
EI 338: Computer Systems Engineering
(Operating Systems & Computer Architecture)

Dept. of Computer Science & Engineering
Chentao Wu

wuct@cs.sjtu.edu.cn

Download lectures

• ftp://public.sjtu.edu.cn

•User: wuct

•Password: wuct123456

•http://www.cs.sjtu.edu.cn/~wuct/cse/

ftp://public.sjtu.edu.cn/

Chapter 4: Threads &

Concurrency

4.4

Chapter 4: Threads

 Overview

 Multicore Programming

 Multithreading Models

 Thread Libraries

 Implicit Threading

 Threading Issues

 Operating System Examples

4.5

Objectives

 Identify the basic components of a thread, and contrast

threads and processes

 Describe the benefits and challenges of designng

multithreaded applications

 Illustrate different approaches to implicit threading including

thread pools, fork-join, and Grand Central Dispatch

 Describe how the Windows and Linux operating systems

represent threads

 Design multithreaded applications using the Pthreads,

Java, and Windows threading APIs

4.6

Motivation

 Most modern applications are multithreaded

 Threads run within application

 Multiple tasks with the application can be implemented by

separate threads

 Update display

 Fetch data

 Spell checking

 Answer a network request

 Process creation is heavy-weight while thread creation is

light-weight

 Can simplify code, increase efficiency

 Kernels are generally multithreaded

4.7

Single and Multithreaded Processes

4.8

Multithreaded Server Architecture

4.9

Benefits

 Responsiveness – may allow continued execution if part

of process is blocked, especially important for user

interfaces

 Resource Sharing – threads share resources of

process, easier than shared memory or message passing

 Economy – cheaper than process creation, thread

switching lower overhead than context switching

 Scalability – process can take advantage of multicore

architectures

4.10

Multicore Programming

 Multicore or multiprocessor systems putting pressure on

programmers, challenges include:

 Dividing activities

 Balance

 Data splitting

 Data dependency

 Testing and debugging

 Parallelism implies a system can perform more than one

task simultaneously

 Concurrency supports more than one task making progress

 Single processor / core, scheduler providing concurrency

4.11

Concurrency vs. Parallelism

 Concurrent execution on single-core system:

 Parallelism on a multi-core system:

4.12

Multicore Programming

 Types of parallelism

 Data parallelism – distributes subsets of the same

data across multiple cores, same operation on each

 Task parallelism – distributing threads across

cores, each thread performing unique operation

4.13

Data and Task Parallelism

4.14

Amdahl’s Law

 Identifies performance gains from adding additional cores to an

application that has both serial and parallel components

 S is serial portion

 N processing cores

 That is, if application is 75% parallel / 25% serial, moving from 1 to 2

cores results in speedup of 1.6 times

 As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect on

performance gained by adding additional cores

 But does the law take into account contemporary multicore systems?

4.15

Amdahl’s Law

4.16

User Threads and Kernel Threads

 User threads - management done by user-level threads library

 Three primary thread libraries:

 POSIX Pthreads

 Windows threads

 Java threads

 Kernel threads - Supported by the Kernel

 Examples – virtually all general purpose operating systems,

including:

 Windows

 Linux

 Mac OS X

 iOS

 Android

4.17

User and Kernel Threads

4.18

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

4.19

Many-to-One

 Many user-level threads mapped to

single kernel thread

 One thread blocking causes all to

block

 Multiple threads may not run in

parallel on muticore system because

only one may be in kernel at a time

 Few systems currently use this

model

 Examples:

 Solaris Green Threads

 GNU Portable Threads

4.20

One-to-One

 Each user-level thread maps to kernel

thread

 Creating a user-level thread creates a

kernel thread

 More concurrency than many-to-one

 Number of threads per process

sometimes restricted due to overhead

 Examples

 Windows

 Linux

4.21

Many-to-Many Model

 Allows many user level

threads to be mapped to

many kernel threads

 Allows the operating system

to create a sufficient number

of kernel threads

 Windows with the

ThreadFiber package

 Otherwise not very common

4.22

Two-level Model

 Similar to M:M, except that it allows a user thread to be

bound to kernel thread

4.23

Thread Libraries

 Thread library provides programmer with API for creating

and managing threads

 Two primary ways of implementing

 Library entirely in user space

 Kernel-level library supported by the OS

4.24

Pthreads

 May be provided either as user-level or kernel-level

 A POSIX standard (IEEE 1003.1c) API for thread creation

and synchronization

 Specification, not implementation

 API specifies behavior of the thread library,

implementation is up to development of the library

 Common in UNIX operating systems (Linux & Mac OS X)

