CS26007: Introduction to Wireless Networking

Guangtao Xue

Department of Computer Sciences,

Shanghai Jiao Tong University

Fall 2015

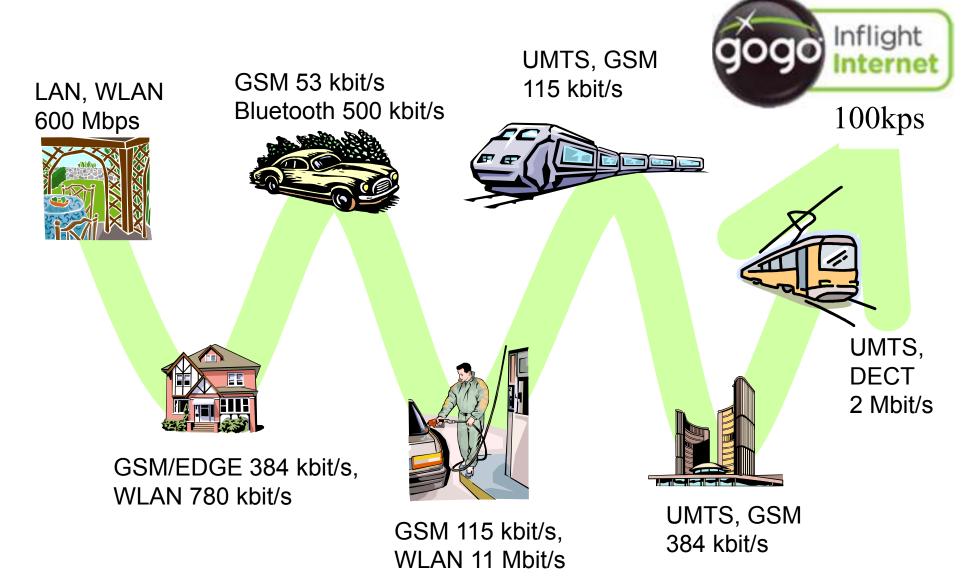
Course Information

- Course Information
 - Course #: CS26007
 - Lecture: T8:55 11:40 pm @陈瑞球楼207
 - Course homepage: http://www.cs.sjtu.edu.cn/~xuegt/wireless/wireless.html
- Xue's Office hour: W 2-4pm or by appt. @ SEIEE 3.129
- Teaching assistant: Guang Yang, <u>glfpes@sjtu.edu.cn</u>
 - Office hour: W 11am-noon SEIEE 3.129

