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Appendix C

Pipelining

Computer Architecture
A Quantitative Approach, Fifth Edition
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5 Steps of a (pre-pipelined) 
MIPS Datapath
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Next PC
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Imm

RTL Actions: Reg. 

Transfer Language
IR <= mem[PC]; #stage 1
PC <= PC + 4

Reg[IRrd] <= (Reg[Irrs] opIRop Reg[IRrt]) #op is done in stages 2-5

PC
IR

Stages: 1                     2                3               4          5        



5

5-Stage MIPS Datapath
(has pipeline latches)
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Next PC
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IR <= mem[PC]; #1
PC <= PC + 4

A <= Reg[IRrs]; #2
B <= Reg[IRrt]

rslt <= A opIRop B 

#3

Reg[IRrd] <= WB  #5

WB <= rslt      #4

Stages: 1                     2                3               4          5        
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Instruction Set Processor Controller
IR <= mem[PC]; 

PC <= PC + 4

A <= Reg[IRrs]; 

B <= Reg[IRrt]

r <= A opIRop B

Reg[IRrd] <= WB

WB <= r

Ifetch

opFetch-DeCoDe

PC <= IRjaddrif bop(A,B)

PC <= PC+IRim

br jmp
RR

r <= A opIRop IRim

Reg[IRrd] <= WB

WB <= r

RI

r <= A + IRim

WB <= Mem[r]

Reg[IRrd] <= WB

LD

ST
JAL

JR
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5-Stage MIPS Datapath
(has pipeline latches) 
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• Data stationary control
– local decode for each instruction phase / pipeline stage
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Stages: 1                     2                3               4          5        
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Visualizing Pipelining
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Pipelining is not quite that easy!

 Limits to pipelining: Hazards prevent next instruction 

from executing during its designated clock cycle

 Structural hazards: HW cannot support this 

combination of instructions (having a single person to 

fold and put clothes away at same time)

 Data hazards: Instruction depends on result of prior 

instruction still in the pipeline (having a missing sock 

in a later wash; cannot put away)

 Control hazards: Caused by delay between the fetching 

of instructions and decisions about changes in control 

flow (branches and jumps).
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One Memory_Port / 
Structural_Hazards
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One Memory Port/Structural Hazards
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Bubble Bubble Bubble BubbleBubble

How do you “bubble” the pipe?
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Code SpeedUp Equation for 
Pipelining

pipelined

dunpipeline

 TimeCycle

 TimeCycle
  

CPI stall Pipeline  CPI Ideal

depth Pipeline  CPI Ideal
  Speedup 






pipelined

dunpipeline

 TimeCycle

 TimeCycle
  

CPI stall Pipeline  1

depth Pipeline
  Speedup 




Instper  cycles Stall Average  CPI Ideal  CPIpipelined 

For simple RISC pipeline, Ideal CPI = 1:
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Example: Dual-port vs. Single-port

 Machine A: Dual ported memory (“Harvard Architecture”)

 Machine B: Single ported memory, but its pipelined 
implementation has a 1.05 times faster clock rate

 Ideal CPI = 1 for both

 Assume loads are 20% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)

= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.2 x 1) x (clockunpipe/(clockunpipe 

/ 1.05)

= (Pipeline Depth/1.20) x  1.05               {105/120 = 7/8}

= 0.875 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.875 x Pipeline Depth) 
= 1.14

 Machine A is 1.14 times faster 
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add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11
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Data Hazard on Register R1 
(If No Forwarding)

Time (clock cycles)

IF ID/RF EX MEM WB No forwarding 

needed since 

write reg in 1st half 

cycle, read reg in 

2nd half cycle. 
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 Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

 Caused by a “(True) Dependence” (in compiler 
nomenclature).  This hazard results from an 
actual need for communicating a new data value.

Three Generic Data Hazards

I: add r1,r2,r3

J: sub r4,r1,r3



16

 Write After Read (WAR)
InstrJ writes operand before InstrI reads it

 Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

 Cannot happen in MIPS 5 stage pipeline 
because:
 All instructions take 5 stages, and

 Register reads are always in stage 2, and 

 Register writes are always in stage 5

I: sub r4,r1,r3 

J: add r1,r2,r3

K: mul r6,r1,r7

Three Generic Data Hazards
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Three Generic Data Hazards
 Write After Write (WAW)

InstrJ writes operand before InstrI writes it.

 Called an “output dependence” by compiler 
writers
This also results from the reuse of name “r1”.

