are not loga-
rithmic when R-tree is used for NN or range search (even
for approximate versions of these queries). To design
theoretically sound algorithms with logarithmic costs
for our problem, we need a space partition tree with
the following properties : (1) The tree has O(N) nodes,
O(log N) depth and each node of the tree is associated
with at least one data point. (2) The cells have bounded
aspect ratio. (3) The distance of a point to a cell of the
tree can be computed in O(1). Arya et.al [5] designed a
modification of the standard kd-tree called the Balanced
Box Decomposition (BBD) tree which satisfies all these
properties and hence can answer (1 + ǫ)-approximate
nearest neighbor queries in O((1/ǫd) log N) and (1 + ǫ)-
approximate range search queries in O((1/ǫd) + log N).
BBD-tree takes O(N log N) time to build. We use BBD
trees in the design of the optimal (1 + ǫ)-approximation
algorithm with the logarithmic query complexity for
solving the GEQ problem.

For nearest neighbor search in high dimensions, all
exact methods will eventually degrade to the expensive
linear scan of the entire data set and one has to adopt
efficient and effective approximate algorithms [15], [20].
The BBD-tree also becomes impractical for large data
sets in high dimensions. In this case, we could use
the iDistance [21], [34] index for exact nearest neighbor
retrieval (in still relatively low dimensions), or Medrank
[13] and LSH-based methods (locality sensitive hashing)
[15], [20] (e.g., the latest development represented by the
LSB-tree [31]) for the approximate versions in very high
dimensions. Since our idea in designing the approximate
algorithms for solving the GEQ problem is to reduce
it to the basic nearest neighbor search problem, our
approach could leverage on all these techniques for the
nearest neighbor search and benefit by any advancement
in this topic. This is a very appealing feature of our
approximation algorithm and makes it extremely flexible
and simple for adaptation.

The most related work to our study include the the
group nearest neighbor (GNN) query [24], [26] and the
aggregate nearest neighbor queries [27]. The goal there

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

is to find a point that minimizes the sum distance to
all query points. The aggregate nearest neighbor queries
[27] expand the study for the GNN query to other ag-
gregate operators, including the MAX that is equivalent
to the GEQ problem and it represents the state of the art
study on this problem.

The MBM method developed in [27] for max-GNN
is an R-tree based approach. It recursively visits nodes
beginning from the root of the R-tree and prunes the
nodes that cannot contain any results by sequentially
using two pruning conditions. Let M be the MBR of
the query group Q, N be the current node (and its
MBR) from the R-tree, and bestDist be the enclosing
distance of the best max-GNN found so far. The two
pruning conditions are minDist(N, M) ≥ bestDist, and
maxqi∈Q(minDist(N, qi)) ≥ bestDist. Either condition can
safely prune the node N (and its subtree). The second
condition is applied only for nodes that pass the first one
in order to save unnecessary computations. For more
details, please refer to Section 3.3 in [27]. However, as
we have argued in Section 1, the MBM method only
explores the triangle inequality and important pruning
and optimization opportunities are missed, as we will
show in this work. It is a heuristic method that has
O(N + M) query cost theoretically.

The insights in our algorithm development are com-
pletely disjoint from those for the MBM method. We first
introduce a new exact method that has a much lower
query cost than the MBM method, and scale well in 2 to
6 dimensions (in contrast to the subpar scalability of the
MBM method w.r.t. the dimensionality). The key insights
of our approach are to explore the pruning provided by
the convex hull of Q, the minimum enclosing ball of
Q, and the furthest voronoi cells of Q. We also explore
high-quality approximate algorithms, that come with
the theoretically bounded logarithmic query cost and
close to 1 approximation ratios in any fixed dimension.
The key insight of our approximate algorithm is the
close relationship between the center of the minimum
enclosing ball of Q and the optimal enclosing point for
Q. Our practical approximation algorithm can be easily
extended to high dimensions and still maintains its good
approximation quality.

Our study is also related to the study in [25] where
the goal is to compute medoids in large spatial datasets.
Specifically, in the max and bi-chromatic case in this
work, k points in P are selected (as medoids) so that
the maximum distance between any point in Q and
its closest medoid is (approximately) minimized. Hence,
when k = 1, this is an approximate version of GEQ.

4 R-TREE BASED EXACT ALGORITHM

This section gives a new R-tree based exact algorithm
for the GEQ problem.

4.1 Pruning with Q’s convex hull

The convex hull CQ of Q is the smallest convex set that
contains Q. We represent CQ as an ordered set of vertices

that is a subset of Q, and also use CQ to denote the
convex polygon defined by these vertices. For example,
in Figure 3, CQ = {q1, q2, q3, q4, q5} and CQ also refers to
the polygon q1q2q3q4q5q1 enclosing the shaded area. Yao
et al. showed that the furthest point from Q to a point p
is amongst the vertices in CQ [33]. Formally,

Lemma 1 [From [33]] Given a set of points Q and its convex
hull CQ, for any point p, let qf =fn(p, Q), then qf ∈ CQ.

With Lemma 1, the following claim becomes immediate.

Corollary 1 GEQ (P , Q) is equivalent to GEQ (P , CQ).

Proof: The key observation is that for any point p ∈
P , its enclosing distance rp w.r.t Q is only determined
by its furthest neighbor from Q, i.e., rp = ||p− fn(p, Q)||.
By Lemma 1, fn(p, Q) ∈ CQ, the result is immediate.

For example, in the example in Figure 3, p1’s enclosing
distance is determined by q1 and p2’s enclosing distance
is determined by q5. Both are vertices from CQ. As a
result, we can replace Q with CQ to reduce the size of
the query group. Of course, this may not always lead to
removal of points from Q. It is possible that Q = CQ, e.g.,
Q has four corner points of a rectangle. Nevertheless, in
most cases we could expect that |CQ| < |Q|, and most
likely, |CQ| ≪ |Q| for a large query set.

4.2 Pruning with the MEB(Q)

Following the discussion that is immediate after equa-
tion 1 in the GEQ definition, we can see that the optimal
answer p∗ to GEQ(P, Q) is the center of the minimum
enclosing ball of Q, but subject to the constraint of cen-
tering at p∗. This indicates that the optimal answer could
not be too far away from the center of the minimum
enclosing ball of Q. To use this intuition in our algorithm
concretely, we need a simple property of MEB(Q):

Lemma 2 (Same as the Lemma 2.2 in [7]) For a group of
points Q, the surface of any half-sphere of the ball MEB(Q)
contains at least one point q ∈ Q for any dimension d.

It helps understand this result by considering the case
when d = 2. The above lemma says that any half
circle resided on MEB(Q) (which is a circle in the two-
dimensional space) contains a point from Q on its perime-
ter. When generalizing this result to d-dimension, it is
important to notice that it guarantees the existence of a
point from Q on the surface of any half-sphere (infinite
number of them) defined on the ball MEB(Q).

Let B(c, r) =MEB(Q) and nn(c, P)= p, the next lemma
bounds p∗’s distance from c compared to c’s nearest
neighbor p ∈ P .

Lemma 3 Let MEB(Q)= B(c, r), nn(c, P) = p and ||p −
c|| = λ. Then p∗ ⊆ B(c, r + λ).

Proof: Without loss of generality, we assume c = o

(the origin) and p = (λ,
−→
0). For any other case, it

is always possible to shift and rotate the coordinate

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

q1

q3

q4

q2

q5

p2

q8

p1 q7

q6

Fig. 3. The convex hull and
the pruning with CQ.

Fig. 4. Proof illustration for
Lemma 3.

system to satisfy these conditions without affecting the
GEQ result. If p∗ = p, the lemma holds trivially since
||p− c|| = λ < r+λ. Hence, consider p∗ 6= p. The furthest
point from p inside the ball B(c, r) is at distance r + λ
from p (see Figure 4). Hence, MEB(Q) ⊆ B(p, r + λ)
and r∗ ≤ r + λ. For a contradiction, let p∗ /∈ B(c, r + λ).
Then ||p∗|| > r + λ. There must exist a point from
Q on the other side of the halfspace perpendicular to
p∗c by Lemma 2. This implies that the optimal radius
r∗ ≥

√

||p∗||2 + r2 (using Pythagorean theorem), and
hence r∗ >

√

(r + λ)2 + r2. But then we have deduced
that

√

(r + λ)2 + r2 < r∗ ≤ r + λ which can not be true
since r + λ ≤

√

(r + λ)2 + r2. Hence, the assumption
||p∗|| > r + λ was wrong and p∗ ⊆ B(c, r + λ).

