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ABSTRACT
While WiFi-based indoor localization is attractive, the need for a
significant degree of pre-deployment effort is a key challenge. In
this paper, we ask the question:can we perform indoor localiza-
tion with no pre-deployment effort? Our setting is an indoor space,
such as an office building or a mall, with WiFi coverage but where
we donot assume knowledge of the physical layout, including the
placement of the APs. Users carrying WiFi-enabled devices such
as smartphones traverse this space in normal course. The mobile
devices record Received Signal Strength (RSS) measurements cor-
responding to APs in their view at various (unknown) locations and
report these to a localization server. Occasionally, a mobile device
will also obtain and report a location fix, say by obtaining a GPS
lock at the entrance or near a window. The centerpiece of our work
is the EZ Localizationalgorithm, which runs on the localization
server. The key intuition is that all of the observations reported to
the server, even the many from unknown locations, are constrained
by the physics of wireless propagation. EZ models these constraints
and then uses a genetic algorithm to solve them. The results from
our deployment in two different buildings are promising.Despite
the absence of any explicit pre-deployment calibration, EZyields
a median localization error of 2m and 7m, respectively, in a small
building and a large building, which is only somewhat worse than
the 0.7m and 4m yielded by the best-performing but calibration-
intensive Horus scheme [29] from prior work.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Miscellaneous

General Terms
Algorithms, Design, Experimentation, Theory

1. INTRODUCTION
The need for location information to enable pervasive computing

applications in indoor environments, coupled with the unavailabil-
ity of GPS in such environments, has motivated a large body of
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research on indoor localization. In particular, there has been a fo-
cus on leveraging existing infrastructure (e.g.,WiFi access points)
to enable indoor localization, the advantage being that thecost of
deploying a specialized infrastructure for localization is avoided.
Existing solutions, however, require extensive pre-deployment ef-
fort, for instance, to build detailed RF maps [4] or RF propagation
models based on surveys of the environment.In this work, we pro-
pose a novel indoor localization system, EZ, that leveragesexisting
infrastructure without requiring any explicit pre-deployment effort.

EZ relies on three basic assumptions: (i) that there are enough
WiFi APs to provide excellent coverage throughout the indoor en-
vironment, (ii) that users carry mobile devices, such as smartphones
and netbooks, equipped with WiFi, and (iii) that occasionally a mo-
bile device obtains an absolute location fix, say by obtaining a GPS
lock at the edges of the indoor environment, such as at the en-
trance or near a window. In EZ, users simply sit, stand, or move
around in the indoor environment in normal course. While they do
so, each user’s mobile device records the received signal strength
(RSS) from the WiFi APs visible to it at various (unknown) loca-
tions, and reports this information, along with the occasional loca-
tion fix when available, to a central localization server. The server
uses this data to simultaneously learn the characteristicsof the RF
propagation environment and to localize the users. Localization is
performed in terms of absolute coordinates: latitude and longitude,
since we focus on 2D locations in this paper.

A key advantage of EZ is that it does not require any prior knowl-
edge of the RF environment, including the location and transmit
power of the APs, information that is often not readily available in
settings such as malls and multi-tenant office buildings, where APs
have been deployed by many different entities. This is a key ad-
vance over prior work on reducing the calibration effort needed for
indoor localization [11, 17]. Another key advantage is thatEZ does
not require any explicit user participation to aid the localization
process. In particular, users arenot required to indicate their cur-
rent locations, even during the training phase. Finally, incontrast
to work on collaborative (ad-hoc) localization [20, 7, 23],EZ only
requires measurements of the APs by the mobile node and does
not require any distance measurements between mobile nodes. So
even a single mobile node that traverses the space of interest over
time could generate sufficient data for EZ localization, as in the ex-
periments we report here. In contrast, prior work on collaborative
localization requires the simultaneous presence of a sufficient num-
ber of participating nodes,a requirement that makes bootstrapping
non-trivial thereby impeding easy deployment.

We believe that by not requiring any pre-deployment effort or
explicit user participation, EZ has the potential of enabling practi-
cal and viable indoor localization. For instance, an EZ server in the
cloud could automatically construct an RF model for, and thereby
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enable localization in, an indoor space in any part of the world,
based just on the measurements reported by the EZ clients in the
space of interest. Such automated operation brings forth a number
of novel challenges, which we address here, including filtering the
very large number of measurement reports to identify a smalland
useful subset, and efficiently computing the RF model despite the
very large space of possibilities.

The advantage of no pre-deployment effort provided by EZ in-
evitably comes at the cost of some loss of accuracy relative to lo-
calization approaches such as RADAR [4] and Horus [29] that rely
on extensive measurement to map the RF environment. However,
our experience from deploying EZ in two different office buildings
is promising. For instance, in one of the buildings, the median lo-
calization error with EZ is 2m, which is somewhat worse than the
error of 0.7m and 1.3m, respectively, with Horus and RADAR. On
the other hand, EZ’s approach of inferring an RFmodelis more ro-
bust than that of constructing an RFmapas in Horus and RADAR.
For instance, in the above building when measurements are made
using a laptop but then are used to localize a different device — a
smartphone — EZ’s error remains unchanged at 2m whereas that
for both Horus and RADAR degrades to 3m or worse.

2. RELATED WORK
Indoor localization has been an active area of research for the

past two decades, initially in the context of robot navigation and
more recently in the context of pervasive and mobile computing.
Here we provide a brief overview of some key research contribu-
tions to this area.
Schemes that require specialized infrastructure :The earliest
schemes relied on deploying specialized infrastructure toenable
indoor localization. For example, Active Badge [26], uses infrared
(IR) beacons and receivers to perform localization. Cricket [22]
and Bat [27] rely on ultrasound devices being deployed at various
locations within the indoor environment as well as on the mobile
devices. Recently, RFID based systems such as LANDMARC [19]
also have been proposed.The practical deployment of these sys-
tems is hindered by the significant cost and effort involved.
Schemes that build RF signal maps:The proliferation of static,
radio-frequency transmitters such as WiFi APs and GSM towers
has enabled localization without the need for additional infrastruc-
ture. The basic approach is to fingerprint each location in the space
of interest with a vector of received signal strength (RSS) measure-
ments of the various transmitters. A mobile device is then localized
by matching the observed RSS readings against this database. An
early system that used this approach with pre-WiFi WLANs was
RADAR [4], which used a deterministic fingerprint for each loca-
tion. Since then several schemes have improved upon RADAR,
most notably Horus [29], which employs a stochastic description
of the RSS map and uses a maximum likelihood based approach.
Commercial localization products have also been built using these
methods [8]. Otsasonet al. [25] has demonstrated that GSM signal
strength from various towers can also be used for indoor localiza-
tion. SurroundSense [2] builds a map using several featuresfound
in typical indoor spaces such as ambient sound, light, color, etc.,
in addition to WiFi RSS.All these schemes, however, entail a con-
siderable amount manual effort to perform detailed measurements
across the entire indoor space and maintain the RF map over time.

Efforts have been made to reduce the mapping effort, for in-
stance, by performing measurement at a coarser, room-levelgran-
ularity [12]. However, the overall pre-deployment effort remains
substantial. DAIR [3] eliminates the need for mapping, but it as-
sumes a very dense deployment of WiFi transmitters, much denser
than typical WiFi deployments.

Model-Based Techniques :An RF propagation model (e.g.,the
log-distance path loss (LDPL) model) can be used to predict RSS
at various locations in the indoor environment. The advantage of
using these models is that it reduces the number of RSS measure-
ments dramatically compared to RF fingerprinting schemes, albeit
at the cost of decreased localization accuracy. Since RF propaga-
tion characteristics vary widely, the model parameters would have
to be estimated specifically for each indoor space in question.