Course Workload

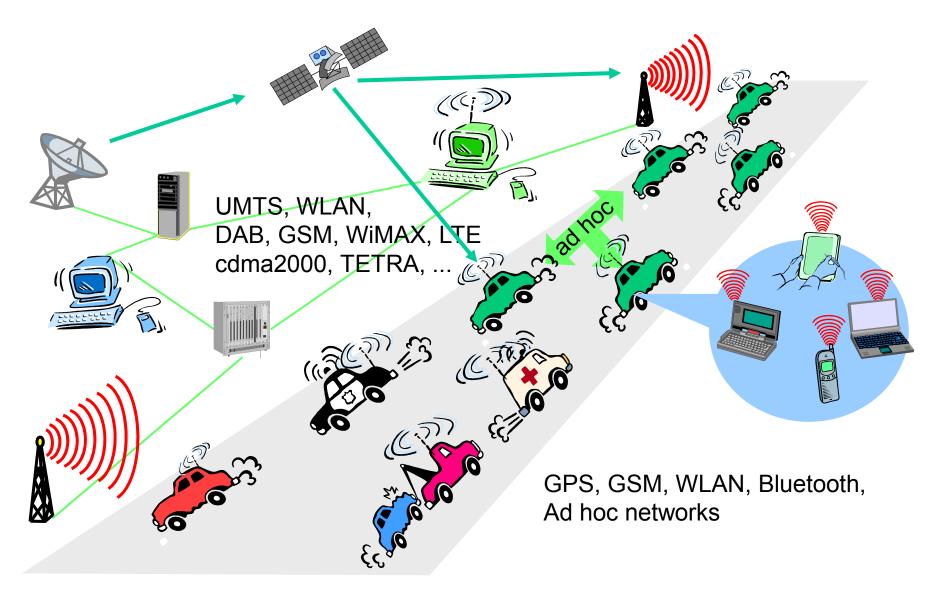
•Grading

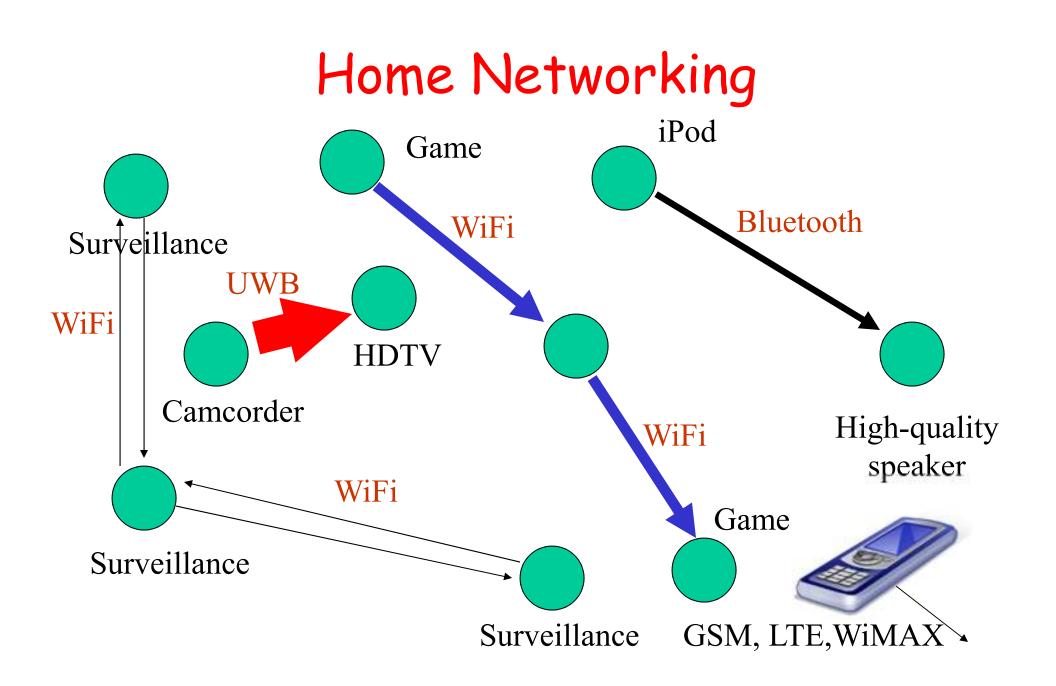
-Class participation: 20% (include in-class exercises) -Homework: 30%


-Project: 50%

Course Material

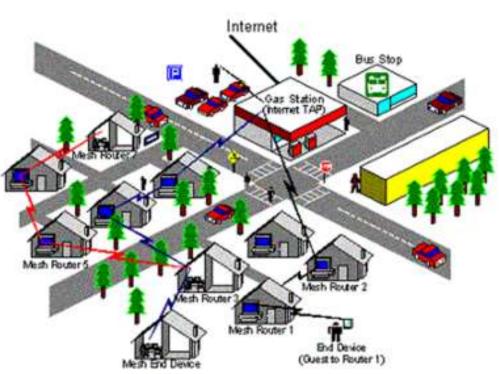
- Required textbook
 - Ad Hoc Wireless Networks: Architectures and Protocols by C. Siva Ram Murthy and B.S. Manoj
 - Mobile Communications by Jochen Schiller
- Recommended references
 - Computer Networking: A top down approach featuring the Internet by James Kurose and Keith Ross
 - 802.11 Wireless Networks: The Definitive Guide by Matthew S. Gast
 - Wireless Communications Principles and Practice by Ted Rappaport
 - Ad Hoc Networking by Charles E. Perkins


Motivation


Mobile and Wireless Services -Always Best Connected

On the road

On the Road



Last-Mile

Rank	Country	DSL p.p. ⊠	Cable p.p.	Other p.p.	Total p.p.	Н.р.	Total subscribers	Date
_	World	4.0%	1.3%	0.8%	6.1%	N/A	349,980,000	Dec. 2007
1	China	3.9%	N/A	N/A	5.0%3	N/A	93,500,000	Dec. H1, 2009
2	US	9.3%	11.5%	1.3%	22.1%	N/A	83,968,547	Jun. Q1, 2009
3	Japna	10.8%	2.9%	7.6%	21.3%	N/A	30,631,900	Jun. Q1, 2009
4	Germany	20.2%	1.0%	0.1%	29.4%	N/A	24,144,350	Jun. Q1, 2009
5	Mexico	13.7%	2.1%	0.0%	15.8%	N/A	17,267,285	Q4, 2009
6	France	21.4%	1.1%	0.0%	22.5%	N/A	18,009,500	Jun. Q1, 2009
7	UK	18.4%	5.3%	0.0%	23.7%	N/A	17,661,100	Jun. Q1, 2009
8	South Korea	10.1%	10.6%	9.2%	29.9%	N/A	15,709,771	Jun. Q1, 2009
9	Italy ¹	15.4%	0.0%	0.4%	15.8%	N/A	12,447,533	Jun. Q1, 2009
10	India	N/A	N/A	N/A	1%	N/A	10,520,000	Oct. 2010

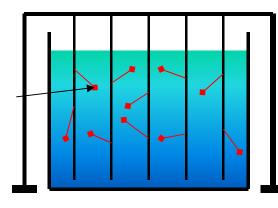
Last-Mile

- Many users still don't have broadband
 - Reasons: out of service area; some consider expensive

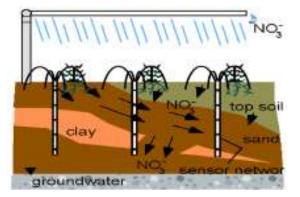
Broadband speed is still limited

- DSL: 300Kbps 6Mbps
- Cable modem: depends on your neighbors
- Insufficient for several applications (e.g., highquality video streaming)

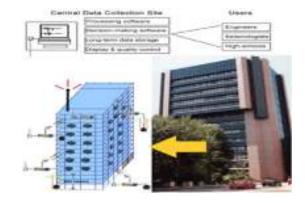
Disaster Recovery Network


- 9/11, Tsunami, Irene, Hurricane Katrina, China, South Asian, Haidi earthquakes ...
- Wireless communication capability can make a difference between life and death!
- How to enable efficient, flexible, and resilient communication?
 - Rapid deployment
 - Efficient resource and energy usage
 - Flexible: unicast, broadcast, multicast, anycast
 - Resilient: survive in unfavorable and untrusted environment