This means that we only need to search the points or
MBRs from the R-tree (indexing the data set P) that are
contained or intersected by the ball B(c, r + λ).

4.3 Pruning with the furthest voronoi diagram of Q

Given an R-tree node’s MBR u and a query group Q,
the tight minimal and maximal enclosing distances for all
possible points inside u clearly help us decide whether
we can prune u or not. There are infinite number of
possible points that u may contain (even if there are only
finite number of actual points from P in u, their precise
locations are unknown given only the MBR u). Hence,
infinite number of possible enclosing distances exist. We
are interested at efficiently finding out both the mini-
mum and the maximum possible enclosing distances for
an MBR node u w.r.t a query group Q, as these values
tell us what the best and the worst possible scenarios are
for any point inside u to enclose Q. Formally,

Definition 1 For an MBR u, the minimum and maxi-
mum enclosing distances of u to a query group Q are:

minEdist(u, Q) = min
p⊆u

rp,Q, maxEdist(u, Q) = max
p⊆u

rp,Q.

Note that in this definition, we consider all possible
points p in the space that are contained by u. They are
not necessarily points from P . Also, if u is a point, we
let minEdist(u, Q)=maxEdist(u, Q)= ru,Q. They could be
similarly defined for a convex polygon.

In the sequel, we omit Q from the above definition
when the context is clear. If one can efficiently compute
minEdist(u) and maxEdist(u), a pruning method based
on an R-tree with the branch and bound principle is

q1p1

p3

p2

q3

2
3

q2

p5

e

g

f

a

b h c

d

(xℓ, yℓ)

(xh, yh)

u
p61

p4

(a) Furthest voronoi cells.

v2
p4

f

1
u

hg

v1

v3

q1

v4

v5
v7

p6
v6

(b) minEdist and maxEdist.

Fig. 5. Furthest voronoi cells help calculate minEdist and
maxEdist.

immediately possible. The key observation is that given
two MBRs u1 and u2, if u2’s minEdist is larger than
u1’s maxEdist, we can safely prune the entire subtree
rooted at u2. To compute them (minEdist and maxEdist)
efficiently, we need the help of the furthest voronoi cells
(FVCs, same as the furthest voronoi diagram) [6], [33].
The FVCs for a set of points is similar to the well-known
voronoi diagram except that the space is partitioned with
the furthest cell instead of the nearest cell.

Definition 2 For a space S (a hyperplane) and a set of
points Q, a convex polygon FC(q)⊆ S is the furthest cell
of a point q ∈ Q iff: ∀p ⊆FC(q), fn(p, Q)= q, i.e., any
point contained by FC(q) has q as its furthest neighbor
from the point set Q. The FVCs of Q is the collection of
furthest cells for all points in Q.

An example of the FVCs on an input space S :
(xℓ, yℓ)×(xh, yh) and a point set Q is illustrated in Figure
5(a) where FC(qi) is marked as region i. For example,
FC(q1) is the polygon fgh. Clearly, the furthest voronoi
cells satisfy the following properties: 1) for any qi, qj ∈ Q,
i 6= j, FC(qi)∩FC(qj) = ∅; 2) FCq1 ∪ · · · ∪FCqM = S,
where the operator ∪ denotes the merge of two convex
polygons into one larger convex polygon.

Computing FVCs could be done in a similar fashion
as computing the voronoi diagram and it has been
discussed in [33]. Yao et al. has shown that the FVCs
for all points in Q could be computed efficiently by
considering only points from CQ, specifically:

Lemma 4 [From [33]] For a space S, a set of points Q and
its convex hull CQ, ∀q ∈ Q, if q /∈ CQ, then q does not have
a furthest cell, i.e., if q /∈ CQ, FC(q) = ∅.

The FVCs of Q cover the entire space (by its second
property we have discussed). Hence, for any MBR u,
there will be some qi’s from Q such that FC(qi)’s intersect
with (or only one FC(qi) fully contains) u. By Lemma 4,
these qi’s must be some vertices from the convex hull of
Q. Furthermore, the union of these intersections will be
equal to u. For example, in Figure 5(a) u is partitioned
into two regions that correspond to intersections with
FC(q1) and FC(q3) respectively. Taking a closer look of
u, as shown in Figure 5(b), the furthest neighbor from
Q for any point in the first region (v1v2v3v4v1) will be
q1 and similarly q3 for any point in the second region
(v3v5v6v4v3). This is simply because that they are the
intersections of u with FC(q1) and FC(3) respectively,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

Algorithm 1: Edist(MBR u, FVCs Q, Convex Hull CQ)

minEdist= ∞; maxEdist= 0;1

for i = 1, . . . , |CQ| do2

let Aui
= u∩FC(qi); // qi ∈ CQ3

if Aui
6= ∅ then4

find Vui
and Wui

as in Lemma 6;5

d1=min(v∈Wui
||qi − v||),6

d2=max(v∈Vui
||qi − v||);

if d1 ≤minEdist then minEdist=d1;7

if d2 ≥maxEdist then maxEdist=d2;8

output minEdist, maxEdits; return.9

i.e., v1v2v3v4v1 ⊂FC(q1) and v3v5v6v4v3 ⊂FC(q3). By the
definition of a furthest cell, any points inside v1v2v3v4v1

will take q1 as their furthest neighbors w.r.t Q and any
points inside v3v5v6v4v3 will take q3 as their furthest
neighbors w.r.t Q. Hence, we have:

Lemma 5 For an MBR u and a point set Q, there will be
some qi’s (in Q) whose FC(qi)’s intersect with (or just one
fully contains u). Denote these qi’s as I(u) = {qu1

, . . . , quk
},

then ∪qui
∈I(u)(FC(qui

)∩u) = u; and ∀qui
∈ I(u), qui

∈ CQ;
and ∀p ⊆ FC(qui

) ∩ u, fn(p, Q)= qui
.

The main lemma is as follows.

Lemma 6 For ∀qui
∈ I(u), Let Aui

= v1 · · · vsi
v1 be the

polygon for FC(qui
)∩u, let Vui

= {v1, . . . , vsi
} and initialize

Wui
=Vui

. For 1 ≤ j ≤ si, if the projection of qui
to the line

segment vjvj+1 (let si + 1 = 1) is a point v′ contained by
vjvj+1, insert v′ to Wui

:

maxEdist(Aui
, Q) = argmaxv∈Vui

||v − qui
|| (3)

minEdist(Aui
, Q) = argminv∈Wui

||v − qui
|| (4)

Proof: By Lemma 5, given any point p ⊆ Aui
, the

enclosing distance of p to Q is ||p−qui
|| as fn(p, Q) = qui

if
p ⊆ Aui

. Hence, the minimum and maximum enclosing
distances of the convex polygon Aui

to Q equal to the
minimum and maximum distances of the point qui

to
Aui

. Applying Lemma 1, we obtain equation 3, i.e., the
furthest neighbor from a point qui

to a convex Aui
is

determined by the vertices of Aui
; Next, in a similar way

as arguing how we compute minDist for a point p to an
MBR [30], it is easy to show that the minimum distance
for a point qui

to a convex polygon Aui
is achieved by

either one of its perpendicular projection points on the
boundaries, or one of the vertices of the convex polygon
Aui

, i.e., we only need to consider the candidates from
the set Wui. Hence, equation 4 holds as well.

Lemma 6 indicates that the minEdist and maxEdist
for an MBR u are simply the minimum and maximum
from the minEdist and maxEdist of the polygons corre-
sponding to the intersections of u with FC(qui

)’s, where
ui ∈ I(u); and for each polygon Aui

=FC(qui
) ∩ u,

its minEdist and maxEdist are solely determined by
the distance between qui

and vertices of Aui
(plus the

perpendicular projection points of qui
on Aui

), which are
easy to compute as it boils down to computing distance
between two points. Algorithm 1 outlines this idea.

