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Objectives

 Describe the critical-section problem and illustrate a race 

condition

 Illustrate hardware solutions to the critical-section problem 

using memory barriers, compare-and-swap operations, and 

atomic variables

 Demonstrate how mutex locks, semaphores, monitors, and 

condition variables can be used to solve the critical section 

problem

 Evaluate tools that solve the critical-section problem in low-. 

Moderate-, and high-contention scenarios
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Background

 Processes can execute concurrently

 May be interrupted at any time, partially completing 

execution

 Concurrent access to shared data may result in data 

inconsistency

 Maintaining data consistency requires mechanisms to ensure 

the orderly execution of cooperating processes

 Illustration of the problem:

Suppose that we wanted to provide a solution to the consumer-

producer problem that fills all the buffers. We can do so by 
having an integer counter that keeps track of the number of 

full buffers.  Initially, counter is set to 0. It is incremented by 

the producer after it produces a new buffer and is decremented 

by the consumer after it consumes a buffer.
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Producer 

while (true) {

/* produce an item in next produced */ 

while (counter == BUFFER_SIZE)  

; /* do nothing */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 

counter++; 

} 
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Consumer

while (true) {

while (counter == 0) 

; /* do nothing */ 

next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE; 

counter--; 

/* consume the item in next consumed */ 

} 
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Race Condition

 counter++ could be implemented as

register1 = counter

register1 = register1 + 1

counter = register1

 counter-- could be implemented as

register2 = counter

register2 = register2 - 1

counter = register2

 Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6} 
S2: consumer execute register2 = counter {register2 = 5} 
S3: consumer execute register2 = register2 – 1  {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2        {counter = 4}
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Race Condition

 Processes P0 and P1 are creating child processs using the fork() 

system call

 Race condition on kernel variable next_available_pid which 

represents the next available process identifier (pid)

 Unless there is mutual exclusion, the same pid could be assigned to 

two different processes!
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Critical Section Problem

 Consider system of n processes {p0, p1, … pn-1}

 Each process has critical section segment of code

 Process may be changing common variables, updating 

table, writing file, etc

 When one process in critical section, no other may be in its 

critical section

 Critical section problem is to design protocol to solve this

 Each process must ask permission to enter critical section in 

entry section, may follow critical section with exit section, 

then remainder section
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Critical Section

 General structure of process Pi  
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Solution to Critical-Section Problem

1.   Mutual Exclusion - If process Pi is executing in its critical 

section, then no other processes can be executing in their 

critical sections

2.   Progress - If no process is executing in its critical section 

and there exist some processes that wish to enter their 

critical section, then the selection of the processes that will 

enter the critical section next cannot be postponed 

indefinitely

3.  Bounded Waiting - A bound must exist on the number of 

times that other processes are allowed to enter their critical 

sections after a process has made a request to enter its 

critical section and before that request is granted

 Assume that each process executes at a nonzero speed 

 No assumption concerning relative speed of the n

processes
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Critical-Section Handling in OS 

Two approaches depending on if kernel is preemptive 

or non- preemptive 

Preemptive – allows preemption of process when 

running in kernel mode

Non-preemptive – runs until exits kernel mode, 

blocks, or voluntarily yields CPU

Essentially free of race conditions in kernel 

mode
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Peterson’s Solution

 Not guaranteed to work on modern architectures! (But 
good algorithmic  description of solving the problem)

 Two process solution

 Assume that the load and store machine-language 

instructions are atomic; that is, cannot be interrupted

 The two processes share two variables:

 int turn; 

 boolean flag[2]

 The variable turn indicates whose turn it is to enter the 
critical section

 The flag array is used to indicate if a process is ready to 
enter the critical section. flag[i] = true implies that 

process Pi is ready!
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Algorithm for Process Pi

while (true){ 

flag[i] = true; 

turn = j; 

while (flag[j] && turn = = j);

/* critical section */

flag[i] = false;

/* remainder section */

}
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Peterson’s Solution (Cont.)