Environmental Monitoring


Ecosystems, Biocomplexity •

Marine Microorganisms

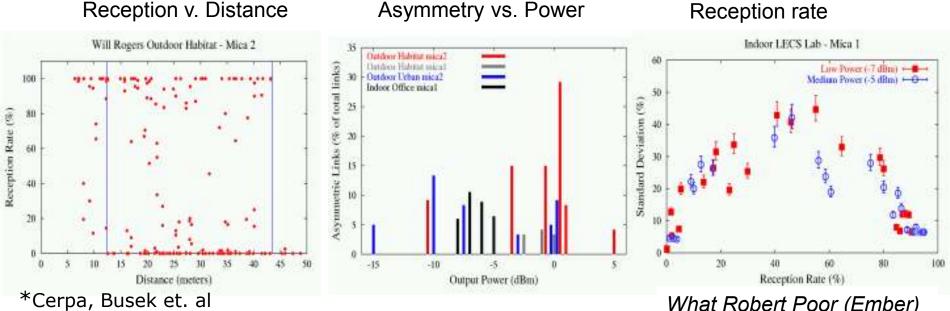

- Micro-sensors, onboard processing, wireless interfaces feasible at very small scale--can monitor phenomena "up close"
 - Enables spatially and temporally dense environmental monitoring

Embedded Networked Sensing will reveal previously unobservable phenomena

Contaminant Transport

Seismic Structure Response

Wearable Computing



Challenges in Wireless Networking Research Challenge 1: Unreliable and Unpredictable Wireless Links

- Wireless links are less reliable
- They may vary over time and space Standard Deviation v.

What Robert Poor (Ember) calls "The good, the bad and the ugly"

Wireless interference

• Wireless interference S1 R1

Hidden terminals

 $S1 \longrightarrow R1 R2 \longleftarrow S2$

• Wireless interference $S1 \xrightarrow{R1} R1$

Hidden terminals

$$S1 \longrightarrow R1 \longleftarrow R2$$

Exposed terminal

 $R1 \longleftarrow S1 \qquad S2 \longrightarrow R2$

• Wireless interference S1 ______ R1

Hidden terminals

$$S1 \longrightarrow R1 \longleftarrow S2$$

Exposed terminal

 $R1 \longleftarrow S1 \qquad S2 \longrightarrow R2$

- Wireless security
 - Eavesdropping, Denial of service, ...


Challenge 3: Intermittent Connectivity

- Reasons for intermittent connectivity
 - Mobility
 - Environmental changes
- Existing networking protocols assume always-on networks
- Under intermittent connected networks
 - Routing, TCP, and applications all break
- Need a new paradigm to support communication under such environments

Challenge 4: Limited Resources

- Limited battery power
- Limited bandwidth
- Limited processing and storage power

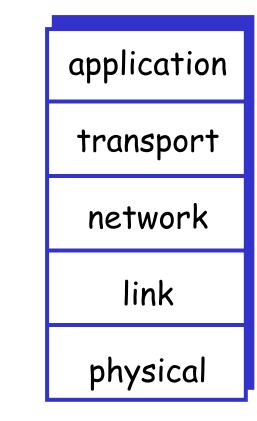
Sensors, embedded controllers

Mobile phones

- voice, data
- simple graphical displays
- GSM

- PDA
- data
- simpler graphical displays
- 802.11

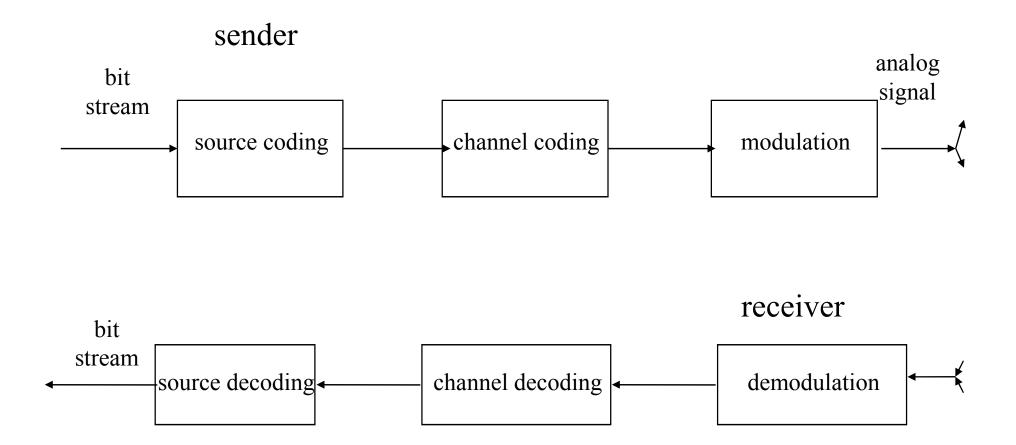
Laptop


- fully functional
- standard applications
- battery; 802.11

Introduction to Wireless Networking

Internet Protocol Stack

- Application: supporting network applications
 - FTP, SMTP, HTTP
- Transport: data transfer between processes
 - TCP, UDP
- Network: routing of datagrams from source to destination
 - IP, routing protocols
- Link: data transfer between neighboring network elements
 - Ethernet, WiFi
- Physical: bits "on the wire"
 - Coaxial cable, optical fibers, radios