Figure 5(b) shows an example. In this case,
I(u)={q1, q3} and Aq1

= FC(q1) ∩ u is the polygon
v1v2v3v4v1. Its Vq1

is {v1, v2, v3, v4} and Wq1
is

{v1, v2, v3, v4, v7}. Note that among four perpendicular
projections of q1 to v1v2, v2v3, v3v4 and v4v1, only the
projection on v2v3 produces a point v7 to be inserted
into Wq1

as other projection points are outside the
corresponding line segments. Now, the maxEdist for
FC(q1) ∩ u is given by ||q1 − v2|| and we only need
to check ||q1 − vi|| for vi ∈ Vq1

; its minEdist is given
by ||q1 − v4|| and we only need to check additionally
||q1 − v7|| (the one additional point in Wq1

). We can find
the minEdist and maxEdist for Aq3

= FC(q3) ∩ u in a
similar fashion. The minEdist and maxEdist of u could
be identified by taking the minimum and maximum
from the minEdist’s and maxEdist’s of Aq1

and Aq3
.

Once we know how to compute the minEdist and
maxEdist for an MBR u, we can use them to prune the
search space from a R-tree in a typical branch and bound
principle, as discussed at the beginning of this section.

4.4 Putting Everything Together: GEQS Algorithm

Our exact search algorithm GEQS is to simply combine
the three pruning techniques introduced in sections 4.1,
4.2 and 4.3. Given Q and the R-tree on P , we first
compute the convex hull CQ to reduce the size of the
query group. Then MEB(CQ), the nearest neighbor of
MEB(CQ)’s center from P (with the help of the R-tree)
and the furthest voronoi cells of CQ are computed. Next,
a priority queue L is maintained for all MBRs (points are
treated as MBRs as well) that the algorithm has to search
for. Entries in L are ordered by their minEdist distances.
An R-tree node could be safely pruned without explor-
ing its children nodes if either it does not intersect with
B(c, r + λ) as argued from section 4.2, or its minEdist is
larger than the smallest maxEdist of any existing entries from
the queue L as argued in section 4.3. Initializing the queue
with the root node, we repeatedly pop the head of the
queue and insert its children nodes back to the queue if
they cannot be pruned. The algorithm terminates when
the head of the queue becomes a point.

5 APPROXIMATE QUERY ALGORITHMS

As we have pointed out in Section 1, the nearest neigh-
bor search is a special case for the GEQ problem. Hence,
any exact method for the GEQ problem will suffer
from the curse of the dimensionality. The best hope for
answering a GEQ query instance for data sets in high
dimensions is to look for efficient and effective approxi-
mation algorithms, just as what people have done for the
approximate nearest neighbor search in high dimensions
[15], [20]. This section shows an efficient way to compute
a
√

2-approximate solution to the GEQ problem in any
fixed dimension using a nearest neighbor query. We then

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

use it to obtain an optimal (1 + ǫ)-approximate solution
to the GEQ problem in fixed dimensions for any ǫ > 0,
and extend it to high dimensions.

5.1 An
√

2-Approximation

Algorithm 2 presents our
√

2-approximation algorithm.
As we can see, it is extremely simple and easy to imple-
ment in any dimension as long as a nearest neighbor data
structure is available. We next prove the approximation
factor for our algorithm.

Algorithm 2: GEQA(Query Q; Dataset P)

find MEB(Q) and let its center be the point c;1

find c’s nearest neighbor in P , i.e., p =nn(c, P);2

return p.3

Theorem 1 Algorithm GEQA gives a
√

2-approximate solu-
tion to the GEQ problem on P and Q in any dimension d. In
addition, this bound is tight.

Proof: We first prove that it indeed gives an
√

2-
approximation, then argue that the bound is also tight.

Let B(c, r) = MEB(Q), p =nn(c, P) and ||p − c|| = λ.
Assume that p 6= p∗ (recall that p∗ is the exact, optimal
answer for the GEQ problem), otherwise the lemma
trivially holds. Since ||p − c|| = λ and rc = r (recall that
rc is c’s enclosing distance w.r.t Q), the ball B(p, r + λ)
clearly contains B(c, r) that is MEB(Q). Hence, we have
Q ⊆ B(c, r) ⊆ B(p, r + λ). Please refer to Figure 6(a) for
a pictorial illustration where points in Q are highlighted
by the solid circles.

Given that Q ⊆ B(p, r + λ), we can immediately infer
that MEB(p, Q) ⊆ B(p, r+λ), i.e., the minimum enclosing
ball for Q with p as the center will be contained by
B(p, r + λ). This implies that rp ≤ r + λ, as rp is p’s
enclosing distance that equals to the radius of MEB(p, Q).
On the other hand, obviously, r∗ ≤ rp as r∗ denotes the
optimal enclosing distance w.r.t Q for all points in P .
Hence,

r∗ ≤ rp ≤ r + λ. (5)

Since the algorithm GEQA returns p as the answer, we
only need to show that the optimal enclosing distance
r∗ can not be too small compared to r + λ (as it will be
even closer to rp according to equation 5).

By our construction, nn(c, P) = p. Hence, p∗ is not
closer to c compared to p, i.e.,

||p∗ − c|| ≥ λ. (6)

Let h be the halfspace passing through c, perpendicular
to p∗c and not containing p∗. Note that MEB(Q) ∩ h
defines a halfsphere on the ball MEB(Q) (the B(c, r), see
Figure 6(a)) as h is a halfspace. Using Lemma 2, there
must exist a point qh ∈ Q on the surface of MEB(Q) ∩ h
(note that this surface is on the side that does not contain
p∗, by the construction of h). This means that:

||qh − c|| = r. (7)

(a) Theorem 1.

2

p1(−1, 0)

q1(0, 1)

q2(0,−1)

q3(1, 0)o

MEB(Q)

p2(1 + δ, 0)
√

1 + (1 + λ)2

(b) Tightness of Theorem 1.

Fig. 6. GEQA: p is the
√

2-approximate answer,
B(c, r) =MEB(Q), p =nn(c, P), ||p − c|| = λ.

Since the optimal solution of the GEQ problem cen-
tered at p∗ must cover qh (as qh ∈ Q), this shows that:

r∗ ≥ ||p∗ − qh||. (8)

On the other hand, consider the triangle defined by p∗,
c and qh, since p∗c is perpendicular to h and qh is from
the halfsphere defined by MEB(Q) ∩ h and on the side
that does not contain p∗, the minimum distance between
p∗ and qh is when p∗, c and qh forms a right triangle.
Hence, we have:

||p∗ − qh||2 ≥ ||qh − c||2 + ||p∗ − c||2.

By equations 6 and 7, this implies

||p∗ − qh||2 ≥ r2 + λ2. (9)

Given equations 8 and 9, we arrive at

r∗ ≥ ||p∗ − qh|| ≥
√

r2 + λ2. (10)

The approximation ratio of p is given by rp/r∗, which
satisfies, by applying equation 5 and equation 10 respec-
tively:

rp

r∗
≤ r + λ

r∗
≤ r + λ√

r2 + λ2
≤

√
2 (11)

This completes the first part of our proof. Note that
the above analysis is independent of the dimensionality.

To show that the above bound is tight, it is suf-
ficient to construct an example where this algorithm
indeed gives arbitrarily close to

√
2-approximate solu-

tions. Consider R
2 and let Q = {(0, 1), (0,−1), (1, 0)} and

P = {(−1, 0), (1 + δ, 0)}, as illustrated in Figure 6(b).
The center of MEB(Q) is the origin o, and nn(o, P) =
p1 = (−1, 0). The enclosing distance rp1

is 2 (the furthest
point in Q to p1 is q3 = (1, 0)). Hence, p1 will be
returned as the answer by algorithm GEQA. However,
the optimal answer p∗ should be p2 = (1 + δ, 0) with
r∗ = rp2

=
√

1 + (1 + δ)2. This shows that the algorithm
GEQA gives a (2/

√
2 + δ2 + 2δ)-approximate solution for

this example for arbitrarily small value of δ > 0. This
shows that the approximation bound

√
2 is tight.

We would like to point out that even though Theorem
1 suggests that the

√
2-approximation bound is tight for

algorithm GEQA, the worst case as illustrated in our

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

proof is extremely rare in real data sets and queries. In
fact, our extensive experiments (see Section 7) show that
the approximation ratio of the GEQA algorithm is very
close to 1 in practice.

In practice, it is possible that the efficient exact nearest
neighbor and minimum enclosing ball algorithms are not
available. We now show how the approximation factor
of GEQA varies when approximate versions of nearest
neighbor and minimum enclosing ball are used.

