
EI 338: Computer Systems Engineering
(Operating Systems & Computer Architecture)

Dept. of Computer Science & Engineering
Chentao Wu

wuct@cs.sjtu.edu.cn

Download lectures

• ftp://public.sjtu.edu.cn

•User: wuct

•Password: wuct123456

•http://www.cs.sjtu.edu.cn/~wuct/cse/

ftp://public.sjtu.edu.cn/

Chapter 6: Synchronization

Tools

6.4

Chapter 6: Synchronization Tools

 Background

 The Critical-Section Problem

 Peterson’s Solution

 Hardware Support for Synchronization

 Mutex Locks

 Semaphores

 Monitors

 Liveness

 Evaluation

6.5

Objectives

 Describe the critical-section problem and illustrate a race

condition

 Illustrate hardware solutions to the critical-section problem

using memory barriers, compare-and-swap operations, and

atomic variables

 Demonstrate how mutex locks, semaphores, monitors, and

condition variables can be used to solve the critical section

problem

 Evaluate tools that solve the critical-section problem in low-.

Moderate-, and high-contention scenarios

6.6

Background

 Processes can execute concurrently

 May be interrupted at any time, partially completing

execution

 Concurrent access to shared data may result in data

inconsistency

 Maintaining data consistency requires mechanisms to ensure

the orderly execution of cooperating processes

 Illustration of the problem:

Suppose that we wanted to provide a solution to the consumer-

producer problem that fills all the buffers. We can do so by
having an integer counter that keeps track of the number of

full buffers. Initially, counter is set to 0. It is incremented by

the producer after it produces a new buffer and is decremented

by the consumer after it consumes a buffer.

6.7

Producer

while (true) {

/* produce an item in next produced */

while (counter == BUFFER_SIZE)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

6.8

Consumer

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in next consumed */

}

6.9

Race Condition

 counter++ could be implemented as

register1 = counter

register1 = register1 + 1

counter = register1

 counter-- could be implemented as

register2 = counter

register2 = register2 - 1

counter = register2

 Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

6.10

Race Condition

 Processes P0 and P1 are creating child processs using the fork()

system call

 Race condition on kernel variable next_available_pid which

represents the next available process identifier (pid)

 Unless there is mutual exclusion, the same pid could be assigned to

two different processes!

6.11

Critical Section Problem

 Consider system of n processes {p0, p1, … pn-1}

 Each process has critical section segment of code

 Process may be changing common variables, updating

table, writing file, etc

 When one process in critical section, no other may be in its

critical section

 Critical section problem is to design protocol to solve this

 Each process must ask permission to enter critical section in

entry section, may follow critical section with exit section,

then remainder section

6.12

Critical Section

 General structure of process Pi

6.13

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical

section, then no other processes can be executing in their

critical sections

2. Progress - If no process is executing in its critical section

and there exist some processes that wish to enter their

critical section, then the selection of the processes that will

enter the critical section next cannot be postponed

indefinitely

3. Bounded Waiting - A bound must exist on the number of

times that other processes are allowed to enter their critical

sections after a process has made a request to enter its

critical section and before that request is granted

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the n

processes

6.14

Critical-Section Handling in OS

Two approaches depending on if kernel is preemptive

or non- preemptive

Preemptive – allows preemption of process when

running in kernel mode

Non-preemptive – runs until exits kernel mode,

blocks, or voluntarily yields CPU

Essentially free of race conditions in kernel

mode

6.15

Peterson’s Solution

 Not guaranteed to work on modern architectures! (But
good algorithmic description of solving the problem)

 Two process solution

 Assume that the load and store machine-language

instructions are atomic; that is, cannot be interrupted

 The two processes share two variables:

 int turn;

 boolean flag[2]

 The variable turn indicates whose turn it is to enter the
critical section

 The flag array is used to indicate if a process is ready to
enter the critical section. flag[i] = true implies that

process Pi is ready!