TIX [11] assumes that the transmit power and locations of all
WiFi APs is known. The APs are modified to measure the RSS of
the beacons from neighboring APs. Linear interpolation is then
used to estimate the RSS at every location in the indoor space,
which is then used for localization. To allow unmodified, off-the-
shelf APs to be used, Limet al.[17] employ WiFi sniffers at known
locations. These sniffers measure the RSS from the various APs
and use the LDPL model to construct an RSS map. ARIADNE [13]
also deploys sniffers at known locations but makes use of a more
sophisticated ray-tracing model based on detailed floor maps and
uses simulated annealing to estimate radio propagation parameters.
Finally, Madiganet al. [18] use a Bayesian hierarchical approach
for indoor localization, which avoids the need to know the locations
of the training points. However, they still depend on knowledge of
the AP locations, besides assuming that the path loss exponent in
the LDPL model is the same for all APs.While these methods cut
down the measurement effort, they still require effort in terms of
placing infrastructure such as sniffers, extending the capabilities
of off-the-shelf APs, and obtaining information on the floorplans,
or at least knowledge of AP placement and power settings.
Localization in Indoor Robotics : For a robot to navigate through
an indoor environment, it must have the ability to determineits cur-
rent location. Initial approaches provisioned the robot with a map
of the indoor environment, allowing it to determine its location by
comparing its observed environment (using ultra-sound, LADAR
sensors, etc.) to the map. A significant step in the area of robotics
was Simultaneous Localization and Mapping (SLAM) [16], which
allowed a robot to build a map of the indoor environment (in terms
of walls and other obstructions) while simultaneously determining
its location with respect to the constructed map. WiFi-SLAM[9]
extends this to building a WiFi RSS map using a mobile robot. The
robot uses its onboard odometer to determine the distance ithas
moved between measurement points. Knowing a few of these lo-
cations (using GPS or certain landmarks) allows estimatingthe pa-
rameters of the LDPL model.In contrast, EZ builds an RF model
without the benefit of sensors such as odometers and LADARs.

Ad-Hoc localization: Finally, there has been work on ad-hoc lo-
calization, wherein a set of nodes, some of which may know their
own locations (i.e., landmark or anchor nodes), collaborate to en-
able all nodes to locate themselves. The earliest notable examples
are DV-Hop and DV-Dist by Nicelescuet al. [20], SPA by Cap-
kun et al.[7] and N-Hop multilateration by Savvideset al. [23].
These scheme assume that the nodes can estimate the distancebe-
tween each other, while other schemes use angle of arrival informa-
tion [21]. There also exist more approximate methods such as[14],
which uses the connectivity graph among the nodes to performlo-
calization in outdoor environments. The target environment was
outdoors and it is unclear how well a simple connectivity based
approach would carry over to indoor environments. Likewise, Sex-
tant [10] uses a geometric approach that may not carry over toin-
door environments.All of these approaches assume node-to-node
communication, which requires the simultaneous presence of mul-
tiple nodes in the space of interest. This requirement makesboot-
strapping in such localization procedure difficult.While the pres-
ence of fixed nodes such as APs might alleviate this problem in
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Figure 1: Knowing enough distances between APs and mobile devices
allows unique determination of their relative locations

principle, the difficulty on practice is the need for the APs to be
modified to participate in the ad-hoc localization protocol.
EZ compared to prior work: EZ works with existing WiFi in-
frastructure, requiring neither modifications to the APs nor deploy-
ment of additional infrastructure. It does not require knowledge of
the floorplan, AP placement or power settings. Again, it doesnot
require explicit mapping of the indoor space, whether manually or
using a robot. Finally, EZ only relies on measurement of the APs’
signal at the mobile node(s), not on any mobile-to-mobile measure-
ment. Hence EZ could even work with measurements by a single
device which, over time, traverses the space of interest.

3. LOCALIZATION USING EZ
To provide a physical intuition to the working of EZ, we start

with the example depicted in Figure 1. In scenario I-A, two mobile
nodes (M1 and M2) have measured their distances (d11,d12,d21,d22)
from two APs (AP1 and AP2) with the hope of determining their lo-
cations relative to the two APs. This is however not possible, since
the same set of distances allows for several different possibilities
for relative locations (an alternative is depicted in Scenario I-B).
For a set of three APs and three mobile user locations (as depicted
in Scenario-II), it can be shown that knowing all nine pairs of dis-
tances between APs and mobile users allows for only one possible
realization for their relative positions. Such a structureis deemed
localizable, (or globally rigid) i.e., the entire set of locations can
be translated, rotated and reflected (flipped) but not distorted in
any manner if all distances are to be preserved. Localizability is
a well studied area and conditions for localizability have been well
studied [28]. In generalgiven “enough” distance constraints be-
tween APs and mobile devices, it is possible to establish alltheir
locations in a relative sense. Knowing the absolute locations of
any three non-collinear mobile devices then allows determination
of the absolute locations of the rest.

In practice, however, the distances between mobile devicesand
APs can only be inferred from RSS values.

pij = Pi − 10γi log dij +R (1)

dij =

√

(xj − ci)
T (xj − ci) (2)

In Eqn 1, thejth mobile user located at a distancedij (measured
in meters) from theith AP sees a signal strength ofpij (measured
in dBm). The location of theith AP and thejth mobile user mea-
surement are represented by 2D vectorsci andxj respectively in
Eqn 2. Pi is the RSS from theith AP at a distance of one meter
(referred to astransmit powerhenceforth). The path loss exponent
γi captures the rate of fall of RSS in the vicinity of theith AP. The
higher the value ofγi, the steeper is the fall of RSS with distance.
The need for having a differentγi for each AP arises from the fact
that rate at which RSS falls with distance depends on the local en-

vironment. RSS from an AP that is located in an area surrounded
by walls, people and other obstacles might decay at a much faster
rate compared to the same from other APs in the indoor environ-
ment that enjoy relatively freer signal propagation.R in Eqn 1 is
a random variable that hopes to capture the variations in theRSS
due to multi-path effects, asymmetries in the physical environment
(e.g.,obstructions) and other imperfections in the model itself.

Based on the LDPL modeldij can be computed as,

dij = 10

(

Pi−pij
10γi

)

. (3)

Eqn 3 assumes thea priori knowledge ofPi andγi. EZ, takes
a novel approach to estimating these. Given a set of RSS observa-
tions between APs and mobile users (pij), EZ treatsPi andγi as
unknowns in addition to the unknown locations of APs and mobile
users. It then solves the set of simultaneous equations formed by
the LDPL model for each RSS observation.

Assume that there arem APs andn unknown locations on a
floor. For simplicity assume that all them APs are visible from
each of then locations (this assumption will be relaxed later in this
section). The total number of RSS observations and hence thetotal
number of LDPL equations will bemn. Assuming 2D locations,
each of then locations has two unknowns namely thex andy co-
ordinates (inxj in Eqn 2). Each of them APs has four unknowns
namelyPi, γi and its 2D location. The total number of unknowns
is thus4m+ 2n.