 Cannot happen in MIPS 5 stage pipeline because: 
 All instructions take 5 stages, and 

 Register writes are always in stage 5

 Will see WAR and WAW in more complicated pipes

I: sub r1,r4,r3 

J: add r1,r2,r3

K: mul r6,r1,r7
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Time (clock cycles)

Forwarding to Avoid Data Hazard
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add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7
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Need no forwarding 
since write reg is in 
1st half cycle, read 
reg in 2nd half cycle. 

Forwarding of ALU 
outputs needed as ALU 
inputs 1 & 2 cycles later. 

Forwarding of LW 
MEM outputs to SW 
MEM or ALU inputs 
1 or 2 cycles later. 
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HW Datapath Changes 
(in red) for Forwarding
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Time (clock cycles)

Forwarding Avoids ALU-ALU & LW-SW Data 
Hazards
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Time (clock cycles)
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lw r1, 0(r2)

sub r4,r1,r6
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No forwarding 

needed since 

write reg in 1st half 

cycle, read reg in 

2nd half cycle. 
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Data Hazard Even with Forwarding
Time (clock cycles)
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How is this hazard detected?

No forwarding 

needed since 

write reg in 1st half 

cycle, read reg in 

2nd half cycle. 
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Try producing fast code with no stalls for

a = b + c;

d = e – f;

assuming a, b, c, d ,e, and f are in memory. 
Slow code:

LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW  a,Ra 

LW Re,e 

LW Rf,f

SUB Rd,Re,Rf

SW d,Rd

Software Scheduling to Avoid 
Load Hazards

Fast code (no stalls):

LW Rb,b

LW Rc,c

LW Re,e 

ADD Ra,Rb,Rc

LW Rf,f

SW  a,Ra 

SUB Rd,Re,Rf

SW d,Rd
Compiler optimizes for performance.  Hardware checks for safety.

Stall ===>

Stall ===>

Important technique !



24

Outline

 MIPS – An ISA for Pipelining

 5 stage pipelining

 Structural and Data Hazards

 Forwarding

 Branch Schemes

 Exceptions and Interrupts

 Conclusion
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5-Stage MIPS Datapath
(has pipeline latches) 
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• Old simple design put branch completion in stage 4 (Mem)
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Will move red circuits

to 2nd stage to make

branch delays shorter

Stages: 1                     2                3               4 5        
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Control Hazard on Branch - Three Cycle Stall 
(Caused if Decide Branches in 4th Stage)

10: beq r1,r3,34

14: and r2,r3,r5 

18: or  r6,r1,r7

22: add r8,r1,r9

34: xor r10,r1,r11
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What can be done with the 3 instructions between beq & xor?

Code between beq&xor must not start until know beq not branch => 3 stalls 

Adding 3 cycle stall after every branch (1/7 of instructions) => CPI += 3/7.   BAD!    

MEMID/RF
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Branch Stall Impact if Commit in 
Stage 4

 If CPI = 1 and 15% of instructions are branches, 
Stall 3 cycles => new CPI = 1.45  (1+3*.15) Too much!

 Two-part solution:

 Determine sooner whether branch taken or not, AND

 Compute taken branch address earlier

 MIPS branch tests if register = 0 or  0

 Original 1986 MIPS Solution:

 Move zero_test to ID/RF (Inst Decode & Register Fetch) 
stage(2)  (4=MEM)

 Add extra adder to calculate new PC (Program Counter) in ID/RF 
stage

 Result is 1 clock cycle penalty for branch versus 3 when 
decided in MEM
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• Example of interplay of instruction set design and cycle time.

Next PC

A
d
d
re

ss

RS1

RS2

Imm
M

U
X

I
D
/E

X

The fast_branch design 

needs a slightly longer 

stage 2 cycle time, 

making the clock a 

little slower for all 

stages.

Stages: 1                     2 3               4 5        
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Four Branch Hazard Alternatives

#1: Stall until branch direction is clearly known

#2: Predict Branch Not Taken – Easy Solution

 Execute the next instructions in sequence

 PC+4 already calculated, so use it to get next 
instruction

 Nullify bad instructions in pipeline if branch is 
actually taken

 Nullify easier since pipeline state updates are late 
(MEM, WB)

 47% MIPS branches not taken on average



Four Branch Hazard Alternatives

#3: Predict Branch Taken

 53% MIPS branches taken on average

 But have not calculated branch target 
address in MIPS

 MIPS still incurs 1 cycle branch penalty

 Some other CPUs: branch target known 
before outcome

30



31

Last of Four Branch Hazard 
Alternatives

#4: Delayed Branch (Used Only in 1st MIPS “Killer Micro”)