6.16

Algorithm for Process Pi

while (true){

flag[i] = true;

turn = j;

while (flag[j] && turn = = j);

/* critical section */

flag[i] = false;

/* remainder section */

}

6.17

Peterson’s Solution (Cont.)

 Provable that the three CS requirement are met:

1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

6.18

Peterson’s Solution

 Although useful for demonstrating an algorithm, Peterson’s

Solution is not guaranteed to work on modern architectures.

 Understanding why it will not work is also useful for better

understanding race conditions.

 To improve performance, processors and/or compilers may

reorder operations that have no dependencies.

 For single-threaded this is ok as the result will always be the

same.

 For multithreaded the reordering may produce inconsistent or

unexpected results!

6.19

Peterson’s Solution

 Two threads share the data:

boolean flag = false;

int x = 0;

 Thread 1 performs

while (!flag)

;

print x

 Thread 2 performs

x = 100;

flag = true

 What is the expected output?

6.20

Peterson’s Solution
 100 is the expected output.

 However, the operations for Thread 2 may be reordered:

flag = true;

x = 100;

 If this occurs, the output may be 0!

 The effects of instruction reordering in Peterson’s Solution

 This allows both processes to be in their critical section at the

same time!

6.21

Synchronization Hardware

 Many systems provide hardware support for implementing
the critical section code.

 Uniprocessors – could disable interrupts

 Currently running code would execute without
preemption

 Generally too inefficient on multiprocessor systems

Operating systems using this not broadly scalable

 We will look at three forms of hardware support:

1. Memory barriers

2. Hardware instructions

3. Atomic variables

6.22

Memory Barriers

 Memory model are the memory guarantees a computer

architecture makes to application programs.

 Memory models may be either:

 Strongly ordered – where a memory modification of one

processor is immediately visible to all other processors.

 Weakly ordered – where a memory modification of one

processor may not be immediately visible to all other

processors.

 A memory barrier is an instruction that forces any change in

memory to be propagated (made visible) to all other

processors.

6.23

Memory Barrier

 We could add a memory barrier to the following instructions to

ensure Thread 1 outputs 100:

 Thread 1 now performs

while (!flag)

memory_barrier();

print x

 Thread 2 now performs

x = 100;

memory_barrier();

flag = true

6.24

Hardware Instructions

 Special hardware instructions that allow us to either test-and-

modify the content of a word, or two swap the contents of two

words atomically (uninterruptibly.)

 Test-and-Set instruction

 Compare-and-Swap instruction

6.25

test_and_set Instruction

Definition:

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = true;

return rv:

}

1. Executed atomically

2. Returns the original value of passed parameter

3. Set the new value of passed parameter to true

6.26

Solution using test_and_set()

 Shared boolean variable lock, initialized to false

 Solution:

do {

while (test_and_set(&lock))

; /* do nothing */

/* critical section */

lock = false;

/* remainder section */

} while (true);

6.27

compare_and_swap Instruction

Definition:

int compare _and_swap(int *value, int expected, int

new_value) {

int temp = *value;

if (*value == expected)

*value = new_value;

return temp;

}

1. Executed atomically

2. Returns the original value of passed parameter value

3. Set the variable value the value of the passed parameter
new_value but only if *value == expected is true.
That is, the swap takes place only under this condition.

6.28

Solution using compare_and_swap

 Shared integer lock initialized to 0;

 Solution:

while (true){

while (compare_and_swap(&lock, 0, 1) != 0)

; /* do nothing */

/* critical section */

lock = 0;

/* remainder section */

}

6.29

Bounded-waiting Mutual Exclusion

with compare-and-swap

while (true) {

waiting[i] = true;

key = 1;

while (waiting[i] && key == 1)

key = compare_and_swap(&lock,0,1);

waiting[i] = false;

/* critical section */

j = (i + 1) % n;

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = 0;

else

waiting[j] = false;

/* remainder section */

}

6.30

Atomic Variables

 Typically, instructions such as compare-and-swap are used

as building blocks for other synchronization tools.