Physical Layer

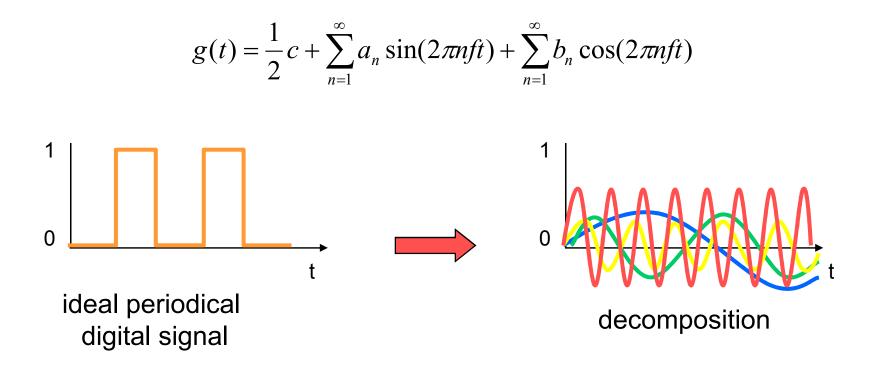
Outline

- Signal
- Frequency allocation
- Signal propagation
- Multiplexing
- Modulation
- Spread Spectrum

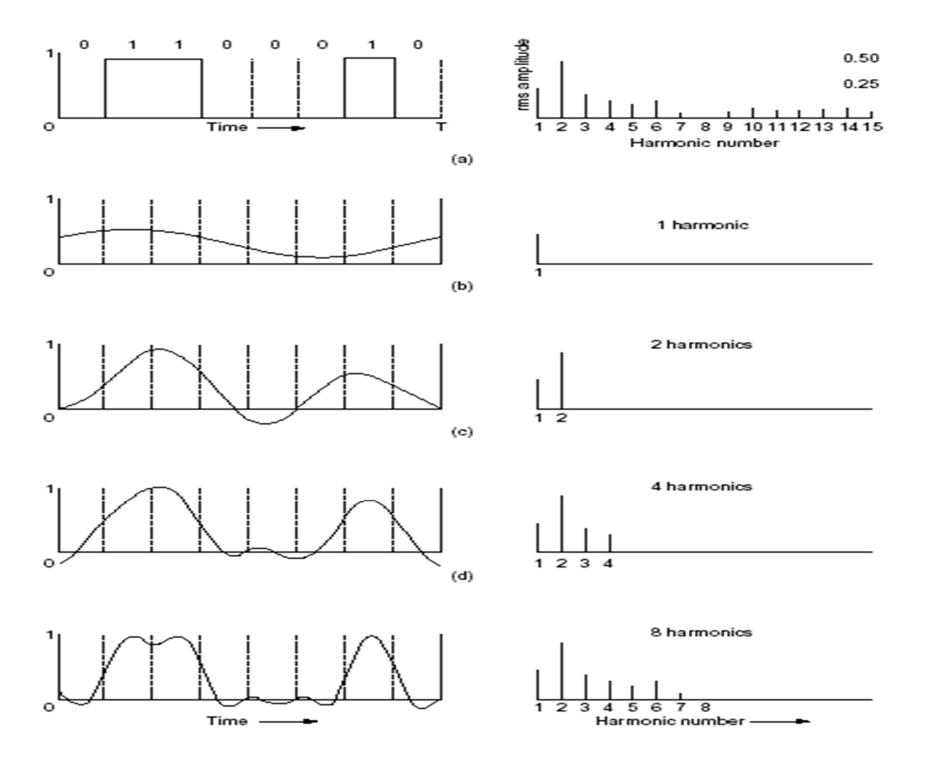
Overview of Wireless Transmissions

Signals

- Physical representation of data
- Function of time and location
- Classification
 - continuous time/discrete time
 - continuous values/discrete values
 - analog signal = continuous time and continuous values
 - digital signal = discrete time and discrete values

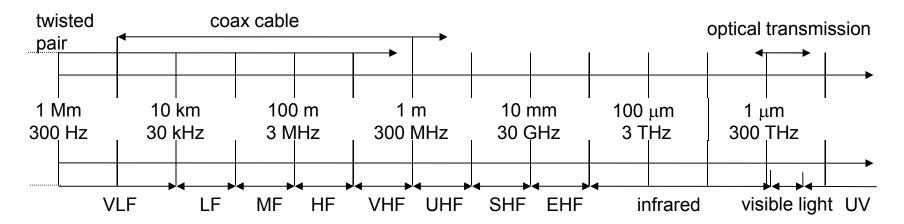

Signals (Cont.)

- Signal parameters of periodic signals:
 - period T, frequency f=1/T
 - amplitude A
 - phase shift $\boldsymbol{\phi}$
 - sine wave as special periodic signal for a carrier:


$$s(t) = A_t \sin(2 \pi f_t t + \varphi_t)$$

$$\int_{0}^{1} \int_{0}^{1} \int$$

Fourier Transform: Every Signal Can be Decomposed as a Collection of Harmonics


The more harmonics used, the smaller the approximation error.

Why Not Send Digital Signal in Wireless Communications?

