. 5 ye - T !
. Jerx TR N _— % -
RS s ' TN %|ﬂ
\ N G SN S -
s A0 b ot

El 338: Computer Systems Engineering
(Operating Systems & Computer Architecture)
Dept. of Computer Science & Engineering

Chentao Wu
wuct@cs.sjtu.edu.cn

IPLEEVS:

SHANGHAI JIAD TOMNG UNIVERSITY

Download \ectures

o ftp://public.sjtu.edu.cn

e User: wuct
e Password: wuct123456

* http://www.cs.sjtu.edu.cn/~wuct/cse/

ftp://public.sjtu.edu.cn/

Computer Architecture

A Quantitative Approach, Fifth Edition

Appendix C

Pipelining

5 Steps of a (pre-pipelined)
MIPS Datapath

Stages: 1 2 3 4 5
Instruction : Instr. Decode : Execute : Memory :Write
! Fetch i Reg. Fetch : Addr. Calc i Access i Back
[Next PC : : : :

>

: Next SEQ PC 2 e

RTL Actions: Reg.

Transfer Language :
IR <= mem[PC]; #stage 1l !
PC <= PC + 4 :

WB Data

Reg[IR_] <= (Reg[Ir,] Eopmp Reg[IR,.])} #op is doz';le in stages 2-5

5-Stage MIPS Datapath
(has plpelme Iatches)

tages: 1 : 3 4 : 5
Instruction Ins1'r' Decode Execute i Memory : Write
Fetch i Reg. Fetch : Addr. Calc i Access i Back

PC

Next SEQ PC Next SEQ PC.

IR <= mem[PC]; #1
PC <= PC + 4

Imm

#2

A <=
B <= g[Ith

WB Data

rslt <= A op;z,, B

%g <= rslt #4
Reg[IR_,] <= WB #5

Instruction Set Processor Controller

IR <= mem[PC] ;
PC <= PC + 4 Ifetch
JAL A <= Reg[IR.]; opFetch-DeCoDe
JR B <= Reg[IR,.] MT

m
br sl «— RR v =\> RI —»LD

<

r <= A + IR,,

if bop(A,B) PC <= IRj,4ar r <= A OPipe,p B r <= A OPrpp IR,
PC <= PC+IR; l

,, l

WB <= r WB <= r WB <= Mem|[r]

l

Reg[IR 4] <= WB Reg[IR,] <= WB Reg[IR 4] <= WB

A\ 4 A\ 4

5-Stage MIPS Datapath
(has plpelme Iatches)

gisns?lr'uchon : Instr. Decode ; Exgcufe Memor‘y _
i Back

Fetch i Reg. Fetch i Addr. Calc i Access

PC

Next SEQ PC Next SEQ PC.

Imm

RD

W?'l're

WB Data

* Data stationary control
- local decode for each instruction phase / pipeline stage

Visualizing Pipelining

J o+t S My

s

Time (clock cycles)

Cycle 1: Cycle 2: Cycle 3 : Cycle 4 Cycle 5 Cycle 6: Cycle 7

Ifetch I Reg :[-[DMem |—f |4 Reg
L] L] L] h E :
Ife‘rch:[Reg :[-[DMem —} Reg
Reg } Reg
v = :
Ife'rch:[_ Reg] M Reg

Ifetch

=T

i Pipelining is not quite that easy!

= Limits to pipelining: Hazards prevent next instruction
from executing during its designated clock cycle

= Structural hazards: HW cannot support this
combination of instructions (having a single person to
fold and put clothes away at same time)

=« Data hazards: Instruction depends on result of prior
instruction still in the pipeline (having a missing sock
in a later wash; cannot put away)

=« Control hazards: Caused by delay between the fetching
of instructions and decisions about changes in control
flow (branches and jumps).

One Memory_Port /
Structural _Hazards

T+ SN

S0 a3Q

Time (clock cycles)

Cycle 1:Cycle 2iCycle 3iCycle 4iCycle 5: Cycle 6iCycle 7:

Instr 1 Ife‘rch:[: Reg :[-[DMemﬂ_ Reg

eg
Instr 2 Ifetch:{ Reg | 2 -[DMem —} Reg
Instr 3 -:[_ Reg :[DMem _} Reg

11

One Memory Port/Structural Hazards

Time (clock cycles)

)

)
E
[EES

J e+t S N

S0 Q3 Q

Cycle 1iCycle 2:Cycle 3iCycle 4iCycle 5: Cycle 6:Cycle 7: '

Reg

L oa d Ifetch
Instr 1
Instr 2

i

Ifetch

Instr 3;

-

DMem

{

Ifetch

Reg

How do yo:u “bubble” the pipe?:

