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Chapter 7:  Synchronization 

Examples
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Chapter 7: Synchronization Examples

 Explain the bounded-buffer, readers-writers, and dining 
philosophers synchronization problems.

 Describe the tools used by Linux and Windows to solve 
synchronization problems.

 Illustrate how POSIX and Java can be used to solve 
process synchronization problems.
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Classical Problems of Synchronization

 Classical problems used to test newly-proposed 

synchronization schemes

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem
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Bounded-Buffer Problem

 n buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value n
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Bounded Buffer Problem (Cont.)

 The structure of the producer process

while (true) { 

...

/* produce an item in next_produced */ 

... 

wait(empty); 

wait(mutex); 

...

/* add next produced to the buffer */ 

... 

signal(mutex); 

signal(full); 

}
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Bounded Buffer Problem (Cont.)

 The structure of the consumer process

while (true) { 

wait(full); 

wait(mutex); 

...

/* remove an item from buffer to 

next_consumed */ 

... 

signal(mutex); 

signal(empty); 

...

/* consume the item in next consumed */ 

...

}
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Readers-Writers Problem

 A data set is shared among a number of concurrent processes

 Readers – only read the data set; they do not perform any 

updates

 Writers – can both read and write

 Problem – allow multiple readers to read at the same time

 Only one single writer can access the shared data at the 

same time

 Several variations of how readers and writers are considered  –

all involve some form of priorities

 Shared Data

 Data set

 Semaphore rw_mutex initialized to 1

 Semaphore mutex initialized to 1

 Integer read_count initialized to 0
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Readers-Writers Problem (Cont.)

 The structure of a writer process

while (true) {

wait(rw_mutex); 

...

/* writing is performed */ 

... 

signal(rw_mutex); 

}
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Readers-Writers Problem (Cont.)

 The structure of a reader process

while (true){

wait(mutex);

read_count++;

if (read_count == 1) 

wait(rw_mutex); 

signal(mutex); 

...

/* reading is performed */ 

... 

wait(mutex);

read count--;

if (read_count == 0) 

signal(rw_mutex); 

signal(mutex); 

}
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Readers-Writers Problem Variations

 First variation – no reader kept waiting unless writer has 

permission to use shared object

 Second variation – once writer is ready, it performs the 

write ASAP

 Both may have starvation leading to even more 

variations

 Problem is solved on some systems by kernel providing 

reader-writer locks
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Dining-Philosophers Problem

 Philosophers spend their lives alternating thinking and eating

 Don’t interact with their neighbors, occasionally try to pick up 2 

chopsticks (one at a time) to eat from bowl

 Need both to eat, then release both when done

 In the case of 5 philosophers

 Shared data 

Bowl of rice (data set)

Semaphore chopstick [5] initialized to 1
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Dining-Philosophers Problem Algorithm

 Semaphore Solution

 The structure of Philosopher i:

while (true){ 

wait (chopstick[i] );

wait (chopStick[ (i + 1) % 5] );

/* eat for awhile */

signal (chopstick[i] );

signal (chopstick[ (i + 1) % 5] );

/* think for awhile */

}

 What is the problem with this algorithm?
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Monitor Solution to Dining Philosophers

monitor DiningPhilosophers

{ 

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) { 

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self[i].wait;

}

void putdown (int i) { 

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}
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Solution to Dining Philosophers (Cont.)

void test (int i) { 

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING) ) { 

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() { 

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}
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 Each philosopher i invokes the operations pickup() and 
putdown() in the following sequence:

DiningPhilosophers.pickup(i);

/** EAT **/

DiningPhilosophers.putdown(i);

 No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)
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Kernel Synchronization - Windows

 Uses interrupt masks to protect access to global resources 

on uniprocessor systems

 Uses spinlocks on multiprocessor systems

 Spinlocking-thread will never be preempted

 Also provides dispatcher objects user-land which may act 

mutexes, semaphores, events, and timers

 Events

An event acts much like a condition variable

 Timers notify one or more thread when time expired

 Dispatcher objects either signaled-state (object available) 

or non-signaled state (thread will block)
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Kernel Synchronization - Windows

 Mutex dispatcher object
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Linux Synchronization

 Linux:

 Prior to kernel Version 2.6, disables interrupts to 

implement short critical sections

 Version 2.6 and later, fully preemptive

 Linux provides:

 Semaphores

 atomic integers

 spinlocks

 reader-writer versions of both

 On single-CPU system, spinlocks replaced by 

enabling and disabling kernel preemption
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Linux Synchronization

 Atomic variables

atomic_t is the type for atomic integer

 Consider the variables

atomic_t counter;

int value;
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POSIX Synchronization

 POSIX API provides

 mutex locks

 semaphores

 condition variable

 Widely used on UNIX, Linux, and macOS
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POSIX Mutex Locks

 Creating and initializing the lock

 Acquiring and releasing the lock
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POSIX Semaphores

 POSIX provides two versions – named and unnamed.