- Digital signals need
 - infinite frequencies for perfect transmission
 - however, we have limited frequencies in wireless communications

Frequencies for Communication

VLF = Very Low Frequency LF = Low Freq., submarine MF = Medium Freq., radio HF = High Freq., radio VHF = Very High Frequency, TV

UHF = Ultra High Frequency SHF = Super High Frequency EHF = Extra High Frequency Visible light UV = Ultraviolet Light

Frequency and wave length: λ = c/f , wave length $\lambda,$ speed of light c \cong $3 \times 10^8 m/s,$ frequency f

Frequencies and Regulations

• ITU-R holds auctions for new frequencies, manages frequency bands worldwide (WRC, World Radio Conferences)

	Europe	USA	Japan
Cellular Phones	GSM 450-457, 479- 486/460-467,489- 496, 890-915/935- 960, 1710-1785/1805- 1880 UMTS (FDD) 1920- 1980, 2110-2190 UMTS (TDD) 1900- 1920, 2020-2025	AMPS, TDMA, CDMA 824-849, 869-894 TDMA, CDMA, GSM 1850-1910, 1930-1990	PDC 810-826, 940-956, 1429-1465, 1477-1513
Cordless Phones	CT1+ 885-887, 930- 932 CT2 864-868 DECT 1880-1900	PACS 1850-1910, 1930- 1990 PACS-UB 1910-1930	PHS 1895-1918 JCT 254-380
Wireless LANs	IEEE 802.11 2400-2483 HIPERLAN 2 5150-5350, 5470- 5725	902-928 IEEE 802.11 2400-2483 5150-5350, 5725-5825	IEEE 802.11 2471-2497 5150-5250
Others	RF-Control 27, 128, 418, 433, 868	RF-Control 315, 915	RF-Control 426, 868

Why Need A Wide Spectrum

Why Need A Wide Spectrum: Shannon Channel Capacity

 The maximum number of bits that can be transmitted per second by a physical channel is:

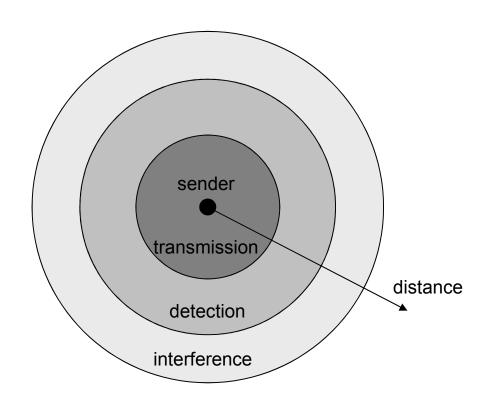
$$W \log_2(1 + \frac{S}{I+N})$$

where W is the frequency range that the media allows to pass through, SINR is the signal noise ratio

Signal, Noise, and Interference

- Signal (S)
- Noise (N)
 - Includes thermal noise and background radiation
 - Often modeled as additive white Gaussian noise
- Interference (I)
 - Signals from other transmitting sources
- SINR = S/(N+I) (sometimes also denoted as SNR)

dB and Power conversion

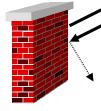

- dB
 - Denote the difference between two power levels
 - $(P2/P1)[dB] = 10 * log_{10} (P2/P1)$
 - P2/P1 = 10^(A/10)
 - Example: P2 = 100 P1 [Answer: 20dB], P2/P1=10 dB [Answer: P2/P1 = 10]
- $\cdot \, dBm$ and dBW
 - Denote the power level relative to $1\ \text{mW}$ or $1\ \text{W}$
 - $P[dBm] = 10*log_{10}(P/1mW)$
 - $P[dBW] = 10*log_{10}(P/1W)$
 - Example: P = 0.001 mW [Answer: -30dBm],
 P = 100 W [Answer: 20dBW]

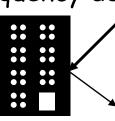
Outline

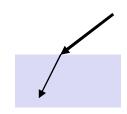
- Signal
- Frequency allocation
- Signal propagation
- Multiplexing
- Modulation
- Spread Spectrum

Signal Propagation Ranges

- Transmission range
 - communication possible
 - low error rate
- Detection range
 - detection of the signal possible
 - no communication possible
- Interference range
 - signal may not be detected
 - signal adds to the background noise




Signal Propagation


• Does signal propagation via a straight line?

Signal Propagation

- Propagation in free space always like light (straight line) •
- Receiving power proportional to 1/d² • (d = distance between sender and receiver)
- Receiving power additionally influenced by •
 - shadowing
 - reflection at large obstacles
 - refraction depending on the density of a medium
 - scattering at small obstacles
 - diffraction at edges
 - fading (frequency dependent)

diffraction

shadowing

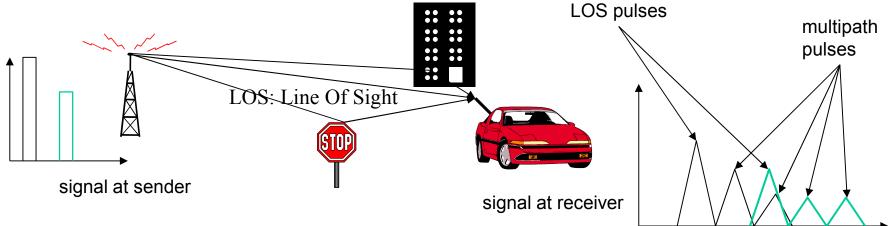
reflection

refraction scattering

Path Loss

Free space model

$$P_r(d) = \frac{P_t G_t G_r \lambda^2}{(4\pi)^2 d^2 L}$$


- Two-ray ground reflection model $P_r(d) = \frac{P_t G_t G_r h_t^2 h_r^2}{d^4 L} \qquad d_c = (4\pi h_t h_r) / \lambda$ • Log-normal shadowing $P(d)[dB] = \overline{P}(d)[dB] + X_{\sigma}$
- Indoor model

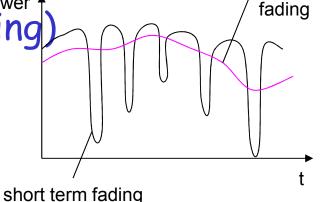
 $P_r(d)[dBm] = P_t(d)[dBm] - 10n\log(\frac{d}{d_o}) - \begin{cases} nW * WAF & nW < C \\ C * WAF & nW \ge C \end{cases}$

• P = 1 mW at d0=1m, what's Pr at d=2m?