 Provable that the three  CS requirement are met:

1.   Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

2.   Progress requirement is satisfied

3.   Bounded-waiting requirement is met
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Peterson’s Solution

 Although useful for demonstrating an algorithm, Peterson’s 

Solution is not guaranteed to work on modern architectures.

 Understanding why it will not work is also useful for better 

understanding race conditions.

 To improve performance, processors and/or compilers may 

reorder operations that have no dependencies.

 For single-threaded this is ok as the result will always be the 

same.

 For multithreaded the reordering may produce inconsistent or 

unexpected results!
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Peterson’s Solution

 Two threads share the data:

boolean flag = false;

int x = 0;

 Thread 1 performs

while (!flag)

;

print x

 Thread 2 performs

x = 100;

flag = true

 What is the expected output?
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Peterson’s Solution
 100 is the expected output.

 However, the operations for Thread 2 may be reordered:

flag = true;

x = 100;

 If this occurs, the output may be 0!

 The effects of instruction reordering in Peterson’s Solution

 This allows both processes to be in their critical section at the 

same time!
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Synchronization Hardware

 Many systems provide hardware support for implementing 
the critical section code.

 Uniprocessors – could disable interrupts

 Currently running code would execute without 
preemption

 Generally too inefficient on multiprocessor systems

Operating systems using this not broadly scalable

 We will look at three forms of hardware support:

1. Memory barriers

2. Hardware instructions

3. Atomic variables
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Memory Barriers

 Memory model are the memory guarantees a computer 

architecture makes to application programs.

 Memory models may be either:

 Strongly ordered – where a memory modification of one 

processor is immediately visible to all other processors.

 Weakly ordered  – where a memory modification of one 

processor may not be immediately visible to all other 

processors.

 A memory barrier is an instruction that forces any change in 

memory to be propagated (made visible) to all other 

processors.
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Memory Barrier

 We could add a memory barrier to the following instructions to 

ensure Thread 1 outputs 100:

 Thread 1 now performs

while (!flag)

memory_barrier();

print x

 Thread 2 now performs

x = 100;

memory_barrier();

flag = true
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Hardware Instructions

 Special hardware instructions that allow us to either test-and-

modify the content of a word, or two swap the contents of two 

words atomically (uninterruptibly.)

 Test-and-Set instruction

 Compare-and-Swap instruction
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test_and_set  Instruction 

Definition:

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = true;

return rv:

}

1. Executed atomically

2. Returns the original value of passed parameter

3. Set the new value of passed parameter to true
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Solution using test_and_set()

 Shared boolean variable lock, initialized to false

 Solution:

do {

while (test_and_set(&lock)) 

; /* do nothing */ 

/* critical section */ 

lock = false; 

/* remainder section */ 

} while (true);
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compare_and_swap Instruction

Definition:

int compare _and_swap(int *value, int expected, int

new_value) { 

int temp = *value; 

if (*value == expected) 

*value = new_value; 

return temp; 

} 

1. Executed atomically

2. Returns the original value of passed parameter value

3. Set  the variable value the value of the passed parameter 
new_value but only if *value == expected is true. 
That is, the swap takes place only under this condition.
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Solution using compare_and_swap

 Shared integer  lock initialized to 0; 

 Solution:

while (true){

while (compare_and_swap(&lock, 0, 1) != 0) 

; /* do nothing */ 

/* critical section */ 

lock = 0; 

/* remainder section */ 

}  
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Bounded-waiting Mutual Exclusion  

with compare-and-swap

while (true) {

waiting[i] = true;

key = 1;

while (waiting[i] && key == 1) 

key = compare_and_swap(&lock,0,1); 

waiting[i] = false; 

/* critical section */ 

j = (i + 1) % n; 

while ((j != i) && !waiting[j]) 

j = (j + 1) % n; 

if (j == i) 

lock = 0; 

else 

waiting[j] = false; 

/* remainder section */ 

}
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Atomic Variables

 Typically, instructions such as compare-and-swap are used 

as building blocks for other synchronization tools.

 One tool is an atomic variable that provides atomic

(uninterruptible) updates on basic data types such as integers 

and booleans.

