
EI 338: Computer Systems Engineering
(Operating Systems & Computer Architecture)

Dept. of Computer Science & Engineering
Chentao Wu

wuct@cs.sjtu.edu.cn

Download lectures

• ftp://public.sjtu.edu.cn

•User: wuct

•Password: wuct123456

•http://www.cs.sjtu.edu.cn/~wuct/cse/

ftp://public.sjtu.edu.cn/

Chapter 4: Threads &

Concurrency

4.4

Chapter 4: Threads

 Overview

 Multicore Programming

 Multithreading Models

 Thread Libraries

 Implicit Threading

 Threading Issues

 Operating System Examples

4.5

Objectives

 Identify the basic components of a thread, and contrast

threads and processes

 Describe the benefits and challenges of designng

multithreaded applications

 Illustrate different approaches to implicit threading including

thread pools, fork-join, and Grand Central Dispatch

 Describe how the Windows and Linux operating systems

represent threads

 Design multithreaded applications using the Pthreads,

Java, and Windows threading APIs

4.6

Motivation

 Most modern applications are multithreaded

 Threads run within application

 Multiple tasks with the application can be implemented by

separate threads

 Update display

 Fetch data

 Spell checking

 Answer a network request

 Process creation is heavy-weight while thread creation is

light-weight

 Can simplify code, increase efficiency

 Kernels are generally multithreaded

4.7

Single and Multithreaded Processes

4.8

Multithreaded Server Architecture

4.9

Benefits

 Responsiveness – may allow continued execution if part

of process is blocked, especially important for user

interfaces

 Resource Sharing – threads share resources of

process, easier than shared memory or message passing

 Economy – cheaper than process creation, thread

switching lower overhead than context switching

 Scalability – process can take advantage of multicore

architectures

4.10

Multicore Programming

 Multicore or multiprocessor systems putting pressure on

programmers, challenges include:

 Dividing activities

 Balance

 Data splitting

 Data dependency

 Testing and debugging

 Parallelism implies a system can perform more than one

task simultaneously

 Concurrency supports more than one task making progress

 Single processor / core, scheduler providing concurrency

4.11

Concurrency vs. Parallelism

 Concurrent execution on single-core system:

 Parallelism on a multi-core system:

4.12

Multicore Programming

 Types of parallelism

 Data parallelism – distributes subsets of the same

data across multiple cores, same operation on each

 Task parallelism – distributing threads across

cores, each thread performing unique operation

4.13

Data and Task Parallelism

4.14

Amdahl’s Law

 Identifies performance gains from adding additional cores to an

application that has both serial and parallel components

 S is serial portion

 N processing cores

 That is, if application is 75% parallel / 25% serial, moving from 1 to 2

cores results in speedup of 1.6 times

 As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect on

performance gained by adding additional cores

 But does the law take into account contemporary multicore systems?

4.15

Amdahl’s Law

4.16

User Threads and Kernel Threads

 User threads - management done by user-level threads library

 Three primary thread libraries:

 POSIX Pthreads

 Windows threads

 Java threads

 Kernel threads - Supported by the Kernel

 Examples – virtually all general purpose operating systems,

including:

 Windows

 Linux

 Mac OS X

 iOS

 Android

4.17

User and Kernel Threads

4.18

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

4.19

Many-to-One

 Many user-level threads mapped to

single kernel thread

 One thread blocking causes all to

block

 Multiple threads may not run in

parallel on muticore system because

only one may be in kernel at a time

 Few systems currently use this

model

 Examples:

 Solaris Green Threads

 GNU Portable Threads

4.20

One-to-One

 Each user-level thread maps to kernel

thread

 Creating a user-level thread creates a

kernel thread

 More concurrency than many-to-one

 Number of threads per process

sometimes restricted due to overhead

 Examples

 Windows

 Linux

4.21

Many-to-Many Model

 Allows many user level

threads to be mapped to

many kernel threads

 Allows the operating system

to create a sufficient number

of kernel threads

 Windows with the

ThreadFiber package

 Otherwise not very common

4.22

Two-level Model

 Similar to M:M, except that it allows a user thread to be

bound to kernel thread

4.23

Thread Libraries

 Thread library provides programmer with API for creating

and managing threads

 Two primary ways of implementing

 Library entirely in user space

 Kernel-level library supported by the OS

4.24

Pthreads

 May be provided either as user-level or kernel-level

 A POSIX standard (IEEE 1003.1c) API for thread creation

and synchronization

 Specification, not implementation

 API specifies behavior of the thread library,

implementation is up to development of the library

 Common in UNIX operating systems (Linux & Mac OS X)