Multipath Propagation

• Signal can take many different paths between sender and receiver due to reflection, scattering, diffraction

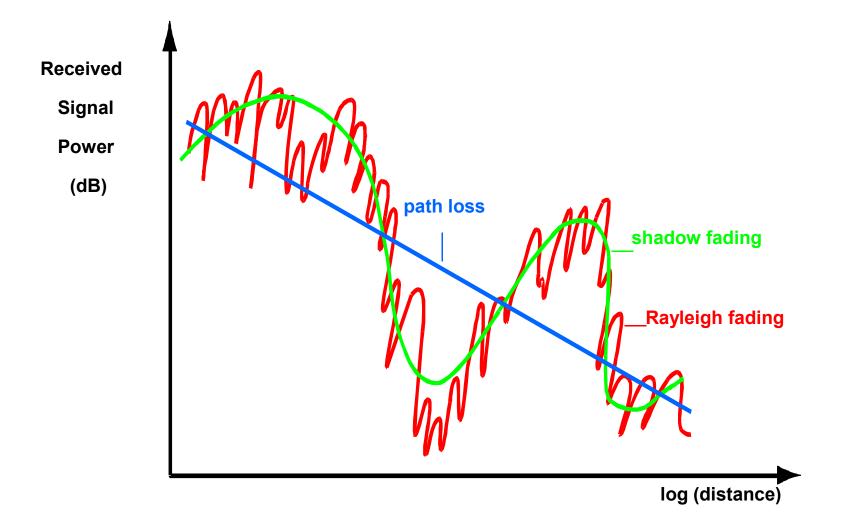
Time dispersion: signal is dispersed over time

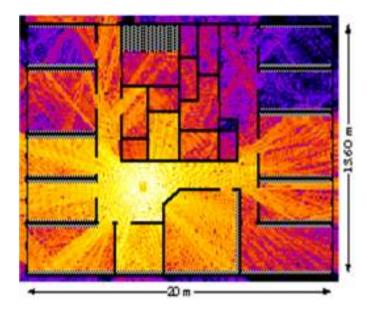

→ interference with "neighbor" symbols, Inter Symbol Interference (ISI)

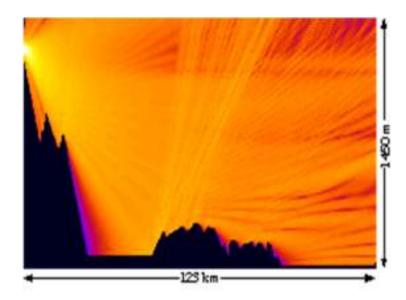
The signal reaches a receiver directly and phase shifted

A distorted signal based on the phases of different parts

Fading


- Channel characteristics change over time and location
 - e.g., movement of sender, receiver and/or scatters
- → quick changes in the power received (short term/fast fading)
- Additional changes in
 - distance to sender
 - obstacles further away


long term


 → slow changes in the average power received (long term/slow fading)

Typical Picture

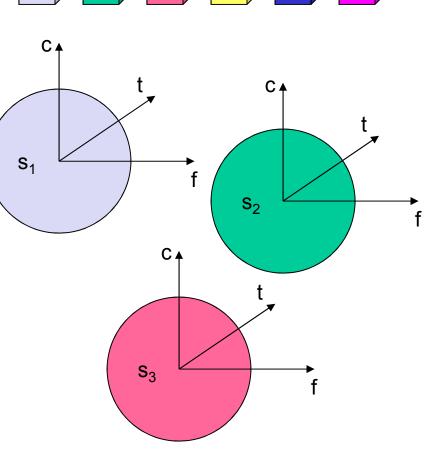
Real world example

Outline

- Signal
- Frequency allocation
- Signal propagation
- Multiplexing
- Modulation
- Spread Spectrum

How to allow multiple nodes share the spectrum?

Multiplexing


- Goal: multiple use of a shared medium
- Multiplexing in 4 dimensions
 - space (s_i)
 - time (t)
 - frequency (f)
 - code (c)
- Important: guard spaces needed!