 For example, the increment() operation on the atomic 

variable sequence ensures sequence is incremented 

without interruption:

increment(&sequence);
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Atomic Variables

 The increment() function can be implemented as follows:

void increment(atomic_int *v)

{

int temp;

do {

temp = *v;

}

while (temp != 

(compare_and_swap(v,temp,temp+1));

} 
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Mutex Locks

 Previous solutions are complicated and generally inaccessible to 
application programmers

 OS designers build software tools to solve critical section problem

 Simplest is mutex lock

 Protect a critical section  by first acquire() a lock then 

release() the lock

 Boolean variable indicating if lock is available or not

 Calls to acquire() and release() must be atomic

 Usually implemented via hardware atomic instructions such as 
compare-and-swap.

 But this solution requires busy waiting

 This lock therefore called a spinlock
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Solution to Critical-section Problem Using Locks

while (true) { 

acquire lock 

critical section 

release lock 

remainder section 

} 
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Mutex Lock Definitions

 acquire() {

while (!available) 

; /* busy wait */ 

available = false;; 

} 

 release() { 

available = true; 

} 

These two functions must be implemented atomically.
Both test-and-set and compare-and-swap can be 
used to implement these functions.
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Semaphore

 Synchronization tool that provides more sophisticated ways (than Mutex 
locks)  for process to synchronize their activities.

 Semaphore S – integer variable

 Can only be accessed via two indivisible (atomic) operations

 wait() and signal()

 (Originally called P() and V())

 Definition of  the wait() operation

wait(S) { 

while (S <= 0)

; // busy wait

S--;

}

 Definition of  the signal() operation

signal(S) { 

S++;

}
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Semaphore Usage

 Counting semaphore – integer value can range over an 

unrestricted domain

 Binary semaphore – integer value can range only between 0 and 1

 Same as a mutex lock

 Can solve various synchronization problems

 Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0 

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

 Can implement a counting semaphore S as a binary semaphore
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Semaphore Implementation

 Must guarantee that no two processes can execute  the wait() 

and signal() on the same semaphore at the same time

 Thus, the implementation becomes the critical section problem 

where the wait and signal code are placed in the critical 

section

 Could now have busy waiting in critical section implementation

But implementation code is short

Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical sections and 

therefore this is not a good solution
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Semaphore Implementation with no Busy waiting 

 With each semaphore there is an associated waiting queue

 Each entry in a waiting queue has two data items:

 value (of type integer)

 pointer to next record in the list

 Two operations:

 block – place the process invoking the operation on the 

appropriate waiting queue

 wakeup – remove one of processes in the waiting queue and 

place it in the ready queue

 typedef struct { 

int value; 

struct process *list; 

} semaphore; 



6.39

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) { 

S->value--; 

if (S->value < 0) {

add this process to S->list; 

block(); 

} 

}

signal(semaphore *S) { 

S->value++; 

if (S->value <= 0) {

remove a process P from S->list; 

wakeup(P); 

} 

} 
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Problems with Semaphores

 Incorrect use of semaphore operations:

 signal (mutex)  ….  wait (mutex)

 wait (mutex)  …  wait (mutex)

 Omitting  of wait (mutex) and/or signal (mutex)

 These – and others – are examples of what can occur when 

sempahores and other synchronization tools are used 

incorrectly.
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Monitors

 A high-level abstraction that provides a convenient and effective 
mechanism for process synchronization

 Abstract data type, internal variables only accessible by code 
within the procedure

 Only one process may be active within the monitor at a time

 Pseudocode syntax of a monitor:

monitor monitor-name

{

// shared variable declarations

function P1 (…) { …. }

function P2 (…) { …. }

function Pn (…) {……}

initialization code (…) { … }

}



6.42

Schematic view of a Monitor
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Condition Variables

 condition x, y;

 Two operations are allowed on a condition variable:

 x.wait() – a process that invokes the operation is 

suspended until x.signal() 

 x.signal() – resumes one of processes (if any) that

invoked x.wait()

 If no x.wait() on the variable, then it has no effect on 

the variable
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Monitor with Condition Variables
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Condition Variables Choices

 If process P invokes x.signal(), and process Q is 

suspended in x.wait(), what should happen next?

