Energy of Wireless Devices

The Showstopper: Energy

- Need long lifetime with battery operation
 - No infrastructure, high deployment & replenishment costs
- Continual improvement in functionality, size, weight, and power
 - 1.6x/year in DSP power
 - sensing and RF components based on MEMs
- But
 - energy to wirelessly transport bits is ~constant
 - Shannon, Maxwell
 - fundamental limit on ADC speed*resolution/power
 - no Moore's law for battery technology
 - ~ 5%/year

Single-chip Wireless Sensor Node

The Future

Approaches to reduce energy consumption

- OS turns off parts of the computer when are not in use (mostly IO devices such as display)
- Application program uses less energy, possibly degrading quality of the user experience
- Which hardware/software component takes most energy?

Hardware Issues

- Battery
 - Handheld devices: disposable batteries,
 - Laptops: rechargeable batteries
- Multiple power states for CPU, memory and I/O devices
 - Sleeping
 - Hibernating
 - Off
- Transition between power states:
 - Idle for a certain period of time, transition into lower power state
 - Activated when it is accessed

- Keep track of the states of different devices
- Which device to transition into low-power state?
- Window's ACPI Advanced Configuration and Power Interface
- OS sends commands asking the device driver to report on device's states (power information)

Display Energy Management

- The biggest energy consumption
- Reason
 - Require backlit to get a bright sharp image
- What solutions would reduce display energy?
 - shut down the display if there is no activity for some number of minutes.
 - divide the screen into zones and turn on only zones where the active window resides (work by Flinn and Satyanarayanan)
 - Change color mapping scheme

Hard Disk

- Disk takes substantial energy
 - spinning at high speed, even if there are no accesses.
- What would be the solution to decrease energy?
 - spin the disk down after a certain idle time of activities.
 - When it is needed, it is spun up again
 - Disk cache in RAM can save energy
 - If a needed block is in the cache, the idle disk does not have to be restarted
 - Another possibility is to keep application programs informed when disk is down.

Memory

- Two options to save energy with memory:
 - cache is flushed and then switched off (hibernation)
 - write content of memory to disk and switch off the memory
- When memory is shut off
 - CPU has to shut off or has to execute out of ROM;
 - If CPU is off and interrupt wakes it up, it has to read from ROM to load the memory.
- What are the tradeoff?
- Multiple power-mode
 - Active
 - Nap
 - Standby
 - Power-down

CPU - Energy-Efficient Mobile Multimedia Devices (Research, SOSP 2003)

Mobile devices

- Running multimedia apps (e.g., MP3 players, DVD players)
- Running on general purpose systems

Demanding quality requirements

- System resources: high performance
- OS: predictable resource management
- Limited battery energy
 - System resources: low power consumption
 - OS: energy as first-class resource

Wireless Communications is a Major Energy Hog

• Energy/bit ÷ Energy/op large even for short ranges!

Mote-class Node	Transmit	720 nJ/bit	Processor	4 nJ/op	
	Receive	110 nJ/bit	~ 200 ops/bit		
WINS-class Node	Transmit	6600 nJ/bit	Processor	1.6 nJ/op	
	Receive	3300 nJ/bit	~ 6000 ops/bit		

Radio Power Consumption

Radio Electronics Trends

Trends:

- Move functionality from the analog to the digital electronics
- Digital electronics benefit most from technology improvements
- Analog a bottleneck
- Digital complexity still increasing (robustness)

What can be done?