While mn grows in a quadratic fashion,4m + 2n grows lin-
early. This suggests that given enough locations (such thatmn >
4m + 2n), there will be eventually enough constraints in the sys-
tem of equations to make the system uniquely solvable. Closer
examination however, reveals that the system of LDPL equations
is scale, translation, rotation and reflection invariant (we do not in-
clude the proof due to space constraints).In other words, a so-
lution to LDPL equations will yield locations that are a scaled,
translated, rotated and/or reflected version of the true locations.
Knowing three true, non-collinear locations (either AP or mobile
users) then, all the other true locations can be determined.In our
implementation, these true locations are obtained opportunistically,
when GPS enabled mobile devices gain access to GPS at the edges
of the indoor environment such as entrances and near windows.

The above description of relative localization followed byan-
choring in an absolute coordinate space, makes for a clean, con-
ceptual separation between the two steps. However, in our im-
plementation, we found it advantageous to combine the two steps,
by directly using the absolute locations (obtained opportunistically
through GPS) throughout the solution procedure, as we elaborate
in Section 4.2.

3.1 The Nature of LDPL Equations
LDPL equations (Eqn 1) are a system of simultaneous non-linear

equations. To the best of our knowledge there exists neitheran
analytical solution nor any prior work that analyzes them. In this
section we attempt to provide the reader with some crucial insights
into the nature of solutions to these equations.

3.1.1 Solving for the Parameters of a Solitary AP
It is well known that distances from at least three known non-

collinear locations are necessary to uniquely determine anunknown
location (using trilateration). A corresponding questionin EZ is,
what is the minimum number of known locations at which RSS mea-
surements must be taken in order to uniquely determine the four AP
parameters namelyP ,γ and the 2D location?

If Pi andγi are known, then an RSS measurementpij can be
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Figure 2: Illustrating non-localizability

converted into the distancedij between the unknown location (xj)
and theith AP using the equation Eqn 3. A minimum of three
such RSS measurements at known locations are then required to
uniquely establish the location of the AP. In the absence of the
knowledge ofP andγ, then, two additional measurements (con-
straints) will be required to uniquely determine their values. In
other wordsfive RSS measurements are required to uniquely deter-
mine an AP. It also follows thatgiven RSS measurements from only
four known locations, there will be two possible solutions for (P , γ
and location) that satisfy the set of four RSS measurements. Due to
the lack of space we do not present a formal proof.

3.1.2 The Notion of Co-Circular Dependency
It is well known that three or more collinear locations cannot be

used in trilateration to determine an unknown location. A simi-
lar yet slightly different situation arises in solving LDPLequations
when all the locations where RSS observations were taken areco-
circular with respect to the APi.e., lie on a circle centered around
the AP’s location. In this special case, while the location of the AP
can be ascertained as the center of the circle passing through these
locations, it is impossible to uniquely determine bothP andγ. In
EZ thus, one must avoid observations that have almost the same
RSS values from the same AP.

3.2 Localizability
While a necessary criterion for the existence of a unique solution

to the system of simultaneous equations is that the number ofequa-
tions should greater than or equal to the number of variables, this is
by no means a sufficient condition. In Figure 2, for example, there
are 6 APs (AP1 throughAP6) and 20 mobile user locations from
which RSS observations were made. An edge between an AP and
a mobile user location is drawn iff the AP can be seen from that
location. The number of LDPL equations in this system is 61, and
the number of variables is 58. However, from the very structure it
is clear that the system is not localizable since the group ofAPs,
AP1 throughAP3 is free to rotate aboutAP4 throughAP6.

The localizability question in EZ is as follows:given a set of RSS
measurements at some unknown and known locations, is it possible
to determine a unique set of coordinates for all the unknown loca-
tions by solving the corresponding EZ equations?The question is
extremely relevant because, in practice not all APs may be visible
from all locations in the indoor environment. Unfortunately, deter-
mining the necessary and sufficient conditions under which aset of
LDPL equations has a unique solution is still an open problemthat
we hope to tackle in the future.

However, for most practical scenarios, it is possible to determine
whether or not a system of LDPL equations can be uniquely solved
by making sure that following three conditions are satisfied.

C1 : Each unknown location must see at least 3 APs.
C2 : Each AP must be seen from at least 5 locations (known or
unknown).
C3 : The Jacobian of the system of LDPL equations must have a
full rank (equal to the number of variables) for a random choice of
the AP parameters and unknown locations.

Conditions C1 and C2 follow from the discussion in Section 3.1.
Condition C3 essentially linearizes the system of LDPL equations
into the formJy = k, whereJ is the Jacobian,y is a vector con-
taining all unknown parameters andk a constant vector. The lack
of full rank then exposes any insufficient coupling in the equations
i.e.,situations similar to that depicted in Figure 2.

4. COMPUTATIONAL CHALLENGES
While there are several different approaches to solving a set of

over-determined equations, in our implementation, we attempt to
find a solution that minimizes the least mean absolute error,

JEZ =
1

N

∑

ij

∣

∣Pij − P 0
i + 10 ∗ γi log dij

∣

∣ (4)

In Eqn 4 ,N is the total number of EZ equations.
JEZ is a non-linear objective function and to the best of our

knowledge, does not allow for an analytical closed form solution.
Optimization schemes such as the Newton Raphson Method [24]or
Gradient Descent [1] (GD) are iterative schemes that start from an
initial guess and find the closest local minimum. In our initial tri-
als we found that such schemes fail to find a solution toJEZ since
the number of local minima inJEZ is immense. The other alter-
natives are search techniques such as simulated annealing [15] or
genetic algorithms [6] (GAs). While genetic algorithms cansearch
the solution space efficiently, they can miss local minima that might
provide a reasonably good solution. Consequently, to obtain the
benefits of both these approaches, in our implementation, weused
a hybrid approach that used gradient descent to refine the solutions
generated by a GA.

Solving LDPL equations using the GA can take a few minutes
to several hours depending on the size of the problem. However,
these equations need only be solved once (or periodically once ev-
ery a few days to refresh the model) to determine the AP locations,
their transmit powers and the path loss exponents. Once having es-
timated the model, new location queries can be answered through
standard techniques such as trilateration (by converting RSS mea-
surements to distances Eqn 3) in real-time.

4.1 The Genetic Algorithm
The GA starts by picking an initial set of solutions (initial gener-

ation) randomly and refining them using gradient descent. A solu-
tion consists of a vector of values of all the unknowns to be solved
in the LDPL equations. The fitness of each solution is then eval-
uated by computing 1

JEZ
for the solution. Thereafter, consecutive

generations of solutions are generated in the following manner:
1. 10% of the solutions with the highest fitness are retained.
2. 10% of the solutions are randomly generated.
3. 60% of the solutions are generated by picking two solutions
Sold
1 ,Sold

2 from the previous generation (parent solutions) and mix-
ing them using a random convex linear combination. In other words

S
new = a • Sold

1 + (1− a) • Sold
2 (5)

Here,a is a random vector with each element independently ran-
domly drawn from(0, 1), 1 is vector with all its elements equal to
1 and• represents a vector dot product. The newly generated solu-
tion is then refined using GD.
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4. The remaining 20% solutions are generated by randomly picking
a solution from the previous generation and perturbing it (pertur-
bation based mutation) by adding (or subtracting) random values
(drawn from an exponential distribution to allow occasional large
perturbations) to all the locations,Pi andγi. The solutions is then
refined using the GD.
As generations evolve, solutions with higher fitness are discovered.
The GA terminates when solutions do not improve for ten consec-
utive generations.