Theorem 2 Given a data structure that can do α-
approximate nearest neighbor queries (for example α = (1+ǫ)
using [5]), and another algorithm that can compute β-
approximate minimum enclosing balls (for example β = (1+ǫ)
using [22]), GEQA computes

√

α2 + β2-approximate solu-
tion. This matches Theorem 1 when α = β = 1.

Proof: This follows from replacing the numerator in
Equation 11 for taking into account the approximations:

rp

r∗
≤ αr + βλ

r∗

≤ αr + βλ√
r2 + λ2

≤ (α + βη)
√

1 + η2
, (12)

where η = λ/r, r is the radius of the exact minimum
enclosing ball of Q and λ is the exact distance between
the center of MEB(Q) to its exact nearest neighbor in P .

Let f(η) = (α+βη)√
1+η2

, which we want to upper bound. The

only stationary point of f occurs at η = β/α (which we
get from solving ∂f/∂η = 0). We can now show that f()
is upper bounded by f(η = β/α) =

√

α2 + β2:

α + βη
√

1 + η2
≤

√

α2 + β2 (13)

which simplifies to (αη − β)2 ≥ 0. Hence:

rp

r∗
≤ αr + βλ√

r2 + λ2
≤

√

α2 + β2

Finding the minimum enclosing ball in fixed dimen-
sions, for a group of points has been studied exten-
sively [9] and efficient algorithms exist for line 1 in
Algorithm 2 using linear time w.r.t the size of Q, i.e.,
O(M). For line 2 in Algorithm 2, one could use a BBD-
tree with optimal approximate nearest neighbor search
to find a (1 + ǫ)-approximate nearest neighbor from P
for c in O(log N) query cost [5] as we have discussed in
Section 3. Hence, the next corollary is immediate.

Corollary 2 In any fixed dimension d and for a data set P , a
√

1 + (1 + ǫ)2 ≤
√

2 + ǫ-approximate solution for any GEQ

instance defined by P and an arbitrary query group Q can
be found by algorithm GEQA in O(M + log N) time [5].
The GEQA algorithm takes O(N log N) preprocessing cost to
build the index and a linear space usage O(N).

Corollary 2 gives a theoretical bound for algorithm
GEQA’s query cost. However, BBD-tree is impractical for

Fig. 7. An illustration of Theorem 3. p denotes the
√

2-
approximate answer computed by the algorithm. Each
grid cell elects one point for the algorithm.

large data sets that are disk-resident in high dimensions.
Hence, in practice, we could use an R-tree to find the
nearest neighbor in algorithm GEQA, or any other tech-
nique for efficient, practical nearest neighbor retrieval as
we have discussed in Section 3 (see also our discussion
on this issue in high dimensions in Section 5.3).

Lastly, we would like to point out that GEQA is similar
in principle to the approximate method, A-SPM, for
the max-GNN query [26], [27], where the centroid of
Q was returned as the approximate answer. However,
the A-SPM method is focused on 2-d (speaking about
the centroid or the minimum enclosing disks instead
of balls) and more importantly, no theoretical analysis
on its approximation quality was given. In contrast, we
have generalized it to any dimensions and analyzed its
approximation quality.

5.2 Optimal (1 + ǫ)-Approximation Algorithm

In the special case when Q = {q}, the GEQ problem
becomes the nearest neighbor problem. If we restrict the
space usage to linear, the best algorithm (in terms of
both the approximation quality and the query cost) for
the nearest neighbor problem gives (1 + ǫ)-approximate
nearest neighbor in O(log N) cost with O(N log N) pre-
processing [5] time to build the BBD-Tree. This suggests
that the best approximation one can hope for the GEQ

problem is an (1 + ǫ)-approximation, and such an ap-
proximation’s best possible query cost is, when only
allowed to use linear space usage, a preprocessing time
of O(N log N) and query time of O(log N +M). We next
show that indeed such an algorithm exists based on
the optimal algorithm for approximate nearest neighbor
search [5] and approximate range searching [4]. The
basic idea of this algorithm is described in the following
theorem and its proof.

Theorem 3 In fixed dimensions, for a given ǫ > 0, with
O(N log N) preprocessing time and linear space usage, a (1+
ǫ)-approximate solution to the GEQ problem can be found in
O(log N +M) time. In addition, these bounds are tight, given
the linear space constraint, for an (1 + ǫ)-approximation.

Proof: We first compute the MEB(Q) = B(c, r) in
O(M) time [9]. We then use Lemma 1 and Arya et al.’s
[5] approximate nearest neighbor data structure (a BBD-
Tree) to compute a

√
2-approximate answer (with the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

GEQA algorithm shown in Section 5.1) in O(log N) time
with O(N log N) preprocessing time.

As in Lemma 1, let p =nn(c, P) and ||p − c|| = λ (see
Figure 7). We can show that p∗ ∈ B(c, r+λ) (see Lemma 3
in Section 4.2). We partition B(c, r+λ) using a grid whose

cells have a side length ǫ′ = ǫ
√

r2+λ2

d (d is the dimen-

sionality of the data set). This restricts the number of grid

cells inside B(c, r+λ) to O(
(

r+λ
ǫ′

)d
) = O(

(√
2d
ǫ

)d

) = O(1),

since we consider fixed dimensions.
The number of cells of the BBD-tree that intersect with

B(c, r+λ) and have minimum side length larger than ǫ′ is
O(1) (cf. Lemma 3, [4]). We use the BBD-tree to compute
a point in each grid cell that has a non-empty intersection
with P (see red cross points, or darker bold cross points
in a black-white printout, in Figure 7). We call this set of
points P ′ whose size is at most O(1) and which can be
computed in O(log N) time using an approximate range
query [4] (and terminating the search as soon as the
boxes become smaller than side length ǫ′). For each of
the points in P ′, we compute the furthest neighbor in
Q which give us their enclosing distances. This takes at
most O(M) time. Finally, we just select the one with the
minimum enclosing distance as the answer. Hence the
total running time is O(log N + M). The total error in
the computation is bounded by the error that we make
in one cell of the grid. Since we choose randomly one
representative point from the points a cell contains in
P to be included in P ′, the error introduced is at most
ǫ′
√

d = ǫ
√

r2 + λ2 ≤ ǫr∗, by equation 10.
This completes our proof for the existence of an

(1+ǫ)-approximate algorithm for the GEQ problem with
linear space usage, O(N log N) preprocessing time and
O(log N + M) query cost. We finally show that these
bounds are tight if using linear space.

In the special case when Q = {q}, the GEQ prob-
lem becomes the nearest neighbor problem. For such a
nearest neighbor problem, with O(N) space, O(N log N)
preprocessing time and O(log N) time are shown to be
required to find a (1 + ǫ)-approximation [5]. For the
general GEQ problem when |Q| > 1, since any of the
query points in Q can change the answer, a query is
lower bounded by Ω(M). This suggests that the best
query time one can hope for the (1+ǫ)-approximate GEQ

problem, with linear space usage, is O(M + log N) with
a preprocessing cost of O(N log N). This confirms the
tightness of our algorithm.

There are hidden constant factors (depends on d)
for claims in Corollary 2 and Theorem 3, since they
both rely on the BBD-tree for the optimal approximate
nearest neighbor search in any fixed dimensions [5].
These factors are the same as those in the BBD-tree,
specifically, for N points from P and M points from Q
in Rd, the preprocessing cost is O(dN log N), the space
is O(dN), and the query cost is O(M + cd,ǫ log N), where
cd,ǫ ≤ d⌈1 + 6d/ǫ⌉d.

This optimal approximation relies on the BBD-Tree,
which is impractical for large data sets in high dimen-

sions. Further more, even in relatively low dimensions,
the treatment to the (many) small grid cells becomes
complex and intricate to deal with. Hence, this result
is of theoretical interest only and contributes to the
completeness of the study on the GEQ problem.

5.3 High Dimensions

The
√

2-approximation by Algorithm 2 in Section 5.1 is
independent of the dimensionality, if one can find the
exact nearest neighbor of a given point and the exact
minimum enclosing ball of a group of points. However,
both tasks become hard (in terms of the efficiency) in
high dimensions. For example, in high dimensions the
exact nearest neighbor most likely requires a linear scan
of the entire data set [15], [20], [31]. Hence, in prac-
tice, only approximate nearest neighbor can be found
efficiently in high dimensions, so does the approximate
minimum enclosing ball for a group of points.