4.25

Pthreads Example

4.26

Pthreads Example (cont)

4.27

Pthreads Code for Joining 10 Threads

4.28

Windows Multithreaded C Program

4.29

Windows Multithreaded C Program (Cont.)

4.30

Java Threads

 Java threads are managed by the JVM

 Typically implemented using the threads model

provided by underlying OS

 Java threads may be created by:

 Extending Thread class

 Implementing the Runnable interface

 Standard practice is to implement Runnable

interface

4.31

Java Threads

Implementing Runnable interface:

Creating a thread:

Waiting on a thread:

4.32

Java Executor Framework

 Rather than explicitly creating threads, Java also allows

thread creation around the Executor interface:

 The Executor is used as follows:

4.33

Java Executor Framework

4.34

Java Executor Framework (cont)

4.35

Implicit Threading

 Growing in popularity as numbers of threads increase,

program correctness more difficult with explicit threads

 Creation and management of threads done by compilers and

run-time libraries rather than programmers

 Five methods explored

 Thread Pools

 Fork-Join

 OpenMP

 Grand Central Dispatch

 Intel Threading Building Blocks

4.36

Thread Pools

 Create a number of threads in a pool where they await work

 Advantages:

 Usually slightly faster to service a request with an existing

thread than create a new thread

 Allows the number of threads in the application(s) to be

bound to the size of the pool

 Separating task to be performed from mechanics of creating

task allows different strategies for running task

 i.e.Tasks could be scheduled to run periodically

 Windows API supports thread pools:

4.37

Java Thread Pools

 Three factory methods for creating thread pools in

Executors class:

4.38

Java Thread Pools (cont)

4.39

Fork-Join Parallelism

 Multiple threads (tasks) are forked, and then joined.

4.40

Fork-Join Parallelism

 General algorithm for fork-join strategy:

4.41

Fork-Join Parallelism

4.42

Fork-Join Parallelism in Java

4.43

Fork-Join Parallelism in Java

4.44

Fork-Join Parallelism in Java

 The ForkJoinTask is an abstract base class

 RecursiveTask and RecursiveAction classes extend

ForkJoinTask

 RecursiveTask returns a result (via the return value from

the compute() method)

 RecursiveAction does not return a result

4.45

OpenMP

 Set of compiler directives

and an API for C, C++,

FORTRAN

 Provides support for parallel

programming in shared-

memory environments

 Identifies parallel regions –

blocks of code that can run

in parallel

#pragma omp parallel

Create as many threads as

there are cores

4.46

OpenMP

 Run the for loop in parallel

4.47

Grand Central Dispatch

 Apple technology for macOS and iOS operating systems

 Extensions to C, C++ and Objective-C languages, API, and

run-time library

 Allows identification of parallel sections

 Manages most of the details of threading

 Block is in “^{ }” :

ˆ{ printf("I am a block"); }

 Blocks placed in dispatch queue

 Assigned to available thread in thread pool when removed

from queue

4.48

Grand Central Dispatch

 Two types of dispatch queues:

 serial – blocks removed in FIFO order, queue is per

process, called main queue

Programmers can create additional serial queues

within program

 concurrent – removed in FIFO order but several may be

removed at a time

Four system wide queues divided by quality of service:

o QOS_CLASS_USER_INTERACTIVE

o QOS_CLASS_USER_INITIATED

o QOS_CLASS_USER_UTILITY

o QOS_CLASS_USER_BACKGROUND

4.49

Grand Central Dispatch

 For the Swift language a task is defined as a closure – similar

to a block, minus the caret

 Closures are submitted to the queue using the
dispatch_async() function:

4.50

Intel Threading Building Blocks (TBB)

 Template library for designing parallel C++ programs

 A serial version of a simple for loop

 The same for loop written using TBB with parallel_for

statement:

4.51

Threading Issues

 Semantics of fork() and exec() system calls

 Signal handling

 Synchronous and asynchronous

 Thread cancellation of target thread

 Asynchronous or deferred

 Thread-local storage

 Scheduler Activations

4.52

Semantics of fork() and exec()

 Does fork()duplicate only the calling thread or all threads?