4.2 Reducing the Search Space
When the solution space is extremely large, a randomly picked

solution is likely to be far from the optimal solution. Consequently
it may take a large amount of time before the GA stumbles upon it.
Narrowing the search space can dramatically reduce runningtimes.
The most obvious way to narrow search space is to limit the search
space of the variables. For example, knowing the dimensionsof
the floor one can limit the search of the locations to within the floor
perimeter. For AP transmission powers we chose a generous search
space namely(−50, 0)dBm. For γi we chose the search space
(1.5, 6.0). We believe that these ranges will be accommodating for
most practical indoor deployments.

Another way to narrow the search space is to leverage constraints
inherent to the problem. GivenmAPs andn locations, as discussed
in Section 3 there are a total of4m+2n variables to be picked ran-
domly. However, having picked all the4m AP parameters the2n
unknown locations can be determined through trilateration(using
Eqn 3 to convert RSS to distances). Thus, the GA needs to ran-
domly pick only4m unknowns rather than4m + 2n. The search
space reduces exponentially with each eliminated variable.

The search space can be further reduced by using the already
determined (or known) locations. For example, suppose thata par-
ticular AP can be seen from three known locations. Then afterran-
domly pickingP andγ, its location can be uniquely determined.
In general, the underlying constraints in the LDPL equations can
be listed as follows:
R1 : If an AP can be seen from five or more fixed (or determined)
locations, then all four of its parameters can be uniquely solved.
R2 : If an AP can be seen from four fixed locations, there exist only
two possible solutions for the four parameters of the AP.
R3 : If an AP (sayith AP) can be seen from three fixed locations.
Then after pickingγi randomly from (1.5,6.0) there exist only two
possible solutions that satisfy the observations for the APlocation
and its transmission power.
R4 : If an AP can be seen from two fixed locations, then, having
pickedPi andγi randomly, there will be only two possible solu-
tions for its location.
R5 : If an AP can be seen from one location only, then, after pick-
ing Pi andγi randomly, the AP can only lie on a circle of radius
given by Eqn 3 centered about the known location.
R6 : If the parameters for three (or more) APs have been fixed,
then all unknown locations that see all these APs can be exactly
determined using trilateration.
Constraints R1-R6 indicate that after selecting only a few of the
variables randomly, the rest can be deterministically computed.

Based on these underlying constraints in EPL equations, we de-
vised theEZ Random Solution Generation Algorithm(ERSGA).
ERSGA attempts to minimize the number of variables that needto
randomly picked among the entire set of variables in a given set
of EZ equations in a greedy fashion. The essential idea behind
ERSGA is to start by determining AP parameters with as many
known locations as possible. Upon determining AP parameters for
three or more APs, locations that can see these APs can be deter-

mined using trilateration. These determined locations in turn can
be used to determine the parameters of some other APs. The pro-
cedure continues until all APs and locations have been determined.
The pseudo code for ERSGA is provided below:

1: Function ERSGA(Ldone, Cdone, O, l, base)
2: repeat
3: change = false
4: for i = 1 tom do
5: if i /∈ C then
6: setO = pij |j ∈ Ldone

7: if |O| ≥ l then
8: {ci, Pi, γi} = APRandomInit(l,O,Ldone)
9: Cdone = Cdone ∪ {i}

10: change = true
11: if l < base then
12: return true
13: end if
14: end if
15: end if
16: end for
17: if change = falsethen
18: if l > 0 then
19: change = ERSGA(Ldone, Cdone, O, l − 1, base)
20: if l < base then
21: Return change
22: end if
23: else
24: Return change
25: end if
26: end if
27: for j = 1 to n do
28: if j /∈ L then
29: setO = pij |i ∈ Cdone

30: if |O| ≥ 3 then
31: xj = Trilaterate(O,C)
32: Ldone = Ldone ∪ {j}
33: change = true
34: end if
35: end if
36: end for
37: until change = true
38: Return change

ERSGA is a recursive algorithm that takes five inputs.Ldone the
set indices of all locations where RSS observations were taken that
have been determined so far.Cdone the set of indices of APs with
their AP parameters determined.O is the set of RSS observations
p1···n,1···m. l is the recursion level which searches for the constraint
Ri. base takes a value of 5 if there are 5 or more known locations,
otherwise it takes the value of the number of known locations. The
entire procedure begins by initializingLdone with indices of all the
known locations,Cdone as an empty set andl = base. The func-
tion APRandomInit(l,O,Ldone) (line 8) finds a set of random AP
parameters givenl determined (or known) locations based on con-
straint ruleRi. For each value ofl in APRandomInit(l,O,Ldone),
a different strategy is used to determine the random AP parame-
ters based on constraints R2-R6. For example, in case of R2 orR3
(l = 4, 5), the values of the AP parameters are determined through
an exhaustive search over several combinations ofP andγ in com-
bination with trilateration. In case of R4 (l = 3), γ is chosen ran-
domly andP is searched exhaustively to determine local minima in



Mobile Device RSS (in dBm)
Laptop Xenovo X61 -41

HP IPAQ #1 -43
HP IPAQ #2 -31

Samsung SGHi780 #1 -51
Samsung SGHi780 #2 -49

HTC ADV7510 -49
HTC ADV7501 -37

Table 1: Difference in RSS Readings across Mobile Devices

the mean absolute error. Atl = 0, all AP parameters are generated
randomly.

5. ACCOMMODATING RECEIVER GAIN
DIFFERENCES

While ideally all mobile devices should measure the same RSS
at the same location, they often do not. Table 1 shows the average
RSS measured by different mobile devices simultaneously and at
the same location, with line-of-sight to an AP. Such differences can
arise from differences in the receiver gains of these mobiledevices
and from calibration offsets. Since several different mobile devices
can participate in EZ, such differences can potentially increase lo-
calization errors unless these are compensated for. Haeberlen et
al. [12] have suggested maintaining a database of pre-measured
differences in receiver gains among various, widely-used mobile
devices. However, in our experiments we have found that there are
gain differences of 2-7dB even among devices of the same make
and model. To account for these gain differences we introduce an
additional unknown parameterG, the receiver gainfor each user.
In other words, the LDPL model becomes:

pkij = Pi −Gk + 10 ∗ γi log d
k
ij +R (6)

Here,k indicates data specific to thekth mobile device, soGk is
the receiver gain of thekth mobile device.Gk is then estimated
using the genetic algorithm along with all the other parameters.

As discussed in Section 4, narrowing the search space for thepa-
rameters of the LDPL model can provide significant gains in the ex-
ecution time and performance of the genetic algorithm basedsolver.
A span of(−20, 20) dB provides a generous range to search for
differences in receiver gains. However, searching for the gains of
several mobile devices even in this limited range is not easy. Hence,
in our implementation, we use a novel scheme — the Relative Gain
Estimation Algorithm (RGEA) — to provide a coarse-grained esti-
mate of the gain differences among various mobile devices. In other
words, RGEA estimates the difference in gain,∆Gij = Gi − Gj ,
between theith and thejth mobile devices. In addition to estimat-
ing ∆Gij , RGEA also estimates the uncertainty,σ(∆Gij), in the
estimate of∆Gij . This information helps the GA significantly nar-
row the search space for the receiver gains of the mobile devices.

5.1 Relative Gain Estimation Algorithm
The difference in RSS measurements obtained using two dif-

ferent devices at the same physical location (or locations that are
"close") will be equal to the difference in the devices’ receiver
gains. Most RSS measurements in EZ are collected at unknown lo-
cations. How then do we determine that RSS measurements from
two devices were taken at the same or proximate locations? To
overcome this challenge, EZ uses the implication from Equation 6
that the difference in RSS from two APs measured by a given de-
vice at a location, (pki1j − pki2j ), is independent of its receiver gain.