We leverage on the state-of-the-art methods for effi-
cient approximate nearest neighbor retrieval and approx-
imate minimum enclosing ball calculation, specifically,
the LSB-tree [31] and the (1 + ǫ)-approximate minimum
enclosing ball [22]. The LSB-tree can give a (2 + ǫ)-
approximate nearest neighbor with constant probability
in high dimensions efficiently [31], where this constant
probability depends on the configuration parameter of
the LSB-tree (see [31] for details); the (1+ǫ)-approximate
minimum enclosing ball algorithm computes a mini-
mum enclosing ball that has a radius that is at most
(1 + ǫ) times the radius of the optimal minimum enclos-
ing ball in any dimension [22]. Based on our result in
Theorem 2, the following result is immediate:

Corollary 3 If steps 1 and 2 in GEQA (Algorithm 2)
are replaced with the respective (2 + ǫ)-approximation
and (1 + ǫ)-approximation algorithms, GEQA gives a
√

(2 + ǫ)2 + (1 + ǫ)2 ≤
√

5 +
√

2ǫ-approximation with con-
stant probability in any dimensions.

The constant probability in Corollary 3 is the same as the
constant probability provided by the LSB-tree, which de-
pends on its configuration parameters. Interested readers
may refer to [31] for further details. One can always
use a standard technique in randomized algorithms to
improve the constant probability in Corollary 3 to at least
1−p for arbitrary probability p by repeating the LSB-trees
O(log 1/p) number of times.

6 OTHER ISSUES

6.1 Handling disk-resident query groups

One limitation with our discussions so far is the problem
of handling query groups that do not fit in internal
memory. We could certainly use the convex hull of Q
to reduce the number of points in the query group, as
pointed by the pruning technique in section 4.1. There
are I/O efficient algorithms for computing the convex
hulls of disk-based data sets, with the help of sorting

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

p4

q2

q3

p6

p7

MEB(Qw)

p1

center of MEB(Qw)

p8
p3

p5

p2

q1

Fig. 8. Constrained GEQ, minimum enclosing ball of balls.

in external memory [16]. This means that we can find
the convex hull of the disk-based query group Q with
O(sort(M)) I/Os (here sort(M) denotes the number
I/Os when M fixed size elements of size O(1) are sorted.
We also use scan(M) to denote the number of I/Os
incurred for scanning M fixed size elements). For most
cases, we expect that |CQ| ≪ |Q|. However, special
cases exist where |CQ| = |Q|, e.g., all points in Q are
vertices of a convex polygon. To handle such special
instances, we propose to obtain an approximate convex
hull of Q using Dudley’s approximation [35]. Dudley’s
construction generates an approximate convex hull of
Q (denote it as ACQ) with O(1/ǫ(d−1)/2) vertices with
maximum Hausdorff distance of ǫ to the convex hull of
Q. The Hausdorff distance measures how far two convex
polygons S1 and S2 are from each other. Formally, let X
and Y be the vertices of S1 and S2 respectively, then:

dH(S1, S2) = max (sup
x∈X

inf
y∈Y

||x − y||, sup
y∈Y

inf
x∈X

||x − y||)

Roughly speaking, the edges of of ACQ are within ǫ
distances from edges of CQ. Clearly, there is a trade-
off between the approximation quality and the size of
ACQ. Henceforth, for a disk-based query group Q, we
first compute its convex hull using the I/O efficient
algorithm. If CQ is still too large to fit in main memory,
we replace CQ with the Dudley’s approximation and
specify the size of ACQ of our choice.

Dudley’s approximation was originally proposed for
main memory data sets [35]. For our purpose, it needs
to work with external data sets. This has been recently
addressed by Yao et al. [33], which presented a simple
method that computes ACQ in external memory effi-
ciently by extending the technique from [35].

For GEQA the Dudley’s approximation only creates
an extra additive error ǫ for a given query. Intuitively,
the center of the MEB(CQ) is shifted by at most ǫ com-
paring to MEB(ACQ). For general dimensions, the GEQA
algorithm does O(scan(M)) I/Os to compute a (1 + ǫ)-
approximate MEB [22] plus the I/Os needed for the near-
est neighbor query. The preprocessing involves exactly
the same number of I/Os as used by the nearest neighbor
data structure. It is much more complicated to analyze
the approximation quality of the GEQS algorithm and
we leave it as an open problem. In practice, it gives very
good approximations as well.

6.2 Constrained GEQ

An interesting variant of the GEQ problem is to add
a “constrained area” to each query point. Each query

object is represented by a center qc and a radius qr.
The query point is allowed to be anywhere within the
ball defined by B(qc, qr). We denote such a query set
as Qw (where each object is represented by a ball).
The constrained GEQ is useful in many situations. For
example, each person could be moving within a small
range in our Example 1 from Section 1, or it could
be the case that their precise locations are unavailable
for privacy concerns and only approximate ranges are
provided. Formally, the constrained GEQ is the following
optimization problem:

r∗P,Qw
:= min

p∈P
max

{q⊆B(qc ,qr)∧B(qc,qr)∈Qw}
||p − q|| (14)

We would like to find the optimal enclosing distance
r∗P,Qw

as well as the point p∗w ∈ P that achieves
this minimum enclosing distance. The enclosing dis-
tance of a point p to Qw is defined as rp,Qw

=
maxq⊆B(qc,qr)∧B(qc,qr)∈Qw

||p − q||. An example is shown
in Figure 8 and p∗w is p1 is in this case.

Fortunately, our algorithms developed for the GEQ

problem could be easily adapted to work with the
constrained case. The key observation is that it is still
possible to efficiently compute the minimum enclosing
ball for a set of balls [14]. As an example, the minimum
enclosing ball of Qw in Figure 8 is the ball with the
dotted edge. By applying a few technicalities, we can
still obtain the

√
2-approximation as in Section 5, as well

as the range pruning technique for the exact search in
Section 4.2 using the center of this minimum enclosing
ball and its nearest neighbor in P for the constrained
GEQ problem. The furthest voronoi diagram pruning in
Section 4.3 is, however, no longer applicable.

7 EXPERIMENTS

All proposed algorithms and the state-of-the-art method
(the MBM) have been implemented into the widely used,
disk-based R-tree index library [18] in low to relatively
high dimensions. Standard geometric operations, such as
computing MEB(Q), CQ, intersection of convex polygons
and the furthest voronoi diagram, are provided by the
CGAL and qhull libraries [1], [3]. Finally, the approxi-
mate convex hull algorithm is developed based on the
library from [35]. Our implementation is compatible with
the standard gcc. All experiments were executed on a
Linux machine with an Intel Xeon 2GHz CPU and 2GB
memory. For both R-tree and heapfiles the page size is set
to 4KB. Finally, by default 1000 queries were generated
for each experiment and we report the average.

Data sets. The first set of real data sets was obtained
from the open street map project [2]. Each data set con-
tains the road network for a state in the USA. Each point
has its longitude and latitude coordinates. We normal-
ized each data set into the space L = (0, 0) × (105, 105).
For our experiments, we have used the Texas (TX)
and California (CA) data sets. The TX data set has 14
million points and the CA data set has 12 million points.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

0 1% 3% 5% 7% 9%
0

0.01

0.02

0.03

query area/L

|C
Q

|/|
Q

|

uu
cb
rc

(a) vary A, |Q| = 1000.

0 1000 3000 5000 7000 9000
0

0.03

0.06

0.09

0.12

0.15

|Q|

|C
Q

|/|
Q

|

uu
cb
rc

(b) vary |Q|, A = 3%.

Fig. 9. Pruning with the convex hull of Q.

These real data sets are in two dimensions. To test the
performance of our algorithms on different dimensions
and different types of distributions, we also use synthetic

data sets in the space of L =
−→
0 d × −−−−−→

100, 000d where d is
the dimensionality, for low to relatively high dimensions
(d = 2 to d = 6). In the UN data set, points are distributed
uniformly in the space and in the RC data set, points are
generated with random clusters in the space.

Finally, to study the performance of the GEQA al-
gorithm in high dimensions, when only approximate
nearest neighbor and minimum enclosing ball can be
efficiently obtained in practice, we used the following
three real data sets in very high dimensions. The Color
data set [11] consists of 68, 040 points with 32 dimensions
and the MNIST data set [23] has 60, 000 points with 50
dimensions. To investigate the performance of the GEQA
with even higher dimensions and larger data size, we
use the Cortina data set [29], which consists of 1, 088, 864
points with 74 dimensions.