- Reduce energy/bit
- Increase energy availability

1. Radio Energy Management

MAC: Scaling for Energy

- Radios with scalable modulation and coding
- MAC protocol that decides
 - Which node transmits
 - What packet
 - At what time
 - On what channel
 - With what RF power
 - What modulation and coding setting

Shutdown

- Radio modes: active, idle, shutdown, transient
- Transient period
 - Active/idle to sleep is short and can be ignored
 - Sleep to active/idle period, T_{ON} , is not
 - PLL in the frequency synthesizer takes time to settle
 - P_{tr} = 2*P_{syn}
 - T_{ON} is O(10)-O(100) uS
 - mixer & power amp startup can be ignored
- Problem: T_{ON} is significant fraction of packet duration
 Packet sizes small in sensor nets (reporting events)
- Leads to high energy per bit!
- Radios with fast start-up and acquisition

On-demand Data-driven Wakeup

- Duty cycle the radio
 - trade-off between energy and latency
- Wake-up circuit & protocols exploiting them
 - instantly wake up remote receiver radio when needed
 - minimize spurious wake ups & interference, and their impact
 - match destination address in addition to preamble
 - cheap directional antennas

0.016

Sleep

2. Reduced Path Loss via Directional Antenna

- Smart antenna
 - Signal processing (beamforming)
 - Low transient cost, high quiescent cost
- Reconfigurable antennas
 - Mechanical articulation, electrical reconfiguration
 - High transient cost, low quiescent cost

Microceptor QD2402 [Pon & Wu, UCLA, 2003]

Energy: Communication vs. Articulation

Articulated Microceptor QD2402 [Pon & Wu, UCLA, 2003]

- 51 degrees/second latency
- Breakeven point: # of bits vs. gain in SNR
- Spend upfront energy and save on subsequent per-packet energy

3. Exploiting Articulation & Mobility for Energy

- Rich source of system lifetime improvement
 - Nodes with articulated appendages
 - Nodes that move
 - Controlled, predictable, unpredictable
 - Restricted, unrestricted
- Opportunities
 - Better communication & sensing channel
 - Diversity gain due mobility
 - Mechanical transport of bits & energy
 - Better energy harvesting
- Challenges
 - Platforms with articulation & mobility
 - Protocols and collaboration algorithms to exploit mobility
 - Understanding the fundamental impact of mobility on lifetime

AmigoNode

RoboMote

NIMS

4. Beyond Reduction: Energy Harvesting

- Sensor nodes that extract energy from the environment and store in a capacitor or battery
 - Wind
 - Solar
 - Vibration/Motion
 - Chemical

Prototypes from IASL, UWE, Bristol.

- Challenge: how to manage energy harvesting?
 - Variation in harvesting opportunities
 - E.g. light level is a function of node location
 - How to extract maximum performance?

Harvesting-aware Network-level Tasking

- Tasking aware of battery status & harvesting opportunities
 - Richer nodes take more load
 - Looking at the battery status is not enough
- Learn the energy environment

Example: Solar Harvesting Aware Routing

Simulation using light traces from James Reserve

HelioMote Platform

Summary

- Energy-efficient radios
 - Energy-performance scalability for long range
 - Efficient shutdown and wake-up for short range
- Directional antennas
 - Electrical or mechanical reconfiguration of directional elements
- Platforms and algorithms to exploit mobility and articulation
 - Better communication & sensing channel
 - Diversity gain due mobility
 - Mechanical transport of bits and energy
 - Better energy harvesting
- Energy harvesting
 - Network operation that is aware of spatio-temporal characteristics of environmental energy availability

Challenges

- Technologies
 - Energy-efficient and energy-scalable components
 - Radios, reconfigurable antenna, sensor processing (image, biochem)
 - Energy harvesting
 - Wind, solar, motion, vibration, chemical
 - Ad hoc infrastructure elements / hierarchy
 - Energy & data mule, Mobile Microservers
 - EM and wired energy delivery
- Techniques
 - Energy-latency-accuracy-coverage trade-offs
 - Algorithms: energy-efficient, battery-aware, harvesting-aware
 - Distributed in-network processing
- Metrics, Benchmarks, Tools, and Testbeds
 - Energy-metrics for sensing, signal processing, event detection, and communication protocols
 - Benchmark suite of representative functions
 - Simulators with models of energy producers and consumers
 - Instrumented testbeds