 Both Q and P cannot execute in paralel. If Q is resumed, then P 

must wait

 Options include

 Signal and wait – P waits until Q either leaves the monitor or it 

waits for another condition

 Signal and continue – Q waits until P either leaves the monitor 

or it  waits for another condition

 Both have pros and cons – language implementer can decide

 Monitors implemented in Concurrent Pascal compromise

P executing signal immediately leaves the monitor, Q is 

resumed

 Implemented in other languages including Mesa, C#, Java
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Monitor Implementation Using Semaphores

 Variables 

semaphore mutex;  // (initially  = 1)

semaphore next;   // (initially  = 0)

int next_count = 0;

 Each function F will be replaced by

wait(mutex);

…

body of F;

…

if (next_count > 0)

signal(next)

else 

signal(mutex);

 Mutual exclusion within a monitor is ensured
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Monitor Implementation – Condition Variables

 For each condition variable x, we  have:

semaphore x_sem; // (initially  = 0)

int x_count = 0;

 The operation x.wait() can be implemented as:

x_count++;

if (next_count > 0)

signal(next);

else

signal(mutex);

wait(x_sem);

x_count--;
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Monitor Implementation (Cont.)

 The operation x.signal() can be implemented as:

if (x_count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}
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Resuming Processes within a Monitor

 If several processes queued on condition variable x, 

and x.signal() is executed, which process should 

be resumed?

 FCFS frequently not adequate 

 conditional-wait construct of the form x.wait(c)

 Where c is priority number

 Process with lowest number (highest priority) is 

scheduled next
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 Allocate a single resource among competing processes using 
priority numbers that specify the maximum time a process  plans 
to use the resource

R.acquire(t);

...

access the resurce;

...

R.release;

 Where R is an instance of  type ResourceAllocator

Single Resource allocation 
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A Monitor to Allocate Single Resource

monitor ResourceAllocator

{ 

boolean busy; 

condition x; 

void acquire(int time) { 

if (busy) 

x.wait(time); 

busy = true; 

} 

void release() { 

busy = FALSE; 

x.signal(); 

} 

initialization code() {

busy = false; 

}

}
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Liveness

 Processes may have to wait indefinitely while trying to acquire 

a synchronization tool such as a mutex lock or semaphore.

 Waiting indefinitely violates the progress and bounded-waiting 

criteria discussed at the beginning of this chapter.

 Liveness refers to a set of properties that a system must 

satisfy to ensure processes make progress.

 Indefinite waiting is an example of a liveness failure.
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Liveness

 Deadlock – two or more processes are waiting indefinitely for an 
event that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S);              signal(Q);

signal(Q);              signal(S);

 Consider if P0 executes wait(S) and P1 wait(Q). When P0 executes 
wait(Q), it must wait until P1 executes signal(Q)

 However, P1 is waiting until P0 execute signal(S).

 Since these signal() operations will never be executed, P0 and P1 

are deadlocked.
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Liveness

 Other forms of deadlock:

 Starvation – indefinite blocking  

 A process may never be removed from the semaphore queue in 
which it is suspended

 Priority Inversion – Scheduling problem when lower-
priority process holds a lock needed by higher-priority 
process

 Solved via priority-inheritance protocol
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Priority Inheritance Protocol

 Consider the scenario with three processes P1, P2, and P3. P1
has the highest priority, P2 the next highest, and P3 the lowest. 
Assume a resource P3 is assigned a resource R that P1 wants. 
Thus, P1 must wait for P3 to finish using the resource. However, 
P2 becomes runnable and preempts P3. What has happened is 
that P2 - a process with a lower priority than P1 - has indirectly 
prevented P3 from gaining access to the resource.

 To prevent this from occurring, a priority inheritance protocol is 

used. This simply allows the priority of the highest thread waiting to 

access a shared resource to be assigned to the thread currently 

using the resource. Thus, the current owner of the resource is 

assigned the priority of the highest priority thread wishing to 

acquire the resource.
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Homework

 Exercises at the end of Chapter 6 (OS book)

 6.8, 6.13, 6.21



End of Chapter 6