 Some UNIXes have two versions of fork

 exec() usually works as normal – replace the running

process including all threads

4.53

Signal Handling

n Signals are used in UNIX systems to notify a process that a

particular event has occurred.

n A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled by one of two signal handlers:

1. default

2. user-defined

n Every signal has default handler that kernel runs when

handling signal

l User-defined signal handler can override default

l For single-threaded, signal delivered to process

4.54

Signal Handling (Cont.)

n Where should a signal be delivered for multi-threaded?

l Deliver the signal to the thread to which the signal applies

l Deliver the signal to every thread in the process

l Deliver the signal to certain threads in the process

l Assign a specific thread to receive all signals for the

process

4.55

Thread Cancellation

 Terminating a thread before it has finished

 Thread to be canceled is target thread

 Two general approaches:

 Asynchronous cancellation terminates the target

thread immediately

 Deferred cancellation allows the target thread to

periodically check if it should be cancelled

 Pthread code to create and cancel a thread:

4.56

Thread Cancellation (Cont.)

 Invoking thread cancellation requests cancellation, but actual

cancellation depends on thread state

 If thread has cancellation disabled, cancellation remains pending

until thread enables it

 Default type is deferred

 Cancellation only occurs when thread reaches cancellation

point

 I.e. pthread_testcancel()

Then cleanup handler is invoked

 On Linux systems, thread cancellation is handled through signals

4.57

Thread Cancellation in Java

 Deferred cancellation uses the interrupt() method, which

sets the interrupted status of a thread.

 A thread can then check to see if it has been interrupted:

4.58

Thread-Local Storage

 Thread-local storage (TLS) allows each thread to have its

own copy of data

 Useful when you do not have control over the thread creation

process (i.e., when using a thread pool)

 Different from local variables

 Local variables visible only during single function

invocation

 TLS visible across function invocations

 Similar to static data

 TLS is unique to each thread

4.59

Scheduler Activations

 Both M:M and Two-level models require

communication to maintain the appropriate

number of kernel threads allocated to the

application

 Typically use an intermediate data structure

between user and kernel threads – lightweight

process (LWP)

 Appears to be a virtual processor on which

process can schedule user thread to run

 Each LWP attached to kernel thread

 How many LWPs to create?

 Scheduler activations provide upcalls - a

communication mechanism from the kernel to

the upcall handler in the thread library

 This communication allows an application to

maintain the correct number kernel threads

4.60

Operating System Examples

 Windows Threads

 Linux Threads

4.61

Windows Threads

 Windows API – primary API for Windows applications

 Implements the one-to-one mapping, kernel-level

 Each thread contains

 A thread id

 Register set representing state of processor

 Separate user and kernel stacks for when thread runs in

user mode or kernel mode

 Private data storage area used by run-time libraries and

dynamic link libraries (DLLs)

 The register set, stacks, and private storage area are known

as the context of the thread

4.62

Windows Threads (Cont.)

 The primary data structures of a thread include:

 ETHREAD (executive thread block) – includes pointer to

process to which thread belongs and to KTHREAD, in

kernel space

 KTHREAD (kernel thread block) – scheduling and

synchronization info, kernel-mode stack, pointer to TEB, in

kernel space

 TEB (thread environment block) – thread id, user-mode

stack, thread-local storage, in user space

4.63

Windows Threads Data Structures

4.64

Linux Threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call

 clone() allows a child task to share the address space of the

parent task (process)

 Flags control behavior

 struct task_struct points to process data structures (shared

or unique)

4.65

Homework

 Exercises at the end of Chapter 4 (OS book)

 4.1, 4.4, 4.10, 4.17, 4.19

End of Chapter 4