4.25

Pthreads Example

4.26

Pthreads Example (cont)

4.27

Pthreads Code for Joining 10 Threads

4.28

Windows Multithreaded C Program

4.29

Windows Multithreaded C Program (Cont.)

4.30

Java Threads

 Java threads are managed by the JVM

 Typically implemented using the threads model

provided by underlying OS

 Java threads may be created by:

 Extending Thread class

 Implementing the Runnable interface

 Standard practice is to implement Runnable

interface

4.31

Java Threads

Implementing Runnable interface:

Creating a thread:

Waiting on a thread:

4.32

Java Executor Framework

 Rather than explicitly creating threads, Java also allows

thread creation around the Executor interface:

 The Executor is used as follows:

4.33

Java Executor Framework

4.34

Java Executor Framework (cont)

4.35

Implicit Threading

 Growing in popularity as numbers of threads increase,

program correctness more difficult with explicit threads

 Creation and management of threads done by compilers and

run-time libraries rather than programmers

 Five methods explored

 Thread Pools

 Fork-Join

 OpenMP

 Grand Central Dispatch

 Intel Threading Building Blocks

4.36

Thread Pools

 Create a number of threads in a pool where they await work

 Advantages:

 Usually slightly faster to service a request with an existing

thread than create a new thread

 Allows the number of threads in the application(s) to be

bound to the size of the pool

 Separating task to be performed from mechanics of creating

task allows different strategies for running task

 i.e.Tasks could be scheduled to run periodically

 Windows API supports thread pools:

4.37

Java Thread Pools

 Three factory methods for creating thread pools in

Executors class:

4.38

Java Thread Pools (cont)

4.39

Fork-Join Parallelism

 Multiple threads (tasks) are forked, and then joined.

4.40

Fork-Join Parallelism

 General algorithm for fork-join strategy:

4.41

Fork-Join Parallelism

4.42

Fork-Join Parallelism in Java

4.43

Fork-Join Parallelism in Java

4.44

Fork-Join Parallelism in Java

 The ForkJoinTask is an abstract base class

 RecursiveTask and RecursiveAction classes extend

ForkJoinTask

 RecursiveTask returns a result (via the return value from

the compute() method)

 RecursiveAction does not return a result

4.45

OpenMP

 Set of compiler directives

and an API for C, C++,

FORTRAN

 Provides support for parallel

programming in shared-

memory environments

 Identifies parallel regions –

blocks of code that can run

in parallel

#pragma omp parallel

Create as many threads as

there are cores

4.46

OpenMP

 Run the for loop in parallel

4.47

Grand Central Dispatch

 Apple technology for macOS and iOS operating systems

 Extensions to C, C++ and Objective-C languages, API, and

run-time library

 Allows identification of parallel sections

 Manages most of the details of threading

 Block is in “^{ }” :

ˆ{ printf("I am a block"); }

 Blocks placed in dispatch queue

 Assigned to available thread in thread pool when removed

from queue

4.48

Grand Central Dispatch

 Two types of dispatch queues:

 serial – blocks removed in FIFO order, queue is per

process, called main queue

Programmers can create additional serial queues

within program

 concurrent – removed in FIFO order but several may be

removed at a time

Four system wide queues divided by quality of service:

o QOS_CLASS_USER_INTERACTIVE

o QOS_CLASS_USER_INITIATED

o QOS_CLASS_USER_UTILITY

o QOS_CLASS_USER_BACKGROUND

4.49

Grand Central Dispatch

 For the Swift language a task is defined as a closure – similar

to a block, minus the caret

 Closures are submitted to the queue using the
dispatch_async() function:

4.50

Intel Threading Building Blocks (TBB)

 Template library for designing parallel C++ programs

 A serial version of a simple for loop

 The same for loop written using TBB with parallel_for

statement:

4.51

Threading Issues

 Semantics of fork() and exec() system calls

 Signal handling

 Synchronous and asynchronous

 Thread cancellation of target thread

 Asynchronous or deferred

 Thread-local storage

 Scheduler Activations

4.52

Semantics of fork() and exec()

 Does fork()duplicate only the calling thread or all threads?