DMem

Ifetch

<
q

4
)
)
<

—
[

Reg

Pipelining

i Code SpeedUp Equation for

CPI

vipelined = Ldeal CPT + Average Stall cycles per Inst

Ideal CPI x Pipeline depth CYC|€ Time,inelined

Speedup =

Ideal CPI + Pipeline stall CPT Cycle Time, i ciined

For simple RISC pipeline, Ideal CPT = 1:

Pipeline depth Cycle Time,nipelined

Speedup =
PeedtiP =14 Pipeline stall CPL Cycle Time

pipelined

Example: Dual-port vs. Single-port

Machine A: Dual ported memory ("Harvard Architecture”)

Machine B: Single ported memory, but its pipelined
implementation has a 1.05 times faster clock rate

Ideal CPI = 1 for both
Assume loads are 20%o of instructions executed
SpeedUp, = Pipeline Depth/(1 + 0) x (clock,,, e/ clock ;)
= Pipeline Depth

SpeedUp; = Pipeline Depth/(1 + 0.2 x 1) x (clockunpipe/ (clockunpipe
/ 1.05)

= (Pipeline Depth/1.20) x 1.05 {105/120 = 7/8}
= 0.875 x Pipeline Depth

SpeedUp, / SpeedUp; = Pipeline Depth/(0.875 x Pipeline Depth)
= 1.14

Machine A is 1.14 times faster

Data Hazard on Register R1
(If No Forwarding)

J et 3 Iy

S0 Q3 Q

Time (clock cycles)

add

sub

and

or

| Xor

IF ID/RF EX MEM WB

rl , r2 , r3 [fetcH

rd,rl,r3

r6,rl,xr7

r8,rl,r9

rl0, ' ,rll

H Reg

[fetch

Reg

=)

Ffetci

DMeny=

ALV

Reg

Reg

Ffetc;|

No forwarding
needed since
write reg in 1st half
cycle, read reg in
2"d half cycle.

Reg

Meny—{ |4 Reg

ALV

-[DMem— 1 Reg

[fetch

B

Reg

i Three Generic Data Hazards

= Read After Write (RAW)
Instr, tries to read operand before Instr; writes it

CI: add rl,r2,r3
J: sub r4,rl,r3

= Caused by a "(True) Dependence” (in compiler
nomenclature). This hazard results from an
actual need for communicating a new data value.

i Three Generic Data Hazards

= Write After Read (WAR)
Instr; writes operand before Instr; reads it

I: sub r4,rl,r3
J: add rl,r2,r3
K: mul r6,rl,r7

= Called an “"anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

= Cannot happen in MIPS 5 stage pipeline
because:
= All instructions take 5 stages, and
= Register reads are always in stage 2, and
= Register writes are always in stage 5

Three Generic Data Hazards

rite After Write (WAW)
Instr; writes operand before Instr; writes it.

I: sub rl,r4,r3
J: add rl,r2,r3
K: mul r6,rl,r7

= Called an "output dependence” by compiler
writers
This also results from the reuse of name “r1”.

= Cannot happen in MIPS 5 stage pipeline because:
= All instructions take 5 stages, and
= Register writes are always in stage 5

= Will see WAR and WAW in more complicated pipes

0 3 N

s 00

Forwarding to Avoid Data Hazard

Forwarding of ALU

Time (clock cycles)

outputs needed as ALU

inputs 1 & 2 cycles later.

Forwarding of LW
MEM outputs to SW

¢ MEM or ALU inputs

add rl,r2, r3fer

sub r4,rl,r3

and r6,rl,r7

or r8,rl,r9

lxor rl0, ,rll

H Reg

rfe'rcf B

[fetch

[fetch

- -

’

L Reg

"1 or 2 cycles later.
Need no forwarding

since writereg is in

1st half cycle, read
reg in 2" half cycle.

iolele

HW Datapath Changes
(in red) for Forwarding

e = A
}ﬁ)\i}t«?

To forward
ALU, MEM
C To forward 2 cycles to
ALU output ALU
- 1 cycle to af
> ALU inputs
& > g V4 " (From
S 1 ‘ LW Data
' La = Memory)
. —
3 =
” - 3 Data
% Memory T
! - > o3 3
Immediate 3| 2|
LS
¢ >
\(From ALU)/
-

‘\ To forward MEM
N cycle to SW

What circuit detects and resolves this hazard? MEM input

+ W0 S N

s 00

Forwarding Avoids ALu-ALu & LW-SW Data

Hazards

Time (clock cycles)

add rl,r2, r3ffe

H Reg

lw r4, O0(rl)

sw rd, 12 (rl)

or r8,r6,r9

xor rl0,r9,rll

ALV

rfe'rcf B

Reg

emn

Reg

[fetch

ALl

Reg

H Reg

[fetch

ALV

(A4 O

Reg

|
ALU

o

Reg

DMen

w [

Reg

I o+t 3 N

S 0aQa30Q

LW-ALU Data Hazard Even W

Forwarding

ime (clock cycles)

\;h]?