 One tool is an atomic variable that provides atomic

(uninterruptible) updates on basic data types such as integers

and booleans.

 For example, the increment() operation on the atomic

variable sequence ensures sequence is incremented

without interruption:

increment(&sequence);

6.31

Atomic Variables

 The increment() function can be implemented as follows:

void increment(atomic_int *v)

{

int temp;

do {

temp = *v;

}

while (temp !=

(compare_and_swap(v,temp,temp+1));

}

6.32

Mutex Locks

 Previous solutions are complicated and generally inaccessible to
application programmers

 OS designers build software tools to solve critical section problem

 Simplest is mutex lock

 Protect a critical section by first acquire() a lock then

release() the lock

 Boolean variable indicating if lock is available or not

 Calls to acquire() and release() must be atomic

 Usually implemented via hardware atomic instructions such as
compare-and-swap.

 But this solution requires busy waiting

 This lock therefore called a spinlock

6.33

Solution to Critical-section Problem Using Locks

while (true) {

acquire lock

critical section

release lock

remainder section

}

6.34

Mutex Lock Definitions

 acquire() {

while (!available)

; /* busy wait */

available = false;;

}

 release() {

available = true;

}

These two functions must be implemented atomically.
Both test-and-set and compare-and-swap can be
used to implement these functions.

6.35

Semaphore

 Synchronization tool that provides more sophisticated ways (than Mutex
locks) for process to synchronize their activities.

 Semaphore S – integer variable

 Can only be accessed via two indivisible (atomic) operations

 wait() and signal()

 (Originally called P() and V())

 Definition of the wait() operation

wait(S) {

while (S <= 0)

; // busy wait

S--;

}

 Definition of the signal() operation

signal(S) {

S++;

}

6.36

Semaphore Usage

 Counting semaphore – integer value can range over an

unrestricted domain

 Binary semaphore – integer value can range only between 0 and 1

 Same as a mutex lock

 Can solve various synchronization problems

 Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

 Can implement a counting semaphore S as a binary semaphore

6.37

Semaphore Implementation

 Must guarantee that no two processes can execute the wait()

and signal() on the same semaphore at the same time

 Thus, the implementation becomes the critical section problem

where the wait and signal code are placed in the critical

section

 Could now have busy waiting in critical section implementation

But implementation code is short

Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical sections and

therefore this is not a good solution

6.38

Semaphore Implementation with no Busy waiting

 With each semaphore there is an associated waiting queue

 Each entry in a waiting queue has two data items:

 value (of type integer)

 pointer to next record in the list

 Two operations:

 block – place the process invoking the operation on the

appropriate waiting queue

 wakeup – remove one of processes in the waiting queue and

place it in the ready queue

 typedef struct {

int value;

struct process *list;

} semaphore;

6.39

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process to S->list;

block();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from S->list;

wakeup(P);

}

}

6.40

Problems with Semaphores

 Incorrect use of semaphore operations:

 signal (mutex) …. wait (mutex)

 wait (mutex) … wait (mutex)

 Omitting of wait (mutex) and/or signal (mutex)

 These – and others – are examples of what can occur when

sempahores and other synchronization tools are used

incorrectly.

6.41

Monitors

 A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

 Abstract data type, internal variables only accessible by code
within the procedure

 Only one process may be active within the monitor at a time

 Pseudocode syntax of a monitor:

monitor monitor-name

{

// shared variable declarations

function P1 (…) { …. }

function P2 (…) { …. }

function Pn (…) {……}

initialization code (…) { … }

}

6.42

Schematic view of a Monitor

6.43

Condition Variables

 condition x, y;

 Two operations are allowed on a condition variable:

 x.wait() – a process that invokes the operation is

suspended until x.signal()

 x.signal() – resumes one of processes (if any) that

invoked x.wait()

 If no x.wait() on the variable, then it has no effect on

the variable

6.44

Monitor with Condition Variables

6.45

Condition Variables Choices

 If process P invokes x.signal(), and process Q is

suspended in x.wait(), what should happen next?