 Some UNIXes have two versions of fork

 exec() usually works as normal – replace the running

process including all threads

4.53

Signal Handling

n Signals are used in UNIX systems to notify a process that a

particular event has occurred.

n A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled by one of two signal handlers:

1. default

2. user-defined

n Every signal has default handler that kernel runs when

handling signal

l User-defined signal handler can override default

l For single-threaded, signal delivered to process

4.54

Signal Handling (Cont.)

n Where should a signal be delivered for multi-threaded?

l Deliver the signal to the thread to which the signal applies

l Deliver the signal to every thread in the process

l Deliver the signal to certain threads in the process

l Assign a specific thread to receive all signals for the

process

4.55

Thread Cancellation

 Terminating a thread before it has finished

 Thread to be canceled is target thread

 Two general approaches:

 Asynchronous cancellation terminates the target

thread immediately

 Deferred cancellation allows the target thread to

periodically check if it should be cancelled

 Pthread code to create and cancel a thread:

4.56

Thread Cancellation (Cont.)

 Invoking thread cancellation requests cancellation, but actual

cancellation depends on thread state

 If thread has cancellation disabled, cancellation remains pending

until thread enables it

 Default type is deferred

 Cancellation only occurs when thread reaches cancellation

point

 I.e. pthread_testcancel()

Then cleanup handler is invoked

 On Linux systems, thread cancellation is handled through signals

4.57

Thread Cancellation in Java

 Deferred cancellation uses the interrupt() method, which

sets the interrupted status of a thread.

 A thread can then check to see if it has been interrupted:

4.58

Thread-Local Storage

 Thread-local storage (TLS) allows each thread to have its

own copy of data

 Useful when you do not have control over the thread creation

process (i.e., when using a thread pool)

 Different from local variables

 Local variables visible only during single function

invocation

 TLS visible across function invocations

 Similar to static data

 TLS is unique to each thread

4.59

Scheduler Activations

 Both M:M and Two-level models require

communication to maintain the appropriate

number of kernel threads allocated to the

application

 Typically use an intermediate data structure

between user and kernel threads – lightweight

process (LWP)

 Appears to be a virtual processor on which

process can schedule user thread to run

 Each LWP attached to kernel thread

 How many LWPs to create?

 Scheduler activations provide upcalls - a

communication mechanism from the kernel to

the upcall handler in the thread library

 This communication allows an application to

maintain the correct number kernel threads

4.60

Operating System Examples

 Windows Threads

 Linux Threads

4.61

Windows Threads

 Windows API – primary API for Windows applications

 Implements the one-to-one mapping, kernel-level

 Each thread contains

 A thread id

 Register set representing state of processor

 Separate user and kernel stacks for when thread runs in

user mode or kernel mode

 Private data storage area used by run-time libraries and

dynamic link libraries (DLLs)

 The register set, stacks, and private storage area are known

as the context of the thread

4.62

Windows Threads (Cont.)

 The primary data structures of a thread include:

 ETHREAD (executive thread block) – includes pointer to

process to which thread belongs and to KTHREAD, in

kernel space

 KTHREAD (kernel thread block) – scheduling and

synchronization info, kernel-mode stack, pointer to TEB, in

kernel space

 TEB (thread environment block) – thread id, user-mode

stack, thread-local storage, in user space

4.63

Windows Threads Data Structures

4.64

Linux Threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call

 clone() allows a child task to share the address space of the

parent task (process)

 Flags control behavior

 struct task_struct points to process data structures (shared

or unique)

4.65

Homework

 Exercises at the end of Chapter 4 (OS book)

 4.1, 4.4, 4.10, 4.17, 4.19

End of Chapter 4