Suppose that two mobile devices,k1 and k2, took RSS mea-
surements fromm APs ofQk1

j1
=< pk1

1j1
, pk1

2j1
, · · · , pk1

mj1
> and

Qk2

j2
=< pk2

1j2
, pk2

2j2
, · · · pk2

mj2
> from two (unknown) locations,

j1 and j2. To factor out the (unknown) receiver gain, we sub-
tract the devices’ respective RSS measurements corresponding to
the first AP from the RSS of each of the remaining APs. This
yields the vectors,V k1

j1
=< 0, pk1

2j1
− pk1

1j1
, · · · , pk1

mj1
− pk1

1j1
>

andV k2

j2
=< 0, pk2

2j2
− pk2

1j2
, · · · , pk2

mj2
− pk2

1j2
>. If V k1

j1
andV k2

j2

are "close" to each other, it means that the RSS measurements, Qk1

j1

andQk2

j2
, are similar modulo an offset. Hence, it is very likely that

the locations,j1 andj2, where these measurements were made are
in proximity. In our implementation, if the average difference be-
tween the elements ofV k1

j1
andV k2

j2
is less than 3dB, then locations

j1 andj2 are deemed as being proximate. RGEA uses this criterion
to create a set,Mk1k2 , of pairs of measurements,(pk1

ij1
, pk2

ij2
) such

thatjth1 andjth2 locations are proximate. Then,

∆Gk1k2 =
1

|Mk1k2 |

∑

(p1,p2)∈Mk1k2

(p1 − p2) (7)

σ
(

∆Gij
)

=
1

|Mk1k2 |

√

∑

(p1,p2)∈Mk1k2

(p1 − p2 −∆Gk1k2)2

(8)
In this manner RGEA computes∆Gij andσ(∆Gij) for all pairs
of mobile devices whenever possible. Note that in many cases
two mobile devicesi andk might not have even a single pair of
measurements from proximate locations. Nevertheless, knowing
∆Gij and∆Gjk, ∆Gik can be estimated transitively as∆Gik =
∆Gij + ∆Gjk. Hence, we can determine∆Gij even for devices
that have no measurement locations in common (or in proximity)
using the additive property of the receiver gains.

To effect the transitive estimation noted above, RGEA constructs
a graph with a node assigned to each mobile device. An edge is
drawn between two nodes if and only if there was at least one pair
of measurements that came from proximate locations. Each con-
nected component in this graph, then, represents the set of devices
whose gain differences can be estimated relative to each other. For
each such component, RGEA picks a node (device) randomly as the
root node and assigns it a gain by sampling uniformly randomly in
the interval(−20, 20) dB. To estimate gains corresponding to the
other nodes (devices) in the connected component, RGEA starts
with equations of the form:

Gj −Gi = ∆Gij (9)

RGEA then estimates all the gains,Gk (relative to the gain that was
randomly assigned to the root node), by solving the simultaneous
system of equations 9 in a weighted least mean square sense. The
weight for each equation is set as the estimated standard deviation,
σ(∆Gij), of the gain difference. In our evaluation we found that
RGEA estimates receiver gain differences accurately within 1-3dB.

5.2 Localizing New Device with Unknown Gain
After the locations, transmit powers and path loss exponents for

the APs have been estimated, EZ uses these to localize new mobile
devices in real time. In the absence of receiver gain differences,
as discussed in Section 3, the measurement from each AP is con-
verted into an estimate of the distance from that AP using Equa-
tion 3. Knowing at least three such distances from APs, we canuse
standard trilateration to estimate the location of the mobile device.
However, this approach will fail when there are differencesin re-
ceiver gain. Hence, to localize a new mobile device, EZ treats its



gain also as an unknown. Then, EZ constructs the set of simultane-
ous, gain-independent equations as:

pki2j − pki1j = Pi2 − Pi1 + γi1 log (di1j)− γi2 log (di2j) (10)

In Equation 10,dij is the distance of theith AP from the unknown
location of the mobile device. The unknown location of the new
mobile device is then estimated by solving these set of equations in
a least mean squared sense. To the best of our knowledge, no ana-
lytical solution exists to solve the above set of simultaneous equa-
tions (since the distances noted in Equation 10 embed the unknown
coordinates of the mobile device in quadratic form). Hence,EZ
finds the solutions by searching in a bounding box around the APs.

6. IMPLEMENTATION OF EZ SYSTEM
The EZ system has been built based on a client-server architec-

ture. Mobile devices (laptops, cell phones, netbooksetc.) act asEZ
Clientsand connect to aEZ Server. The EZ server is responsible
for providing the location information to the EZ clients. The cur-
rent system can support multiple mobile devices to communicate
with the server and obtain location information. All communica-
tion between the client and the server has been implemented over
TCP sockets. While the current implementation uses WiFi forcom-
munication, extensions to use a cellular interfaces are possible.

6.1 EZ Clients
The EZ client is a piece of software that can be installed on a

variety of mobile devices. We have implemented the EZ clientfor
Windows Mobile 6 and tested it on a variety of smartphones such as
HTC Advantage, Samsung SGH i780 and HP iPAQ. The EZ client
has two important tasks. First, it provides location information to
mobile applications residing on the device and second it assists the
EZ server in constructing an RSS map of the indoor environment.

6.1.1 Location Queries
The client first checks to see it can obtain the location from GPS

on the device. If no GPS signal is available, it scans its environment
for WiFi APs in its view. The scanner scans for a few seconds (3
in our implementation) collecting beacons from each AP it sees. It
then transmits a list of the mean and standard deviation of the RSS
seen from various APs to the EZ server over the collected data.
Using the mean reduces errors due to multi-path.Scans that yield
RSS measurements with a standard deviation greater than 10 dB
are deemed unreliable and are discarded.

The EZ server then uses the computed model of the RSS envi-
ronment to determine the location of the mobile device in real time
and responds to the EZ client. The current implementation ofthe
EZ client comprises about 2000 lines of C# and C++ code.

6.1.2 Assisting the EZ Server in Model Creation
For new indoor spaces, an RSS model must be first generated be-

fore queries can be answered. For this, the EZ clients scan for WiFi
APs in their range and transmit the observed mean and standard
deviation of RSS to the EZ server exactly in the same manner asa
location query. While in our implementation devices periodically
perform a scan and push the information to the EZ server, thiscan
be easily implemented as a pull, where the EZ server requestsfor
a scan. Pull is desirable since mobile devices then need scanonly
when necessary and this can lead to significant energy savings.

6.2 The EZ Server
The EZ server has two important functions. First, it responds

to location queries from the EZ clients in real time and second it

uses the EZ algorithm to construct and maintain the model forthe
indoor environment in question.

Since the data from a large number of mobile users can be very
large and in many cases not useful for training. Thus, EZ performs
pre-filtering and selects only a useful subset of the available data
to learn the model (see Section 7). The EZ algorithm (described in
Section 4.1) then uses this data to generate the model. The EZalgo-
rithm is computationally intensive and may require severalminutes
to hours depending on the specifics of the indoor space an the na-
ture of data. The EZ server, may potentially reside in the cloud and
leverage its computing resource to construct the RF model.

The GA is inherently amenable to massively parallel computa-
tion, since each of the operations such as crossover and mutation
can be parallelized. To take advantage of the parallelism, in our
implementation, we implemented each such operation as a sepa-
rate thread. This allowed us to take advantage of multiple cores at
the EZ Server. The EZ GA was run on a HP PRoline 8-core server
class machine. Further parallelism can be exploited if the GA is
implemented using parallel programming paradigms such as using
an MPI interface. The current implementation of the EZ server
comprises about 7000 lines of C# and Python code.