Query groups. For the GEQ problem, the cost of the
query depends on several critical factors. They include
the location for the center of Q, the covering range of Q
(i.e., the area of MEB(Q)) and how points are distributed
within the covering range. Lastly, the size of Q also
plays a role. Given these observations, a random query
is generated as follows. We specify |Q| and its area A
in terms of the percentage of the entire data space L (or
volume in more than two dimensions). Next a random
location in L is selected as the center of the query group.
Three types of distributions were used to generate |Q|
number of points within the specified area. They include
the uncorrelated uniform distribution (uu), the correlated
bivariate distribution (cb) and the randomly clustered
distribution (rc).

Default setup. In the following experiments, the default
query size is |Q| = 1000, the default query area is A =
3%, the default dimensionality is d = 2, and the default
query distribution type is rc. For all experiments, except
the results in Section 7.3 for very high dimensions, the
default size N of the data set P is 3 million. For the TX
and CA data sets, we randomly sample 3 million points
to create the default data sets. The default data sets for
experiments in low (d = 2) to relatively high (d = 6)
dimensions in Sections 7.1 and 7.2 are the UN and CA
data sets. The results from the TX data set are similar to
the results from the other real data set CA.

7.1 Performance of the GEQA and GEQS algorithms

Pruning power of CQ. Based on our findings in Section
4.1, any algorithm for the GEQ problem could first utilize
the convex hull CQ of the query group Q to reduce the
query size. Hence, our first set of experiments explores
the pruning power of CQ for typical distributions that a
query group may have. Figure 9 shows that for various
query distributions, CQ could significantly reduce the
size of the query group. We plot the average ratios for
|CQ|/|Q| together with the 5%−95% confidence interval.
For |Q| = 1000, |CQ| is only about 2% of |Q| on average
and never exceeds 3% in the worst case, regardless of the
area of the query group, as shown in Figure 9(a). Figure

9(a) indicates that
|CQ|
|Q| is roughly a constant over the

query area and uu distributed query groups have larger
|CQ| over correlated and clustered groups (however, CQ

is still just 2%|Q|). The pruning power of CQ increases
quickly (see Figure 9(b)) for larger query groups as |CQ|
grows at a much slower pace than the size of the query
group does. In most of our experiments, the results from
the uu, cb and rc query groups are quite similar. Hence,
remaining experimental figures only report the results
from the rc query groups.

The approximation quality of GEQA. Recall that the
approximation ratio is defined as rp/r∗ if p is returned as
the answer (rp is p’s enclosing distance with respect to Q
and r∗ is the optimal enclosing distance). Figure 10 plots
the average approximation ratio of the GEQA algorithm
(Algorithm 2) together with its 5% − 95% confidence
interval. These results convincingly show that GEQA’s
approximation quality in practice is much better than its
worst case theoretical bound, which is

√
2. In general,

from Figure 10 we can tell that for all data sets we have
tested, its approximation quality is very close to 1 with
an average approximation ratio of 1.001 in two dimen-
sions, and still below 1.01 in six dimensions. Not only it
achieves an excellent average approximation ratio, but
also it has a very small variance in its approximation
quality in practice. When d = 2, its 95% interval is below
1.008 in the worst case. The overall worst case appears
when d = 6, but its 95% interval is still below 1.05.

More specifically, for varying query covering areas A
(Figure 10(a)), varying the query group size |Q| (Figure
10(b)) and varying the data set size N (Figure 10(c)) in
two dimensions, the approximation ratios for GEQA are
almost a constant with an average that is around 1.001
and the 95% interval is below 1.006. Its approximation
quality drops slowly as the dimensionality increases as
shown in Figure 10(d). However, even in the worst case
when d becomes six dimensions, its average approxi-
mation ratio is still below 1.01 with an 95% interval
that is below 1.05. Finally, the distribution of the data
set P affects the approximation ratios to some degree.
But its effect is very minimal as evident by the close
approximation ratios from the UN and CA data sets.

A very appealing property of GEQA is its simplicity,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

0 2% 4% 6% 8% 10%
1

1.002

1.004

1.006

query area/L

r p/r
*

UN
CA

(a) effect of A : |Q| = 1000, N =
3 × 106, d = 2.

0 1000 3000 5000 7000 9000
1

1.002

1.004

1.006

1.008

|Q|

r p/r
*

UN
CA

(b) effect of |Q|: A = 3%, N =
3 × 106 , d = 2.

0 2 4 6 8 10
1

1.002

1.004

1.006

|N|: X106

r p/r
*

UN
CA

(c) effect of N : A = 3%, |Q| =
1000, d = 2.

2 3 4 5 6
1

1.01

1.02

1.03

1.04

1.05

Dimensionality

r p/r
*

UN
RC

(d) effect of d: A = 3%, |Q| =
1000, N = 3 × 106.

Fig. 10. Approximation quality of the GEQA algorithm.

0 2% 4% 6% 8% 10%
0

50

100

150

200

query area/L

IO
s

GEQA
GEQS
MBM

(a) IOs: effect of A, |Q| = 1000,
UN data set.

0 2% 4% 6% 8% 10%
0

50

100

150

200

query area/L

IO
s

GEQA
GEQS
MBM

(b) IOs: effect of A, |Q| = 1000,
CA data set.

0 1000 2000 3000 4000 5000
0

50

100

150

200

|Q|

IO
s

GEQA
GEQS
MBM

(c) IOs: effect of |Q|, A = 3%, UN
data set.

0 1000 2000 3000 4000 5000
0

50

100

150

200

|Q|

IO
s

GEQA
GEQS
MBM

(d) IOs: effect of |Q|, A = 3%, CA
data set.

Fig. 11. Query cost of different algorithms: IOs analysis, UN and CA data sets, d = 2, N = 3 × 106.

especially in higher dimensions, since it mainly depends
on the classical nearest neighbor search which has been
extensively studied. It also features with the excellent
query cost (we will see shortly experimental results
on this issue), since only a nearest neighbor search is
required after finding the MEB(Q) which is also a well-
explored topic and can be done in linear time to the
size of the query group. Now, given the fact that it
has excellent approximation ratios (has almost identical
enclosing distances to the optimal answer), the GEQA
algorithm becomes an excellent candidate for answering
a GEQ query in practice for large databases in the multi-
dimensional space.

The query cost of various algorithms. We next study the
query cost of our approximation algorithm, GEQA, and
the new exact algorithm GEQS, comparing to the state-
of-the-art method MBM [27]. Figure 11 summarizes the
comparison in two dimensions, when we vary various
parameters for the data sets and the query groups. In
general, the average number of IOs for one query using
the MBM method is around 200. In contrast, both the
GEQA and GEQS only require around 10 IOs, and the
GEQA algorithm consistently incurs the least amount of
IOs. These results indicate that in two dimensions, the
new algorithms proposed in this work is one order of
magnitude better than the state-of-the-art approach.

Specifically, Figures 11(a) and 11(b) show the IOs of
different algorithms on UN and CA data sets when we
fix the query group size and vary the query group’s
covering area. Figures 11(c) and 11(d) show the same
experiment, but we fix the query group’s covering area
and change the query group size. These results indicate
that both the query group area and the query group size
do not have a significant impact to the query cost of
various algorithm. This is not that surprising, since our

0 2 4 6 8 10
0

50

100

150

200

|N|: X106

IO
s

GEQA
GEQS
MBM

(a) IOs: vary N , UN data set.

0 2 4 6 8 10
0

50

100

150

200

250

|N|: X106

IO
s

GEQA
GEQS
MBM

(b) IOs: vary N , CA data set.

Fig. 12. Scalability w.r.t |P |: A = 3%, |Q| = 1000, d = 2.

analysis suggests that the optimal query answer is very
close to the center for the minimum enclosing ball of the
query group. This indicates that the query cost is more
affected by this center, which is hardly affected by the
query group’s area and size. In all cases, the query costs
for the GEQA and GEQS algorithms are almost 20 times
better than the MBM method.

We then test the scalability of these algorithms with
respect to the size of the data set P . Using the UN and
CA data sets in two dimensions, we vary the data set
size from 1 million to 10 million. Figure 12 shows that
our algorithms have an excellent scalability for larger
data sets, e.g., they still just have less than 20 IOs for
data sets that have 10 million points. Their query costs
almost stay as a constant as N increases. On the hand,
we can observe an an increasing query cost for the MBM
method when the size of the data set increases.