 Both Q and P cannot execute in paralel. If Q is resumed, then P

must wait

 Options include

 Signal and wait – P waits until Q either leaves the monitor or it

waits for another condition

 Signal and continue – Q waits until P either leaves the monitor

or it waits for another condition

 Both have pros and cons – language implementer can decide

 Monitors implemented in Concurrent Pascal compromise

P executing signal immediately leaves the monitor, Q is

resumed

 Implemented in other languages including Mesa, C#, Java

6.46

Monitor Implementation Using Semaphores

 Variables

semaphore mutex; // (initially = 1)

semaphore next; // (initially = 0)

int next_count = 0;

 Each function F will be replaced by

wait(mutex);

…

body of F;

…

if (next_count > 0)

signal(next)

else

signal(mutex);

 Mutual exclusion within a monitor is ensured

6.47

Monitor Implementation – Condition Variables

 For each condition variable x, we have:

semaphore x_sem; // (initially = 0)

int x_count = 0;

 The operation x.wait() can be implemented as:

x_count++;

if (next_count > 0)

signal(next);

else

signal(mutex);

wait(x_sem);

x_count--;

6.48

Monitor Implementation (Cont.)

 The operation x.signal() can be implemented as:

if (x_count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}

6.49

Resuming Processes within a Monitor

 If several processes queued on condition variable x,

and x.signal() is executed, which process should

be resumed?

 FCFS frequently not adequate

 conditional-wait construct of the form x.wait(c)

 Where c is priority number

 Process with lowest number (highest priority) is

scheduled next

6.50

 Allocate a single resource among competing processes using
priority numbers that specify the maximum time a process plans
to use the resource

R.acquire(t);

...

access the resurce;

...

R.release;

 Where R is an instance of type ResourceAllocator

Single Resource allocation

6.51

A Monitor to Allocate Single Resource

monitor ResourceAllocator

{

boolean busy;

condition x;

void acquire(int time) {

if (busy)

x.wait(time);

busy = true;

}

void release() {

busy = FALSE;

x.signal();

}

initialization code() {

busy = false;

}

}

6.52

Liveness

 Processes may have to wait indefinitely while trying to acquire

a synchronization tool such as a mutex lock or semaphore.

 Waiting indefinitely violates the progress and bounded-waiting

criteria discussed at the beginning of this chapter.

 Liveness refers to a set of properties that a system must

satisfy to ensure processes make progress.

 Indefinite waiting is an example of a liveness failure.

6.53

Liveness

 Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

 Consider if P0 executes wait(S) and P1 wait(Q). When P0 executes
wait(Q), it must wait until P1 executes signal(Q)

 However, P1 is waiting until P0 execute signal(S).

 Since these signal() operations will never be executed, P0 and P1

are deadlocked.

6.54

Liveness

 Other forms of deadlock:

 Starvation – indefinite blocking

 A process may never be removed from the semaphore queue in
which it is suspended

 Priority Inversion – Scheduling problem when lower-
priority process holds a lock needed by higher-priority
process

 Solved via priority-inheritance protocol

6.55

Priority Inheritance Protocol

 Consider the scenario with three processes P1, P2, and P3. P1
has the highest priority, P2 the next highest, and P3 the lowest.
Assume a resource P3 is assigned a resource R that P1 wants.
Thus, P1 must wait for P3 to finish using the resource. However,
P2 becomes runnable and preempts P3. What has happened is
that P2 - a process with a lower priority than P1 - has indirectly
prevented P3 from gaining access to the resource.

 To prevent this from occurring, a priority inheritance protocol is

used. This simply allows the priority of the highest thread waiting to

access a shared resource to be assigned to the thread currently

using the resource. Thus, the current owner of the resource is

assigned the priority of the highest priority thread wishing to

acquire the resource.

6.56

Homework

 Exercises at the end of Chapter 6 (OS book)

 6.8, 6.13, 6.21

End of Chapter 6