7. CHALLENGES IN REAL ENVIRONMENTS
In this section we describe in detail the novel practical challenges

that we had to address on the path to making a EZ based localiza-
tion system work in real environments.

7.1 Selecting the Right Set of APs
The sheer number of WiFi APs that could be seen on a given

floor in our deployments came to us as a rather unexpected sur-
prise. For example, in one of our deployments we could see a total
of about 160 APs across a single office floor! A large fraction of
these actually belonged to neighboring office buildings. Another
interesting observation was that often each AP was configured with
multiple SSIDs and appears as different APs. Clearly, running EZ
on all observed APs would constitute an immense computational
hardship at the cost of incremental gains. Consequently, anauto-
mated AP filtering mechanism had to be designed that would select
the most suitable APs. Note that EZ has no information as to if
these APs belonged to the indoor environment of interest or not.

Several naïve approaches to AP selection can be designed based
on desirable properties such as coverage, low standard deviation in
RSS, and high average signal strength. For EZ however, our goal
was to minimize the number of selected APs while preserving its
performance. To this end, we developed theAPSelectalgorithm.
The essential idea behind APSelect is to select each AP to provide
information that other selected AP do not. Information theoreti-
cally speaking the mutual entropy between the data from any two
APs must be high.APSelecthowever, uses a more approximate
and simpler approach. It starts by computing a similarity metric for
each pair of APs based on observed RSS. APs with the most similar
data are then clustered together. A representative AP is then elected
from each cluster.

To compute the similarity metric, all the RSS observationspij
from theithAP at thejth location are first normalized to lie within
the range (0,1) by dividing them by 100 (since observed RSS typ-
ically lie in the range 0 to -100 dBm) and then their mean is sub-
tracted from each reading to give a normalized RSS observation
pnormalized
ij . When RSS readings are not available at certain loca-

tions, these gaps are filled with a reading of -100 dBm assuming
that the RSS is below the receive threshold of the receiver. The

James
高亮

James
高亮

James
高亮



similarity metric is then computed as,

λij = 1−
1

n

∑

k

|p̂ik − p̂jk| (11)

λij essentially measures how similar RSS readings were across all
locations (known and unknown) for the two APs.

For clustering similar APs, we used hierarchical clustering. Ini-
tially each AP represents a single cluster and at each following step
two of the most similar clusters are merged. The similarity be-
tween two AP clusters is computed as the average similarity be-
tween all inter-cluster pairs of APs. For selecting a representative
AP within a cluster all APs are first ranked in the order of the num-
ber of known locations that can be see the AP. An AP that can seea
larger number of known locations is given a higher priority.Among
APs with same priority, an AP which has the highest average simi-
larity to rest of the APs in its cluster is selected as the cluster head.
We select the minimum number clusters while ensuring that notwo
clusters have a similarity greater than 90%. We demonstratethe
efficacy ofAPSelectin Section 8.

7.2 Selecting a Subset of Locations
For training EZ, ideally RSS observations must come from sev-

eral different locations across the indoor environment. For exam-
ple, data from a single mobile user who actively ventures to differ-
ent places across the indoor space while his mobile device transmits
the RSS information to a EZ server. Alternatively, data froma large
number of mobile device users spread out across various locations
of the indoor space. Given the large amount of data, then, how
should we cull out the “useful" subset of data?

To tackle this problem we developed theLocSelectalgorithm. It
works exactly the same as APSelect, except that we flip the problem
by treating the selected APs as locations and vice-versa. Inother
words each new location is selected such that the RSS information
it provides has minimum overlap with other selected locations. We
demonstrate the efficacy ofLocSelectin Section 8.

8. DEPLOYMENT AND RESULTS
In this section, we present a comprehensive overview of our eval-

uation methodology and experimental results, which attempts to
answer the following questions:

• What is the cost in terms of localization error paid by EZ to
achieve the ease and freedom from pre-deployment effort com-
pared to fingerprinting based schemes?

• How does EZ compare with a model based scheme that has
access to AP and measurement locations?

• How does the performance of EZ improve as more and more
measurements become available?

• How does the system fare in localizing new devices which are
not used in the training process?

• How robust is performance to using multiple devices, with dif-
ferent receiver gains, to build the RF model?

• How effective are the APSelect and LocSelect algorithms?

• What is the computational cost of RF model estimation?

8.1 Deployment in Two Buildings
We have deployed EZ in two different office buildings. The first,

henceforth referred to asSMALL, is a typical office floor housing
around 30 people (Fig 3a). The floor comprises several obstructions
in the form of concrete walls, wooden partitions, and glass/metal
doors. The second, henceforth referred to asLARGE, is a very

large floor used as a call center (Fig 3b). This L-shaped floor also
contains several obstructions, including pillars, woodenpartitions
and concrete walls; and houses a few hundred people.

8.2 Comparisons
We compare the performance of EZ against three schemes:

• RADAR: RADAR is an RSS fingerprinting scheme, which in-
volves considerable pre-deployment effort in constructing a database
of RSS signatures collected from various known locations within
the floor. An incoming signature is then matched against this
database. The closest match (or the average of k-nearest matches)
is returned as the estimated location. We found that averaging
with k = 5 performs the best and used it in our evaluations.

• Horus: Horus improves on RADAR by maintaining a proba-
bility distribution of the observed RSS values at various loca-
tions instead of single values. Locations are then determined as
an average over a few most likely locations, weighed by their
likelihood. As in the original implementation [29], we return a
weighted average of the top 6 locations.

• EZ+Loc: To evaluate the performance of a model-based scheme
when given the benefit of knowing all measurement as well as
AP locations, we experimented with an EZ+Loc scheme, which
operated as follows. We fed in the locations of all APs and mea-
surement points to EZ, and then estimated the transmit power
(P ) and path loss exponent (γ) for the APs.

8.3 Experiment Methodology
For our experiments, we used two different kinds of mobile de-

vices: a Lenovo X61 laptop and an HP iPAQ hw6965 smartphone.
To build the databases for RADAR, Horus, and EZ+Loc, we col-
lected RSS signatures at grid locations throughout the floorat roughly
every 1.5m inSMALLand 3m inLARGE. At every location, we col-
lected a total of 10,000 beacons, an exercise which took us about
5 minutes per location. For EZ, a user held the mobile device and
simply walked across the floor briefly stopping for about 3 seconds
at each location to establish ground truth for evaluation. Note that
the ground truth information is used only for the evaluationof lo-
calization errors, and isnot supplied to EZ for training. Since our
laptop was not equipped with a GPS unit, we used a commercial
GPS equipped with a SiRF Star III chipset running Navigon soft-
ware for obtaining GPS locks. For evaluating the different schemes,
we gathered a test data set at a number of locations spread across
various sections of the floor. We chose the median and 80th per-
centile error on this test data set as our evaluation metrics.

8.4 Performance inSMALL

In the data collected for EZ, the Lenovo X61 laptop was used to
obtain RSS readings from 48 unknown locations (depicted as hol-
low triangles in Figure 3a), and also 3 known locations (depicted
as filled triangles in Figure 3a), where a GPS lock was obtained.
Our data showed that 48 different APs (MAC Addresses) were vis-
ible from this floor. Many of these APs did not belong toSMALL.
APSelect selected 4 APs from these 48, which coincidentallyall of
these belonged toSMALL.