Y RAALF

ith

lw rl, 0(r2)

sub r4,rl,r6

and r6, ,r7

Reg

Ifetchq]:

or r8,rl,r9

Ifefcﬂ

No forwarding
needed since
write reg in 15t half
cycle, read reg in
_2"d half cycle.

s ‘ DMem ‘ Reg

Data Hazard Even with Forwarding

I+ 0 S N

S0 Q30

Time (clock cycles)

|W rl’ O(r2) Ifefchq]: Reg :

sub r4,r1,ré prerl | [wsa |
and r6,r1,r7 ”““"I:
or r8, ,r9

How IS this hazard detected?

»
»

No forwarding
needed since
write reg in 18t half
cycle, read reg in
2nd half cycle.

-[DMem —{ |4 Reg

[[Lfetc hI:

Reg i — DMem

Software Scheduling to Avoid
Load Hazards

Try producing fast code with no stalls for

a=Db+c;
d=e-f1;
assuming a, b, c, d ,e, and f are in memory.
Slow COdL?/:V Rb.b Fast code (no stalls):
W . ! LW Rb,b
Stall ===> ADD RC’CI;b R LW Re,c
o o i e LW Re,e
o ‘;’ “ ADD Ra,Rb,Rc
w Rff LW Rff
Stall ===> SUB Rc; Re,Rf SW a,Ra
all ===
S d R © SUB Rd,Re,Rf
! SW d,Rd

Compiler optimizes for performance. Hardware checks for safety.
Important technique !

= MIPS — An ISA for Pipelining
= 5 stage pipelining

= Structural and Data Hazards
= Forwarding

= Branch Schemes

= Exceptions and Interrupts

= Conclusion

5-Stage MIPS Datapath
(has pipeline latches)

tages: 1 : 2 : 3 : 4 P LD
Instruction : Instr. Decode : Execute i Memory : Write
Fetch i Reg. Fetch i Addr. Calc i Access : Back
Next PC - :

Next SEQ PC Next SEQ PC

Will move red circuits
to 2"d stage to make
branch delays shorter

WB Data

- Old simple desigﬁn put brancH completion jin stage 4 (Mem)

Control Hazard on Branch - Three Cycle Stall
(Caused if Decide Branches in 4th Stage)

14:

18:

22 :

34:

€q

and

or

add

Xor

ID/IRF

rl,r3, 34|

Reg

r2,r3,r5

r6,rl,r7

r8,rl,r9

rl0,rl,rll

Efe‘rcbl:

MEM

[fefcbl:

| Reg

Reg

.[DMemA |;

What can be done with the 3 instructions between beq & xor?
Code between beq&xor must not start until know beq not branch => 3 stalls

Adding 3 cycle stall after every branch (1/7 of instructions) => CP| += 3/7. BAD!

Branch Stall Impact if Commit in
Stage 4

PI = 1 and 15% of instructions are branches,
Stall 3 cycles => new CPI = 1.45 (1+3%*.15) Too much!
Two-part solution:
= Determine sooner whether branch taken or not, AND
« Compute taken branch address earlier

MIPS branch tests if register =0o0or=0

Original 1986 MIPS Solution:

= Move zero_test to ID/RF (Inst Decode & Register Fetch)
stage(2) (4=MEM)

= Add extra adder to calculate new PC (Program Counter) in ID/RF
stage

= Resultis 1 clock cycle penalty for branch versus 3 when
decided in MEM

New Pipelined MIPS Datapath:
Faster Branch

Tagﬁ.sr\:sflr'ucfion Instr. D%code Exgcute Memor'y
Fetch : Reg. Fetch : Addr. Calc i Access
Next PC ! Next ' :

= SEQLC

The fast_branch design

needs a slightly longer
stage 2 cycle time,
making the clock a

: VV?"I'I‘C

Back

little slower for all \

WB Data

stages. 4 ,
- Example of interplay of instruction set design and cycle time.

Four Branch Hazard Alternatives

#1.:
#2:

tall until branch direction is clearly known

Predict Branch Not Taken — Easy Solution
Execute the next instructions in sequence

PC+4 already calculated, so use it to get next
instruction

Nullify bad instructions in pipeline if branch is
actually taken

Nullify easier since pipeline state updates are late
(MEM, WB)
47% MIPS branches not taken on average

i Four Branch Hazard Alternatives

#3: Predict Branch Taken
= 53% MIPS branches taken on average

= But have not calculated branch target
address in MIPS
= MIPS still incurs 1 cycle branch penalty

= Some other CPUs: branch target known
before outcome

30

=&):ﬁszéi)t:?
Last of Four Branch Hazard
Alternatives

#4: Delayed Branch (Used Only in 1st MIPS “Killer Micro”)
= Define branch to take place AFTER a following instruction

branch instruction
sequential successor,
sequential successor,

/ Branch delay of length n

sequential successor

branch target if taken

= 1 slot delay allows proper decision and branch target address in 5
stage pipeline