 Define branch to take place AFTER a following instruction

branch instruction

sequential successor1
sequential successor2
........

sequential successorn

branch target if taken

 1 slot delay allows proper decision and branch target address in 5 
stage pipeline

 MIPS 1st used this  (Later versions of MIPS did not; pipeline 
deeper)

Branch delay of length n
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Scheduling Branch Delay Slots 

 A is the best choice, fills delay slot & reduces instruction count (IC)

 In B, the sub instruction may need to be copied, increasing IC

 In B and C, must be okay to execute an extra sub when branch fails

add  $1,$2,$3

if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add  $1,$2,$3

if $1=0 then

delay slot

add  $1,$2,$3

if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add  $1,$2,$3
add  $1,$2,$3

if $1=0 then

sub $4,$5,$6

add  $1,$2,$3

if $1=0 then

sub $4,$5,$6

sub $4,$5,$6
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Delayed Branch Not Used in Modern 
CPUs

 Compiler effectiveness 1/2 for single branch 
delay slot:

 Fills about 60% of branch delay slots

 About 80% of instructions executed in branch 
delay slots useful in computation

 Only half of (60% x 80%) slots usefully filled; 
cannot fill 2 or more



Delayed Branch Not Used in Modern 
CPUs

 Delayed Branch downside: As processor 
designs use deeper pipelines and multiple 
issue, the branch delay grows and needs many 
more delay slots

 Delayed branching soon lost effectiveness and 
popularity compared to more expensive but more 
flexible dynamic approaches

 Growth in available transistors soon permitted 
dynamic approaches that keep records of branch 
locations, taken/not-taken decisions, and target 
addresses

 Multi-issue 2 => 3 delay slots needed, 4 => 7 slots, 8 
=> 15 slots

34
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Evaluating Branch Alternatives

Assume 4% unconditional jump, 10% conditional branch-taken, 
6% conditional branch-not-taken, base CPI = 1.

Scheduling Branch   CPI speedup vs. speedup vs.

Scheme            penalty no-pipe 5 cycles stall_pipeline

Stall pipeline (Stage 4) 3 1.60 3.1 1.00

Predict taken (Stage 2)   1 1.20 4.2 1.33

Predict not taken (St.2) 1 1.14 4.4 1.40

Delayed branch (Stg 2) 0.5 1.10 4.5 1.45

(Sample 1.60=1+3(4+10+6)% (4.5=5/1.10) (1.45=1.6/1.1)

calcu- 1.20=1+1(4+10+6)%     (to calculate taken target)

lations) 1.14=1+1(4+10)% (refetch for jump, taken-branch)

Pipeline speedup = Pipeline depth
1 +Branch frequencyBranch penalty
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Another Problem with Pipelining

 Exception:  An unusual event happens to an instruction during 
its execution  {caused by instructions executing}

 Examples: divide by zero, undefined opcode

 Interrupt:  Hardware signal to switch the processor to a new 
instruction stream   {not directly caused by code}

 Example: a sound card interrupts when it needs more audio output 
samples (an audio “click” happens if it is left waiting)

 Precise Interrupt Problem: Must seem as if the exception or 
interrupt appeared between 2 instructions (Ii and Ii+1) although 
several instructions were executing at the time

 All instructions up to and including Ii are totally completed

 No effect of any instruction after Ii is allowed to be saved

 After a precise interrupt, the interrupt (exception) handler 
either aborts the program or restarts at instruction Ii+1
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Precise Exceptions in Static 
Pipelines

Key observation: “Architected” states change only in 
memory (M) and register write (W) stages.

Fetch                  Decode            Execute           

Memory

Stages:                  F                         D                       E                     M                           W
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And In Conclusion:  Control and 
Pipelining

 Quantify and summarize performance
 Ratios, Geometric Mean, Multiplicative Standard Deviation

 F&P: Benchmarks age, disks fail, single-point failure
 Control via State Machines and Microprogramming
 Just overlap tasks; easy if tasks are independent
 Speed Up  Pipeline Depth; if ideal CPI is 1, then:

 Hazards limit performance on computers by stalling:
 Structural: need more HW resources
 Data (RAW,WAR,WAW): need forwarding, compiler 

scheduling
 Control: delayed branch or branch (taken/not-taken) 

prediction
 Exceptions and interrupts add complexity

pipelined

dunpipeline

 TimeCycle

 TimeCycle
  

CPI stall Pipeline  1

depth Pipeline
  Speedup 






Homework

 C.1
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