For RADAR and Horus we used all the 48 visible APs since this
constituted the most information. Some studies [4] have reported
that having a larger number of APs sometimes degrades perfor-
mance. Consequently, we tested RADAR and Horus with smaller
subsets of APs obtained from APSelect and found that the best
performance (in terms of mean square error) was indeed obtained
when all 48 APs were selected. For EZ+Loc, we had location infor-
mation only for four APs, and we used these APs for localization.
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Figure 3: Floorplans for the buildings.
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Figure 4: CDF of localization errors in SMALL
using the Lenovo X61 Laptop.
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Figure 5: CDF of localization errors in LARGE
using the Lenovo X61 laptop.
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Figure 6: Dependence of EZ’s performance on
amount of training data

Figure 4 depicts the cumulative distribution of localization er-
rors obtained for all the four localization schemes. Horus performs
the best with 50th and 80th percentile error of 0.7m and 1.3m re-
spectively, followed by RADAR with values of 1.3m and 2.1m for
the same. EZ provides a 50th percentile error of 2m and an 80th

percentile error of 3.3m. An office cube in this floor is roughly
3m in size. Contrary to what we expected, EZ+Loc performed the
worst, with error values of 3.1m and 4.4m respectively. To under-
stand the reason for this, we analyzed the RSS map generated by
EZ and EZ+Loc and found that EZ’s map was closer to reality al-
though the locations and transmit powers of the APs it found did
not match exactly with the ground truth. While EZ had the flexi-
bility to compensate for estimation errors in the path loss exponent
(γ) by adjusting the estimated locations of the APs, EZ+Loc did
not have this luxury. Consequently, it could not compensatefor
the errors in the model. Thus, fixing the AP locations resulted in
degraded performance.

8.5 Performance inLARGE

In this experiment RSS data was collected for EZ at 101 different
locations within this floor, as depicted by the triangles in Figure 3b.
The entire floor is not well ventilated and has few very small win-
dows. As a result we could not obtain a GPS lock at any location
within this floor. However, this was an excellent opportunity to
test the performance of EZ on a large floor, so we selected points
that were closest to the boundaries of the floor and deemed these
as known locations. There were 15 such known locations in the
training data, depicted as filled triangles in Figure 3b.

We processed the collected data, and found 156 different AP
MAC addresses, only a few of which belonged to the office. For

EZ+Loc, we obtained locations for 12 of these APs. RADAR and
Horus database were created using all the 156 APs. EZ used APS-
elect algorithm, which picked 10 out of the 156 APs found.

For testing we collected RSS readings at a separate testing set
of 40 locations and evaluated all the four schemes over theselo-
cations. As in the case ofSMALL, Horus performed the best with
50 and 80 percentile errors of 4m and 7m, respectively. However,
RADAR performed significantly worse (median error of 7m and 80
percentile of 12m), indicating the need for careful selection of APs.
In the absence of any specified scheme for the selection of APsfor
RADAR [4], we used APSelect to pick out a smaller subset of APs.
The best performance of RADAR was found with 10 APs, with the
50 and 80 percentile errors being 5m and 7m, respectively. Wealso
ran Horus with different subsets of APs selected using APSelect,
but the best performance was achieved with all the 156 APs.

EZ yielded 50 and 80 percentile errors of 7m and 10m, respec-
tively. This implies that localization accuracy was within two to
three cubicles in the call center.The accuracy is still quite useful
since the office building is quite large and houses a few hundred
cubicles. As in case of the small building, EZ+Loc performedsig-
nificantly worse than EZ.

8.6 Dependence on Amount of Training Data
As users cover more ground within the indoor environment and

hence more RSS measurements become available for training,we
would expect EZ’s performance to improve. To evaluate this,we
started with measurement data from the full set of 50 locations in
SMALL. We then selected random subsets comprising 20%, 40%,
60%, 80%, and 100% of the full measurement data, such that each
successive subset included the previous subsets. We then trained
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Figure 7: Performance on a new mobile device
in SMALL

Figure 8: Locations of the two mobile devices
used in the EZ model construction
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Figure 9: Training with different mobile devices
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Figure 10: Dependence of EZ’s performance on
number of different devices
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Figure 11: APSelect versus Naive Schemes
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Figure 12: LocSelect versus Random 25%

EZ using these subsets and evaluated localization accuracyusing
a separate test data set gathered at 30 locations withinSMALL. We
repeated the above procedure of evaluating EZ with random subsets
10 times. Figure 6 depicts the median, mean, and 80th percentile of
the localization errors over the 10 runs. Even with only 20% of the
training data (i.e., 10 measurement points) being available, EZ is
able to achieve a median error of about 3m. As more training data is
made available, the median and 80th percentile errors progressively
decrease to under 2m and 4m, respectively.

8.7 Performance for a New Mobile Device
How well does EZ localize a new mobile device that has never

been used to generate the model? In particular, how does the re-
ceiver gain difference among receivers, as discussed in Section 7,
affect performance? To answer these questions, we collected RSS
signatures at 40 different locations inSMALLusing the iPAQ smart-
phone. We then localized these positions using the model generated
with measurements made using the laptop. In EZ, in addition to
the location of the mobile device, we also estimate its (unknown)
receiver gain,G, as discussed in Section 7. We experimentally
determined the gain difference to be roughly 11dB, althoughthis
information wasnotsupplied to EZ. Note that none of the schemes
other than EZ provide mechanisms to estimate or correct for errors
due to differences in receiver gain.

Figure 7 shows the CDF of errors over these 40 points. The first
key observation is that EZ outperforms all the other schemes(curve
“EZ Laptop-iPAQ” in the figure). This clearly demonstrates the
benefit of EZ’s estimation and compensation of receiver gainfor
the new device. EZ yields 50 and 80 percentile errors of 1.8m and
2.8m, respectively. To determine how the performance wouldhave
been if the model was built using the same device, we had a user
walk around the floor (with intermittent stops lasting a few seconds

to collect ground truth information) to train EZ using the iPAQ. The
curve labeled “EZ iPAQ-iPAQ” shows the result from this experi-
ment. Indeed it can be seen that the performance is almost similar
for the curves “EZ iPAQ-iPAQ” and “EZ Laptop-iPAQ”.

The relatively poor performance of (unmodified) RADAR and
Horus, as shown in Figure 7, highlights the importance of estimat-
ing and compensating for differences in receiver gain, evenwhen
multiple devices of the same type are used for measurement. It is
likely that Horus and RADAR would perform better if also given
the benefit of gain compensation. However, unlike EZ, it is unclear
how either Horus or RADAR could automatically estimate the gain
for a new device that has not been used to create the RSS map.

8.8 Training with Data from Multiple Devices
All our results with EZ so far have utilized data collected using

a single device for training. However, in practical scenarios, multi-
ple users would provide training data. How does EZ perform when
multiple devices are used for data collection? To analyze the be-
havior of EZ under such a setting, we used a mixture of data from
the laptop and iPAQ (iPAQ #1) for training. As shown in Figure8,
the laptop user limited themselves to the south side of the build-
ing while the iPAQ #1 user restricted themselves to the northside.
The two users had a common area of coverage (about 6 locations,
indicated by the dotted ellipse) in the region between the kitchen
and the entrance to the floor. EZ was able to used these locations
to compute the receiver gain offsets between the two devicesas
discussed in Section 7.