Lastly, we study the performance of these algorithms
under higher dimensions and the results are shown
in Figures 13(a) and 13(b), for the UN and RC data
sets respectively. As we can see, the query cost for all
algorithms increases in higher dimensions. However,
our algorithms have a much slower pace of increasing,
especially the GEQA algorithm. The performance gap
between the MBM method and our algorithms becomes

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

2 3 4 5 6
0

1

2

3

Dimensionality

IO
s:

 X
10

4

GEQA
GEQS
MBM

(a) IOs: vary d, UN data set.

2 3 4 5 6
0

1

2

3

Dimensionality

IO
s:

 X
10

4

GEQA
GEQS
MBM

(b) IOs: vary d, RC data set.

Fig. 13. Query cost in higher dimensions: A = 3%, |Q| =
1000, N = 3 × 106.

0 1 2 3 4 5
0

100

200

300

400

|Q|: x104

IO
s

GEQAcA
GEQAcS
F−MBM

(a) IOs: vary |Q|, d = 2.

2 3 4 5 6
0

3

6

9

12

Dimensionality

IO
s:

 X
10

3

GEQAcA
GEQAcS
F−MBM

(b) IOs: vary d, |Q| = 1000.

Fig. 14. Approximate convex hulls: |ACQ| = 50, A = 3%,
N = 3 × 106, UN data set.

larger in higher dimensions. In six dimensions, the MBM
method takes almost 30, 000 IOs for one query, while
the GEQS algorithm requires about 10, 000 IOs and the
GEQA algorithm only needs less than 2000 IOs (on 3
million points). We can further reduce the query cost
of the GEQA algorithm easily by using an approximate
nearest neighbor search algorithm, instead of relying
on the R-tree for the nearest neighbor search in high
dimensions (see Section 7.3).

Given these results, we conclude that in relatively high
dimensions, the best algorithm for the GEQ problem is
to use the GEQA algorithm to obtain a high quality
approximation using an efficient nearest neighbor search
method. If an optimal answer must be obtained, then
the GEQS algorithm could be used. However, there is
a limitation when using the GEQS algorithm in high
dimensions. Computing the furthest voronoi diagram
becomes challenging in this case. Thus, when d goes
beyond six dimensions, one should simply use the GEQA
algorithm to get a high quality approximate answer (see
further discussion on this issue in Section 7.3).

7.2 Query groups of large size

There are cases where not only |Q| is large, but also |CQ|.
These cases rarely happen in practice as query points
in real applications hardly arrange themselves such that
each of them is a vertex of a convex polygon with high
probability. When this does happen, we can apply the
idea of the approximate convex hull as discussed in
Section 6.1 to remedy the problem. Figure 14 reports the
performance of such an approach. We can apply both
the GEQA and GEQS algorithms on the approximate
convex hull ACQ of the query group Q. We denote
such algorithms as GEQAcA and GEQAcS respectively,

0 1 2 3 4 5
1

1.03

1.06

1.09

|N|: X105

r p/r
*

Cortina

(a) effect of N : A = 3%, |Q| =
1000, d = 30.

20 40 60 80
1

1.05

1.1

1.15

Dimensionality

r p/r
*

Cortina

(b) effect of d: A = 3%, N =
3 × 105.

Fig. 15. Approximation quality of GEQA in very high
dimensions: A = 3%, |Q| = 1000,Cortina data set.

and comparing their query costs against the disk-based
version of the MBM method (F-MBM) from [27]. In this
experiment we fix the number of vertices in the approx-
imate convex hull ACQ to 50. In terms of the query cost,
clearly our algorithms outperform the F-MBM algorithm
and the GEQAcA algorithm has the best query cost.
For all algorithms, clearly, their query costs increases
almost linearly while |Q| increases as shown in Figure
14(a). We also test these algorithms in higher dimensions
and Figure 14(b) shows an increasing query cost for all
algorithms. Our algorithms remain the lower query costs
than the F-MBM method. Note that when dimension
increases, for our algorithms the dominant query cost is
contributed by querying the index structure, rather than
computing the approximate convex hull ACQ.

There is a trade-off for the better efficiency achieved by
our algorithms. In this case, both GEQAcA and GEQAcS
algorithms only give approximate answers, while the F-
MBM method gives an exact answer. However, from
the discussion in Section 6.1, the error introduced by
the approximation is independent of |Q| and is only
determined by |ACQ|. When |ACQ| = 50, ǫ is less
than 0.001. Hence, both our algorithms achieve very
good approximation qualities. On average, rp/r∗ for our
algorithms is very close to 1 and the results are very
similar to those reported in Figure 10. Hence, unless an
exact answer must be obtained, one could use the the
GEQAcA algorithm (since in this case, the GEQAcS also
is an approximation algorithm and it has a higher query
cost than the GEQAcA algorithm as shown in Figure 14)
to find a good approximation when Q becomes too large.

7.3 Performance of GEQA in Very High Dimensions

Next, we study the performance of GEQA in very high
dimensions (d up to 74). Recall that in high dimensions,
finding both the exact minimum enclosing ball and the
nearest neighbor become too expensive to be practical.
So we turn to use the approximation algorithms. For
finding the approximate minimum enclosing ball, we
adopt the (1 + ǫ)-approximation algorithm in [22]. For
finding the approximate nearest neighbor, we use the
LSB-tree method proposed in [31] (with the default
parameter values used in [31]).

In our study, we use the Cortina data set as the
default data set, since it has the largest number of points

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

0 1 2 3 4 5 6
10

0

10
1

10
2

10
3

10
4

10
5

|N|: X105

IO
s

GEQA
BFS

(a) IOs: vary N .

20 40 60 80
10

0

10
1

10
2

10
3

10
4

10
5

Dimensionality

IO
s

GEQA
BFS

(b) IOs: vary d.

Fig. 16. Query cost in very high dimensions: A = 3%,
|Q| = 1000, Cortina data set.

1

1.2

1.4

1.6

1.8

2

MNIST Color Cortina

r p/r
*

(a) approximation quality.

10
0

10
1

10
2

10
3

10
4

10
5

IO
s

MNIST Color Cortina

GEQA
BFS

(b) query cost.

Fig. 17. Results on all datasets, A = 3%, |Q| =1000,
N=60,000, 68,040, 1,088,864 and d=50, 32, 74.

(approximately 1 million points) and the highest dimen-
sionality (74). To test the scalability of our algorithm,
we vary both N and d in the data set used for our
experiments. When we vary N , we simply randomly
sample N points from Cortina; when we vary d, we
simply take the first d dimensions from any point in
Cortina. In the default set up, d = 30 and N =300,000.
Finally, we tested query groups of different sizes and
different distributions, in similar ways as we did in low
to relatively high dimensions in Section 7.1. The results
are similar. Hence, we only show the results (average
of 1000 queries) using the default query group with
1000 points and the rc distribution. The only available
method for exact GEQ search in very high dimensions is
to linearly scan the entire data set, and we refer to this
method as the BFS method. It is also used to find the
exact answer and the exact enclosing distance in order to
calculate the approximation ratio of the GEQA algorithm.

The approximation quality of GEQA. Figure 15 plot
the average approximation ratio of the GEQA algorithm
using the Cortina data set, as well as the 5%-95% confi-
dence interval. Although the approximation quality does
degrade compared with the results in low dimensions
(Figure 10), it is still much better than its worst case theo-
retical bound. In particular, the approximation quality of
the GEQA on this data set stays within 1.12 in the worst
case and the average approximation quality is below
1.08, when d becomes 74 and N =300,000 (Figure 15(b)).
Figure 15(a) indicates that the number of points in the
data set does not significantly affect the approximation
quality, as N increases from 100,000 to 500,000. This
is easy to understand since the points are randomly
sampled from the original 1 millions points in Cortina
data set when we vary N , meaning that these data sets
have almost identical distributions. Figure 15(b) shows
that the approximation quality of GEQA does degrade

when the dimensionality of the data set increases, but
at a fairly slow pace. In particular, its average approxi-
mation quality drops from 1.04 in 30 dimensions to 1.07
in 74 dimensions. The variance for the approximation
quality of GEQA also increases with d, but even in
74 dimensions, this variance is still considerably small
(ranging from 1.02 to 1.12 as seen in Figure 15(b)).