Space Multiplexing

channels k_i

k₃

- Assign each region a channel $\overline{k_1}$
- Pros
 - no dynamic coordination necessary
 - works also for analog signals
- Cons
 - Inefficient resource utilization

k₆

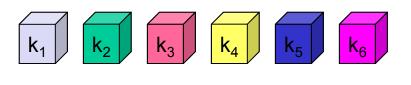
Frequency Multiplexing

- Separation of the whole spectrum into smaller frequency bands
- A channel gets a certain band of the spectrum for the whole time k_1 k_2 k_3 k_4 k_5

С

 k_6

- Pros:
 - no dynamic coordination necessary
 - works also for analog signals


t

- Cons:
 - waste of bandwidth if the traffic is distributed unevenly
 - Inflexible
 - guard spaces

Time Multiplex

C ♠

- A channel gets the whole spectrum for a certain amount of time
- Pros:
 - only one carrier in the medium at any time
 - throughput high even for many users
- Cons:
 - precise
 synchronization
 necessary

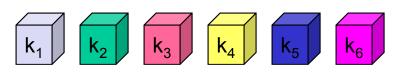
Time and Frequency Multiplexing

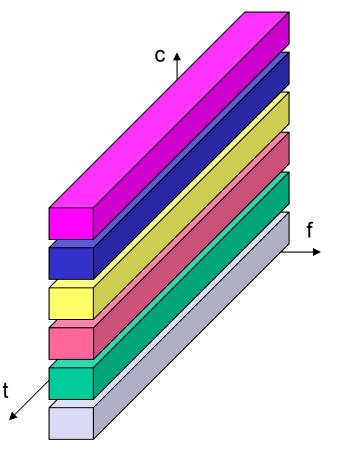
- Combination of both methods
- A channel gets a certain frequency band for a certain amount of time (e.g., GSM)

k₁

С

k₄


k₅


 \mathbf{k}_3

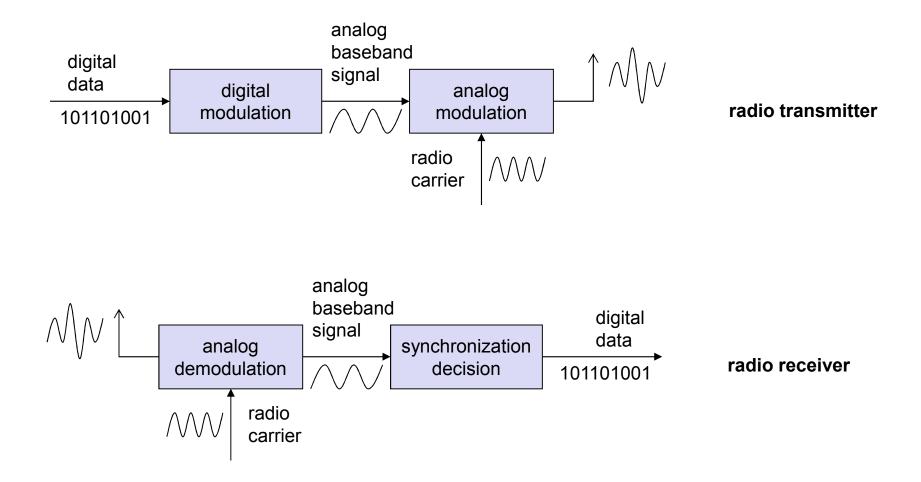
- Pros:
 - better protection against tapping
 - protection against frequency selective interference
 - higher data rates compared to code multiplex
- Cons:
 - precise coordination required

Code Multiplexing

- Each channel has a unique code
- All channels use the same spectrum simultaneously
- Pros:
 - bandwidth efficient
 - no coordination and synchronization necessary
 - good protection against interference and tapping
- Cons:
 - more complex signal regeneration
 - need precise power control
- Implemented using spread spectrum technology

Outline

- Signal
- Frequency allocation
- Signal propagation
- Multiplexing
- Modulation
- Spread Spectrum


Modulation I

- Digital modulation
 - Digital data is translated into an analog signal (baseband)
 - Difference in spectral efficiency, power efficiency, robustness
- Analog modulation
 - Shifts center frequency of baseband signal up to the radio carrier
 - Reasons?

Modulation I

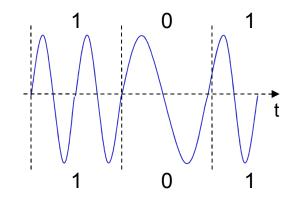
- Digital modulation
 - Digital data is translated into an analog signal (baseband)
 - Difference in spectral efficiency, power efficiency, robustness
- Analog modulation
 - Shifts center frequency of baseband signal up to the radio carrier
 - Reasons
 - Antenna size is on the order of signal's wavelength
 - More bandwidth available at higher carrier frequency
 - Medium characteristics: path loss, shadowing, reflection, scattering, diffraction depend on the signal's wavelength

Modulation and Demodulation

Modulation Schemes

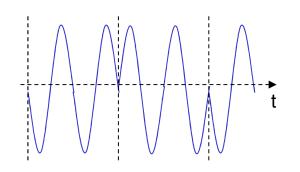
- Amplitude Modulation (AM)
- Frequency Modulation (FM)
- Phase Modulation (PM)

Digital Modulation

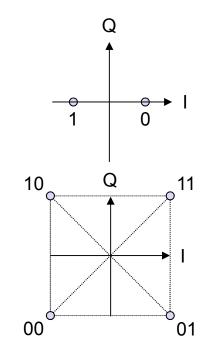

 Modulation of digital signals known as Shift Keying

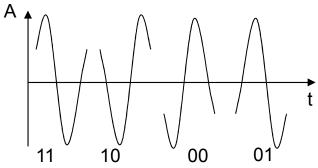
t

- Amplitude Shift Keying (ASK):
 - Pros: simple
 - Cons: susceptible to noise
 - Example: optical system, IFR