For testing purpose, we collected observations at approximately
30 different locations on three different mobile devices. Two of
these were the ones used for training, i.e., the laptop and iPAQ #1.
The third was another iPAQ, which we label as iPAQ #2. Experi-
mentally we determined that iPAQ #1 and iPAQ #2 had a receiver



(a) Locations selected by LocSelect (b) Locations selected randomly

Figure 13: Spatial distribution of errors at various locations from EZ.

m n Known Time in minutes
Lenovo T61 Server

5 50 3 65 53
5 25 3 38 22
5 12 3 16 12

Figure 14: EZ running times

gain difference of about 7dB while iPAQ-1 and the laptop had are-
ceiver gain difference of 11dB.Note that this information was not
supplied to EZ.As seen from Figure 9, the performance of all three
devices is almost the same, yielding median and 80th percentile
errors of about 2m and 4m, respectively.

How does EZ’s performance scale as the number and diversity of
the mobile devices grows? To answer this question, we built acus-
tom simulator. We assumed two floor sizes: 25m× 25m and 100m
× 100m. AP locations were generated randomly in the floor and
each AP was assigned random values ofP (in -20dBm to -50dBm)
andγ (in 2 to 5). 5 APs were used for the 25m× 25m floor and
9 for the 100m× 100m floor. These choices were based on our
experience from actual deployments. Ten batches each of training
and testing locations (100 points each) were generated randomly
for each floor. From each batch of training locations, five different
training data sets were derived, corresponding to there being 1, 5,
10, 15, or 20 devices. A training data set withk devices was de-
rived by creatingk partitions in the batch of training locations and
assigning each partition to a different mobile device. To generate
the “measured” RSS values, our simulator used the LDPL model,
with a randomly picked gain (G in Equation 6) in the range (0,20)
dB assigned to each device. Temporal variations in RSS were mod-
eled using a Gaussian random variable with a standard deviation of
3dB. Finally, all training locations within 3m from the boundary
were assumed to acquire GPS and hence deemed as known loca-
tions. Thus, the above procedure ensured that for each batchof
locations, we had runs of the experiment that only differed in the
number of mobile devices.

To evaluate localization accuracy for a new mobile device, we
generated RSS measurements at the locations in the testing set, us-
ing another random gain value drawn from (0,20)dB correspond-
ing to the new device. For each training data set, we used EZ to
estimate the AP parameters. We then used these to estimate the
locations of the new device in the test set and then compute the
localization error. Figure 10 depicts the median, mean and 80th

percentile errors across the 15 batches of training and testing loca-
tions for each of the two floors. We see that the accuracy of EZ
does not change significantly with an increasing number of mobile
devices. This indicates that the RGEA algorithm (Section 5)is able
to effectively estimate and compensate for gain differences across
mobile devices.

8.9 The Efficacy of APSelect
We showcase the efficacy of our APSelect algorithm by compar-

ing it with two (naïve) versions of AP selection schemes. Ourfirst
scheme,AvgRSSAPSelectcomputes the average RSS seen across

all the locations for each AP and selects the strongest APs. The
second scheme,MaxRSSAPSelectfinds the maximum RSS across
all locations for each AP and then selects the top APs. To be fair
and consistent with APSelect, we selected the same number ofAPs
using the two alternate schemes.

Figure 11 depicts the CDF obtained by training EZ on each of
selected set of APs on theSMALL data set. We see that the set
of APs selected by APSelect significantly outperforms thoseby the
other two schemes. Upon inspecting the distribution of RSS seen at
various locations for APs given by AvgRSSAPSelect and MaxRSS-
APSelect, we noticed a curious occurrence. Two different pairs of
APs selected in both schemes showed almost the same RSS values
at all locations. In other words they were co-located APs on differ-
ent channels. APSelect wisely avoided picking both of them since
they were providing the same information.

8.10 The Efficacy of LocSelect
LocSelect carefully picks a subset of the RSS data collected

across locations with the goal of reducing model training time while
incurring a minimum loss in localization performance. To evaluate
the efficacy of LocSelect, we selected 25% of the locations using
LocSelect and trained EZ. The estimated AP parameters were then
used to estimate error over a separate testing set of 30 locations.
To investigate how a randomly picked subset would perform, we
then picked 25% of the locations randomly and trained EZ on these
randomly picked locations. Localization error was then evaluated
over the testing set.

Figure 12 depicts the CDF of the errors obtained from the two
strategies. The CDF obtained by running EZ with all the locations
is provided as reference. As seen in Figure 12, both the 50 and80
percentile errors obtained by using just 25% of the unknown loca-
tions match those obtained by picking all the unknown locations!
Random selection, however, did not perform as well, with the80
percentile error being almost 7m. Figures 13a and 13b depictthe
spatial distribution of locations errors across the entirefloor. The
locations that were picked for training EZ are indicated by solid
circles. As seen from Figure 13a and 13b, the distribution ofthe
selected locations appears to be random. However, these locations
are, in fact, picked carefully using LocSelect and these help EZ
learn the RF model accurately.

8.11 Running Time of EZ
The time taken by EZ to estimate the RF model depends on

several factors including the number of unknowns (locations and
AP parameters), the nature of data (data that fits the model well
is solved faster), the number and placement of known locations,



the distribution of the unknown locations and finally the choice of
initial solutions that were randomly picked for the GA and their
number. In Table 14 we provide the typical running times thatwe
observed while training EZ. These measurements were conducted
by training EZ on two different machines. The first, a Lenovo T61p
laptop and the other HP PRoline which was a server class machine
with 8 cores. Note that model estimation is an offline task andone
that is likely to be repeated infrequently for a given indoorspace,
so a relatively long running time is not a hindrance.

9. DISCUSSION
There are several challenging extensions to the current state of

EZ. In this section we briefly describe a few of these. All of our
evaluation has been based on measurements made from within the
indoor space of interest. How would we ensure this in practice?
The EZ framework from Section 3 does not explicitly assume that
the measurements are made within the indoor space of interest.
However, measurements taken from outside the space could distort
the solution due to signal attenuation from significant obstructions
such as the exterior walls. Such RSS measurements would how-
ever stand out as outliers, due to their poor fit in Eqn 1, and could
be identified and discarded accordingly. We hope to address this in
our future work.

Energy is an important consideration for mobile devices. Scan-
ning for WiFi devices or obtaining a GPS lock, and transmitting this
information to the EZ server, could consume a significant amount
of energy. The energy cost could be reduced by having the EZ
server pull in RSS information from mobile devices only when
needed. Furthermore, such crowd-sourcing of information can be
effected in a manner that balances the burden across mobile devices
while also being cognizant of their battery levels. Thus, the energy
cost for any individual mobile device would be minimal.

Finally, the parameters of the RF model are likely to be subject
to diurnal variations. For instance, RF propagation might be more
severely attenuated when an airport or a mall is crowded thanwhen
it is sparsely populated. To address this issue, we could construct
separate models for different times of the day and borrow from
prior work on RF environment profiling [5].

10. CONCLUSION
EZ is a novel, configuration-free indoor localization scheme that

uses existing WiFi infrastructure to localize mobile devices. It does
not require any pre-deployment effort, infrastructure support, prior
knowledge about WiFi APs, or active user participation. EZ learns
by collecting data from mobile devices carried by users as they
traverse the indoor space of interest in normal course.

We have implemented EZ and compared it against RADAR and
Horus, localization schemes that use RF fingerprinting, andalso
a scheme that leverages knowledge of AP and measurement lo-
cations. Based on deployment in two different office buildings,
EZ’s performance is only somewhat worse than that of schemes
that depend on extensive mapping effort (median error of 2m with
EZ compared to 0.7m and 1.3m with Horus and RADAR, respec-
tively), while more being robust to device diversity. In future work,
we plan to extend EZ to 3 dimensions and, separately, investigate
energy efficiency issues.
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