The query cost. We then compare the query cost of
GEQA with the exact solution, the BFS. Figure 16 sum-
marizes the comparison when we vary the data size,
and the dimensionality, using the Cortina data set. In
general, the average number of IOs for one query using
the GEQA method is around 130 to 160 in all cases
(even when d becomes 74 or N becomes 500,000), and
the IOs of the BFS method is approximately two orders
of magnitude larger or more. More importantly, Figures
16(a) and 16(b) show that GEQA has excellent scalability
w.r.t. both N and d (its query cost increases very slowly
when N or d increases). In contrast, the query cost of
BFS increases linearly with both N and d.

More data sets. We also tested the performance of GEQA
using other high dimensional, real data sets. Figure 17(a)
compares the average approximation ratio (and the 5%-
95% confidence interval) of GEQA using all three real
data sets (all available points and dimensions in each
data set respectively). Clearly, for all data sets we have
tested, the average approximation ratio is below 1.3 in
the worst case and the overall worst case approximate
ratio is below 1.9 (both happen on the MNIST data set,
it also yields the largest variance). The approximation
variance is very small in Color and Cortina, and fairly
small in MNIST as well.

Figure 17(b) compares the average IOs of one query
for GEQA and BFS on all data sets. Clearly, in all data
sets, GEQA outperforms the BFS by at least 1.5 to 3
orders of magnitude. Given these results, we conclude
that the GEQA algorithm is an excellent solution for the
GEQ problem in any dimension (from as low as 2 to as
high as 74) because of its high approximation quality,
low query cost, excellent scalability, and very simple
implementation in practice.

8 CONCLUSION

This paper studies an important aggregate nearest neigh-
bor query type (the GEQ problem) that has many real
life applications. Our work presents novel exact and ap-
proximate methods that have significantly outperformed
the existing method for this problem. Our approximate
method is simple, efficient and effective. It has a worst-
case

√
2-approximation ratio when exact nearest neigh-

bor of a point can be found and it is close to 1 in
practice. In high dimensions, this approximate algorithm
could be adapted to work with approximate nearest
neighbors and approximate minimum enclosing balls. It
gives a (close to) constant approximations and retains its
superior query performance and approximation quality

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 15

in practice. Future work includes extending these algo-
rithms to cope with moving objects and data in the road
network databases.

REFERENCES

[1] CGAL, Computational Geometry Algorithms Library.
http://www.cgal.org.

[2] Open street map. http://www.openstreetmap.org.
[3] Qhull, the Quickhull algorithm for convex hulls.

http://www.qhull.org.
[4] S. Arya and D. M. Mount. Approximate range searching. Comput.

Geom. Theory Appl., 17(3-4):135–152, 2000.
[5] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y.

Wu. An optimal algorithm for approximate nearest neighbor
searching in fixed dimensions. Journal of ACM, 45(6):891–923,
1998.

[6] F. Aurenhammer. Voronoi diagrams - a survey of a fundamental
geometric data structure. ACM Computing Survey, 23(3):345–405,
1991.

[7] M. Bādoiu, S. Har-Peled, and P. Indyk. Approximate clustering
via core-sets. In STOC, 2002.

[8] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The
R∗-tree: an efficient and robust access method for points and
rectangles. In SIGMOD, 1990.

[9] M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf. Com-
putational geometry: algorithms and applications. Springer, 1997.

[10] C. Böhm. A cost model for query processing in high dimensional
data spaces. ACM Transaction on Database Systems, 25(2):129–178,
2000.

[11] K. Chakrabarti, K. Porkaew, and S. Mehrotra. The Color Data Set.
http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.
data.html.

[12] B. Cui, B. C. Ooi, J. Su, and K.-L. Tan. Contorting high di-
mensional data for efficient main memory kNN processing. In
SIGMOD, 2003.

[13] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search
and classification via rank aggregation. In SIGMOD, 2003.

[14] K. Fischer and B. Gartner. The smallest enclosing ball of balls:
combinatorial structure and algorithms. In SoCG, 2003.

[15] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high
dimensions via hashing. In VLDB, 1999.

[16] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-
memory computational geometry. In FOCS, 1993.

[17] A. Guttman. R-trees: a dynamic index structure for spatial
searching. In SIGMOD, 1984.

[18] M. Hadjieleftheriou. The spatialindex library.
http://www.research.att.com/∼marioh/spatialindex/index.html.

[19] G. R. Hjaltason and H. Samet. Distance browsing in spatial
databases. ACM Trans. Database Syst., 24(2), 1999.

[20] P. Indyk and R. Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. In STOC, 1998.

[21] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang.
iDistance: An adaptive B+-tree based indexing method for nearest
neighbor search. ACM Trans. Database Syst., 30(2):364–397, 2005.

[22] P. Kumar, J. S. B. Mitchell, and E. A. Yildirim. Approximate
minimum enclosing balls in high dimensions using core-sets.
ACM Journal of Experimental Algorithmics, 8, 2003.

[23] Y. LeCun and C. Cortes. The MNIST Data Set.
http://yann.lecun.com/exdb/mnist/.

[24] H. Li, H. Lu, B. Huang, and Z. Huang. Two ellipse-based pruning
methods for group nearest neighbor queries. In GIS, 2005.

[25] K. Mouratidis, D. Papadias, and S. Papadimitriou. Tree-based
partition querying: a methodology for computing medoids in
large spatial datasets. VLDB J., 17(4):923–945, 2008.

[26] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis. Group nearest
neighbor queries. In ICDE, 2004.

[27] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui. Aggregate
nearest neighbor queries in spatial databases. ACM Trans. Database
Syst., 30(2):529–576, 2005.

[28] G. Proietti and C. Faloutsos. Analysis of range queries and self-
spatial join queries on real region datasets stored using an R-tree.
IEEE Transactions on Knowledge and Data Engineering, 12(5):751–
762, 2000.

[29] K. Rose and B. S. Manjunath. The CORTINA Data Set.
http://www.scl.ece.ucsb.edu/datasets/index.htm.

[30] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor
queries. In SIGMOD, 1995.

[31] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency in
high dimensional nearest neighbor search. In SIGMOD, 2009.

[32] Y. Theodoridis and T. Sellis. A model for the prediction of R-tree
performance. In PODS, 1996.

[33] B. Yao, F. Li, and P. Kumar. Reverse furthest neighbors in spatial
databases. In ICDE, 2009.

[34] C. Yu, B. C. Ooi, K.-L. Tan, and H. V. Jagadish. Indexing the
distance: an efficient method to kNN processing. In VLDB, 2001.

[35] H. Yu, P. K. Agarwal, R. Poreddy, and K. R. Varadarajan. Practical
methods for shape fitting and kinetic data structures using core
sets. In SoCG, 2004.

[36] D. Zhang, Y. Du, T. Xia, and Y. Tao. Progressive computation of
the min-dist optimal-location query. In VLDB, 2006.

PLACE
PHOTO
HERE

Feifei Li received the BS degree in computer
engineering from Nanyang Technological Uni-
versity in 2002 and the PhD degree in computer
science from Boston University in 2007. He has
been an assistant professor in the Computer
Science Department, Florida State University,
since 2007. His research interests include data
management, data structures, and databases,
as well as security issues in data management.

PLACE
PHOTO
HERE

Bin Yao received both the BS degree and the
MS degree in computer science from South
China University of Technology in 2003 and
2007, respectively. He has been a PhD student
in the Computer Science Department, Florida
State University, since 2007. His research in-
terests include databases and data manage-
ment. In particular, query processing in spatial
database, relational database, text and multime-
dia databases.

PLACE
PHOTO
HERE

Piyush Kumar received his B.Sc. degree in
Mathematics and Computing from IIT Kharagpur
in 1999. He was awarded a PhD in computer
science from Stony Brook University in 2004.
Prior to joining FSU as an Assistant Profes-
sor in 2004, he was also a visiting scientist
at MPI-Saarbruecken, Germany. In 2010, he
was promoted with tenure to the rank of Asso-
ciate Professor. His research interests include
algorithms, computational geometry, optimiza-
tion, databases, computer graphics and scien-

tific computing. He is a recipient of the NSF CAREER Award, the
AFOSR Young Investigator Award and the FSU Innovator Award.

