
EI 338: Computer Systems Engineering
(Operating Systems & Computer Architecture)

Dept. of Computer Science & Engineering
Chentao Wu

wuct@cs.sjtu.edu.cn

Download lectures

• ftp://public.sjtu.edu.cn

•User: wuct

•Password: wuct123456

•http://www.cs.sjtu.edu.cn/~wuct/cse/

ftp://public.sjtu.edu.cn/

Chapter 7: Synchronization

Examples

7.4

Chapter 7: Synchronization Examples

 Explain the bounded-buffer, readers-writers, and dining
philosophers synchronization problems.

 Describe the tools used by Linux and Windows to solve
synchronization problems.

 Illustrate how POSIX and Java can be used to solve
process synchronization problems.

7.5

Classical Problems of Synchronization

 Classical problems used to test newly-proposed

synchronization schemes

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem

7.6

Bounded-Buffer Problem

 n buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value n

7.7

Bounded Buffer Problem (Cont.)

 The structure of the producer process

while (true) {

...

/* produce an item in next_produced */

...

wait(empty);

wait(mutex);

...

/* add next produced to the buffer */

...

signal(mutex);

signal(full);

}

7.8

Bounded Buffer Problem (Cont.)

 The structure of the consumer process

while (true) {

wait(full);

wait(mutex);

...

/* remove an item from buffer to

next_consumed */

...

signal(mutex);

signal(empty);

...

/* consume the item in next consumed */

...

}

7.9

Readers-Writers Problem

 A data set is shared among a number of concurrent processes

 Readers – only read the data set; they do not perform any

updates

 Writers – can both read and write

 Problem – allow multiple readers to read at the same time

 Only one single writer can access the shared data at the

same time

 Several variations of how readers and writers are considered –

all involve some form of priorities

 Shared Data

 Data set

 Semaphore rw_mutex initialized to 1

 Semaphore mutex initialized to 1

 Integer read_count initialized to 0

7.10

Readers-Writers Problem (Cont.)

 The structure of a writer process

while (true) {

wait(rw_mutex);

...

/* writing is performed */

...

signal(rw_mutex);

}

7.11

Readers-Writers Problem (Cont.)

 The structure of a reader process

while (true){

wait(mutex);

read_count++;

if (read_count == 1)

wait(rw_mutex);

signal(mutex);

...

/* reading is performed */

...

wait(mutex);

read count--;

if (read_count == 0)

signal(rw_mutex);

signal(mutex);

}

7.12

Readers-Writers Problem Variations

 First variation – no reader kept waiting unless writer has

permission to use shared object

 Second variation – once writer is ready, it performs the

write ASAP

 Both may have starvation leading to even more

variations

 Problem is solved on some systems by kernel providing

reader-writer locks

7.13

Dining-Philosophers Problem

 Philosophers spend their lives alternating thinking and eating

 Don’t interact with their neighbors, occasionally try to pick up 2

chopsticks (one at a time) to eat from bowl

 Need both to eat, then release both when done

 In the case of 5 philosophers

 Shared data

Bowl of rice (data set)

Semaphore chopstick [5] initialized to 1

7.14

Dining-Philosophers Problem Algorithm

 Semaphore Solution

 The structure of Philosopher i:

while (true){

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

/* eat for awhile */

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

/* think for awhile */

}

 What is the problem with this algorithm?

7.15

Monitor Solution to Dining Philosophers

monitor DiningPhilosophers

{

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) {

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self[i].wait;

}

void putdown (int i) {

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}

7.16

Solution to Dining Philosophers (Cont.)

void test (int i) {

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() {

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}

7.17

 Each philosopher i invokes the operations pickup() and
putdown() in the following sequence:

DiningPhilosophers.pickup(i);

/** EAT **/

DiningPhilosophers.putdown(i);

 No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)

7.18

Kernel Synchronization - Windows

 Uses interrupt masks to protect access to global resources

on uniprocessor systems

 Uses spinlocks on multiprocessor systems

 Spinlocking-thread will never be preempted

 Also provides dispatcher objects user-land which may act

mutexes, semaphores, events, and timers

 Events

An event acts much like a condition variable

 Timers notify one or more thread when time expired

 Dispatcher objects either signaled-state (object available)

or non-signaled state (thread will block)

7.19

Kernel Synchronization - Windows

 Mutex dispatcher object

7.20

Linux Synchronization

 Linux:

 Prior to kernel Version 2.6, disables interrupts to

implement short critical sections

 Version 2.6 and later, fully preemptive

 Linux provides:

 Semaphores

 atomic integers

 spinlocks

 reader-writer versions of both

 On single-CPU system, spinlocks replaced by

enabling and disabling kernel preemption

7.21

Linux Synchronization

 Atomic variables

atomic_t is the type for atomic integer

 Consider the variables

atomic_t counter;

int value;

7.22

POSIX Synchronization

 POSIX API provides

 mutex locks

 semaphores

 condition variable

 Widely used on UNIX, Linux, and macOS

7.23

POSIX Mutex Locks

 Creating and initializing the lock

 Acquiring and releasing the lock

7.24

POSIX Semaphores

 POSIX provides two versions – named and unnamed.