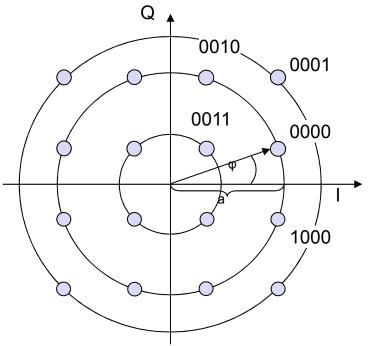

Digital Modulation II

- Frequency Shift Keying (FSK):
 - Pros: less susceptible to noise
 - Cons: requires larger bandwidth

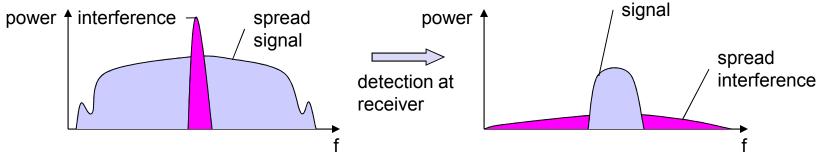

Digital Modulation III


- Phase Shift Keying (PSK):
 - Pros:
 - Less susceptible to noise
 - Bandwidth efficient
 - Cons:
 - Require synchronization in frequency and phase → complicates receivers and transmitter

Phase Shift Keying


- BPSK (Binary Phase Shift Keying):
 - bit value 0: sine wave
 - bit value 1: inverted sine wave
 - very simple PSK
 - low spectral efficiency
 - robust, used in satellite systems
- QPSK (Quadrature Phase Shift Keying):
 - 2 bits coded as one symbol
 - needs less bandwidth compared to BPSK
 - symbol determines shift of sine wave
 - Often also transmission of relative, not absolute phase shift: DQPSK -Differential QPSK

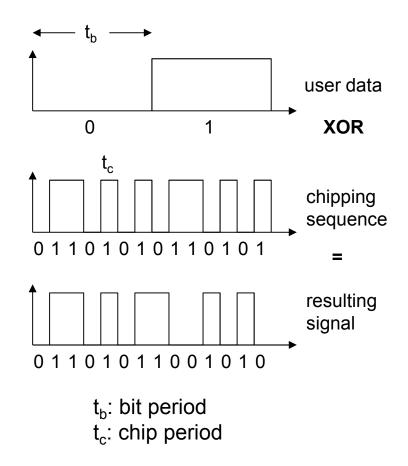
Quadrature Amplitude Modulation


- Quadrature Amplitude Modulation (QAM): combines amplitude and phase modulation
- It is possible to code n bits using one symbol
 - 2ⁿ discrete levels
- bit error rate increases with n

- Example: 16-QAM (4 bits = 1 symbol)
- Symbols 0011 and 0001 have the same phase φ , but different amplitude; 0000 and 1000 have same amplitude but different phase
- Used in Modem

Spread spectrum technology

- Problem of radio transmission: frequency dependent fading can wipe out narrow band signals for duration of the interference
- Solution: spread the narrow band signal into a broad band signal using a special code

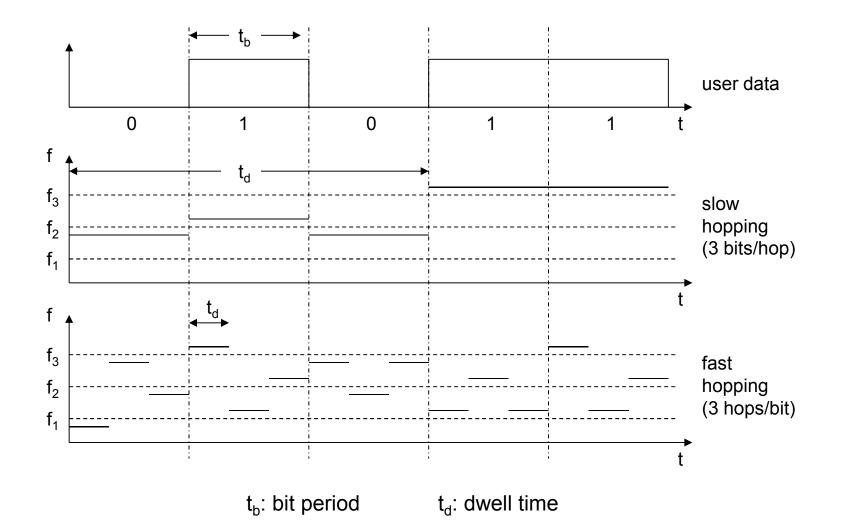


- Side effects:
 - coexistence of several signals without dynamic coordination
 - tap-proof
- Alternatives: Direct Sequence, Frequency Hopping

DSSS

(Direct Sequence Spread Spectrum)

- XOR of the signal with pseudorandom number (chipping sequence)
 - generate a signal with a wider range of frequency: spread spectrum



FHSS

(Frequency Hopping Spread Spectrum)

- Discrete changes of carrier frequency
 - sequence of frequency changes determined via pseudo random number sequence
- Two versions
 - Fast Hopping: several frequencies per user bit
 - Slow Hopping:
 several user bits per frequency
- Advantages
 - frequency selective fading and interference limited to short period
 - simple implementation
 - uses only small portion of spectrum at any time

FHSS: Example

Comparison between Slow Hopping and Fast Hopping

- Slow hopping
 - Pros: cheaper
 - Cons: less immune to narrowband interference
- Fast hopping
 - Pros: more immune to narrowband interference
 - Cons: tight synchronization
 increased

 complexity