= MIPS 1st used this (Later versions of MIPS did not; pipeline
deeper)

Scheduling Branch Delay Slots

. From before branch B. From branch target C. From fall through
dd Sl 5.3 stub—$4,55, 56 <+ "slldd $1,$2,83
f $2=0 then — if $1=0 then —

add $1,$2,S3
if $1=0 then

sub $4,85, 86

becomes ¢ becomes { becomes ¢
add $1,$2,53
1if $2=0 then — — if $1=0 then —
add $1,$2,%$3 sub $4,$5,$6

add $1,$2,S3
if $1=0 then

- sub $4,%$5,%$6

A

= A s the best choice, fills delay slot & reduces instruction count (IC)
= In B, the sub instruction need to , increasing IC

= In B and C, must be okay to execute an extra sub when branch fails

e 2 [M7
) ;(-. A’“‘i/;’i'

CPUs

i Delayed Branch Not Used in Modern

= Compiler effectiveness 1/2 for single branch
delay slot:
= Fills about 60%b of branch delay slots

= About 80% of instructions executed in branch
delay slots useful in computation

= Only half of (60% x 80%) slots usefully filled;
cannot fill 2 or more

Delayed Branch Not Used in Modern
CPUs

= Delayed Branch downside: As processor
designs use deeper pipelines and multiple
iIssue, the branch delay grows and needs many
more delay slots
=« Delayed branching soon lost effectiveness and

popularity compared to more expensive but more
flexible dynamic approaches

« Growth in available transistors soon permitted
dynamic approaches that keep records of branch
locations, taken/not-taken decisions, and target
addresses

=« Multi-issue 2 => 3 delay slots needed, 4 => 7 slots, 8
=> 15 slots

34

Evaluating Branch Alternatives

Pipeline depth
1 +Branch frequencyxBranch penalty
Assume 4% unconditional jump, 10% conditional branch-taken,
6% conditional branch-not-taken, base CPI = 1.

ipeline speedup =

Scheduling Branch CPI speedup vs. speedup vs.
Scheme penalty no-pipe 5 cycles stall_pipeline
Stall pipeline (stage4) 3 1.60 3.1 1.00

Predict taken (stage2) 1 1.20 4.2 1.33
Predictnot taken(st.2)1 1.14 4.4 1.40
Delayed branch (stg2)0.51.10 4.5 1.45

(Sample 1.60=1+3(4+10+6)% (4.5=5/1.10) (1.45=1.6/1.1)
calcu- 1.20=1+1(4+10+6)% (to calculate taken target)
lations) 1.14=1+1(4+10)% (refetch for jump, taken-branch)

Another Problem with Pipelining

Exception: An unusual event happens to an instruction during
its execution {caused by instructions executing?}

= Examples: divide by zero, undefined opcode
Interrupt: Hardware signal to switch the processor to a new
instruction stream {not directly caused by code}

= Example: a sound card interrupts when it needs more audio output
samples (an audio “click” happens if it is left waiting)

Precise Interrupt Problem: Must seem as if the exception or
interrupt appeared between 2 instructions (I; and I._) although
several instructions were executing at the time

= All instructions up to and including I; are totally completed
= No effect of any instruction after I is allowed to be saved

After a precise interrupt, the interrupt (exception) handler
either aborts the program or restarts at instruction I,

Precise Exceptions in Static
Pipelines

Commit
Stages: F D E m Point. W
Inst. —\ Data:
PCI—T Mem P Decode (HE|) + M Mem: AW
& El
A‘ A Illegal A’ i A Data Addr K;IIA'
Seleft Opcode ot Except leback
Handler | PC Address E’ epac
PC Exceptions E
- Cause
. . EPC
Kill F Kill D Kill E Asynchronous .
Stage Stage Stage Interrupts s
Fetch Decode Execute
Memory

Key observation: “Architected” states change only in
memory (M) and register write (W) stages.

And In Conclusion: Control and
Pipelining

antify and summarize performance
= Ratios, Geometric Mean, Multiplicative Standard Deviation
F&P: Benchmarks age, disks fail, single-point failure
Control via State Machines and Microprogramming
Just overlap tasks; easy if tasks are independent
Speed Up < Pipeline Depth; if ideal CPI1 is 1, then:

Pipeline depth Cycle Time,ivelined
1 + Pipeline stall CPI Cycle Time, i ciined

Hazards limit performance on computers by stalling:
« Structural: need more HW resources

! Dahta RIAW ,WAR,WAW): need forwarding, compiler
scheduling

= Control: delayed branch or branch (taken/not-taken)
prediction

Exceptions and interrupts add complexity

Speedup =

i Homework

= C1

39