 Named semaphores can be used by unrelated

processes, unnamed cannot.

7.25

POSIX Named Semaphores

 Creating an initializing the semaphore:

 Another process can access the semaphore by referring to its name SEM.

 Acquiring and releasing the semaphore:

7.26

POSIX Unnamed Semaphores

 Creating an initializing the semaphore:

 Acquiring and releasing the semaphore:

7.27

POSIX Condition Variables

 Since POSIX is typically used in C/C++ and these

languages do not provide a monitor, POSIX condition

variables are associated with a POSIX mutex lock to

provide mutual exclusion: Creating and initializing the

condition variable:

7.28

POSIX Condition Variables

 Thread waiting for the condition a == b to become true:

 Thread signaling another thread waiting on the condition

variable:

7.29

Java Synchronization

 Java provides rich set of synchronization features:

 Java monitors

 Reentrant locks

 Semaphores

 Condition variables

7.30

Java Monitors

 Every Java object has associated with it a single lock.

 If a method is declared as synchronized, a calling thread

must own the lock for the object.

 If the lock is owned by another thread, the calling thread must

wait for the lock until it is released.

 Locks are released when the owning thread exits the
synchronized method.

7.31

Bounded Buffer – Java Synchronization

7.32

Java Synchronization

 A thread that tries to acquire an unavailable lock is placed in

the object’s entry set:

7.33

Java Synchronization

 Similarly, each object also has a wait set.

 When a thread calls wait():

1. It releases the lock for the object

2. The state of the thread is set to blocked

3. The thread is placed in the wait set for the object

7.34

Java Synchronization

 A thread typically calls wait() when it is waiting for a condition

to become true.

 How does a thread get notified?

 When a thread calls notify():

1. An arbitrary thread T is selected from the wait set

2. T is moved from the wait set to the entry set

3. Set the state of T from blocked to runnable.

 T can now compete for the lock to check if the condition it was

waiting for is now true.

7.35

Bounded Buffer – Java Synchronization

7.36

Bounded Buffer – Java Synchronization

7.37

Java Reentrant Locks

 Similar to mutex locks

 The finally clause ensures the lock will be released in

case an exception occurs in the try block.

7.38

Java Semaphores

 Constructor:

 Usage:

7.39

Java Condition Variables

 Condition variables are associated with an ReentrantLock.

 Creating a condition variable using newCondition()

method of ReentrantLock:

 A thread waits by calling the await() method, and signals by

calling the signal() method.

7.40

Java Condition Variables
 Example:

 Five threads numbered 0 .. 4

 Shared variable turn indicating which thread’s turn it is.

 Thread calls doWork() when it wishes to do some work. (But it may

only do work if it is their turn.

 If not their turn, wait

 If their turn, do some work for awhile …...

 When completed, notify the thread whose turn is next.

 Necessary data structures:

7.41

Java Condition Variables

7.42

Alternative Approaches

 Transactional Memory

 OpenMP

 Functional Programming Languages

7.43

 Consider a function update() that must be called atomically.
One option is to use mutex locks:

 A memory transaction is a sequence of read-write operations
to memory that are performed atomically. A transaction can be
completed by adding atomic{S} which ensure statements in S
are executed atomically:

Transactional Memory

7.44

 OpenMP is a set of compiler directives and API that support parallel
progamming.

void update(int value)

{

#pragma omp critical

{

count += value

}

}

The code contained within the #pragma omp critical directive is
treated as a critical section and performed atomically.

OpenMP

7.45

 Functional programming languages offer a different paradigm
than procedural languages in that they do not maintain state.

 Variables are treated as immutable and cannot change state
once they have been assigned a value.

 There is increasing interest in functional languages such as
Erlang and Scala for their approach in handling data races.

Functional Programming Languages

7.46

Homework

 Exercises at the end of Chapter 7 (OS book)

 7.8, 7.11, 7.16

End of Chapter 7