 Named semaphores can be used by unrelated 

processes, unnamed cannot.
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POSIX Named Semaphores

 Creating an initializing the semaphore:

 Another process can access the semaphore by referring to its name SEM.

 Acquiring and releasing the semaphore:
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POSIX Unnamed Semaphores

 Creating an initializing the semaphore:

 Acquiring and releasing the semaphore:
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POSIX Condition Variables

 Since POSIX is typically used in C/C++ and these 

languages do not provide a monitor, POSIX condition 

variables are associated with a POSIX mutex lock to 

provide mutual exclusion: Creating and initializing the 

condition variable:



7.28

POSIX Condition Variables

 Thread waiting for the condition a == b to become true:

 Thread signaling another thread waiting on the condition 

variable:
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Java Synchronization

 Java provides rich set of synchronization features:

 Java monitors

 Reentrant locks

 Semaphores

 Condition variables
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Java Monitors

 Every Java object has associated with it a single lock.

 If a method is declared as synchronized, a calling thread 

must own the lock for the object.

 If the lock is owned by another thread, the calling thread must 

wait for the lock until it is released.

 Locks are released when the owning thread exits the 
synchronized method.



7.31

Bounded Buffer – Java Synchronization
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Java Synchronization

 A thread that tries to acquire an unavailable lock is placed in 

the object’s entry set:
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Java Synchronization

 Similarly, each object also has a wait set.

 When a thread calls wait():

1. It releases the lock for the object

2. The state of the thread is set to blocked

3. The thread is placed in the wait set for the object
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Java Synchronization

 A thread typically calls wait() when it is waiting for a condition 

to  become true.

 How does a thread get notified?

 When a thread calls notify():

1. An arbitrary thread T is selected from the wait set

2. T is moved from the wait set to the entry set

3. Set the state of T from blocked to runnable.

 T can now compete for the lock to check if the condition it was 

waiting for is now true.
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Bounded Buffer – Java Synchronization
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Bounded Buffer – Java Synchronization
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Java Reentrant Locks

 Similar to mutex locks

 The finally clause ensures the lock will be released in 

case an exception occurs in the try block.
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Java Semaphores

 Constructor:

 Usage:
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Java Condition Variables

 Condition variables are associated with an ReentrantLock.

 Creating a condition variable using newCondition()

method of ReentrantLock:

 A thread waits by calling the await() method, and signals by 

calling the signal() method.



7.40

Java Condition Variables
 Example:

 Five threads numbered 0 .. 4

 Shared variable turn indicating which thread’s turn it is.

 Thread calls doWork() when it wishes to do some work. (But it may 

only do work if it is their turn.

 If not their turn, wait

 If their turn, do some work for awhile …...

 When completed, notify the thread whose turn is next.

 Necessary data structures:
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Java Condition Variables
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Alternative Approaches

 Transactional Memory

 OpenMP

 Functional Programming Languages
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 Consider a function update() that must be called atomically. 
One option is to use mutex locks:

 A memory transaction is a sequence of read-write operations 
to memory that are performed atomically. A transaction can be 
completed by adding atomic{S} which ensure statements in S
are executed atomically:

Transactional Memory
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 OpenMP is a set of compiler directives and API that support parallel 
progamming.

void update(int value)

{

#pragma omp critical

{

count += value

}

}

The code contained within the #pragma omp critical directive is 
treated as a critical section and performed atomically.

OpenMP
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 Functional programming languages offer a different paradigm 
than procedural languages in that they do not maintain state. 

 Variables are treated as immutable and cannot change state 
once they have been assigned a value.

 There is increasing interest in functional languages such as 
Erlang and Scala for their approach in handling data races.

Functional Programming Languages
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Homework

 Exercises at the end of Chapter 7 (OS book)

 7.8, 7.11, 7.16



End of Chapter 7


