
EI 338: Computer Systems Engineering
(Operating Systems & Computer Architecture)

Dept. of Computer Science & Engineering
Chentao Wu

wuct@cs.sjtu.edu.cn

Download lectures

• ftp://public.sjtu.edu.cn

•User: wuct

•Password: wuct123456

•http://www.cs.sjtu.edu.cn/~wuct/cse/

ftp://public.sjtu.edu.cn/

3

Appendix C

Pipelining

Computer Architecture
A Quantitative Approach, Fifth Edition

4

5 Steps of a (pre-pipelined)
MIPS Datapath

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
M
D

A
L
U

M
U

X

M
e
m

ory

R
e
g F

ile

M
U

X
M

U
X

D
ata

M
e
m

ory

M
U

X

Sign
Extend

4

A
d
d
e
r

Zero?

Next SEQ PC

A
d
d
re

ss

Next PC

WB Data

I
nst

RD

RS1

RS2

Imm

RTL Actions: Reg.

Transfer Language
IR <= mem[PC]; #stage 1
PC <= PC + 4

Reg[IRrd] <= (Reg[Irrs] opIRop Reg[IRrt]) #op is done in stages 2-5

PC
IR

Stages: 1 2 3 4 5

5

5-Stage MIPS Datapath
(has pipeline latches)

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
L
U

M
e
m

ory

R
e
g F

ile

M
U

X
M

U
X

D
ata

M
e
m

ory

M
U

X

Sign
Extend

Zero?

I
F
/I

D

I
D
/E

X

M
E
M

/W
B

E
X
/M

E
M

4

A
d
d
e
r

Next SEQ PC Next SEQ PC

RD RD RD

W
B

 D
at

a

Next PC

A
d
d
re

ss

RS1

RS2

Imm

M
U

X

IR <= mem[PC]; #1
PC <= PC + 4

A <= Reg[IRrs]; #2
B <= Reg[IRrt]

rslt <= A opIRop B

#3

Reg[IRrd] <= WB #5

WB <= rslt #4

Stages: 1 2 3 4 5

6

Instruction Set Processor Controller
IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]

r <= A opIRop B

Reg[IRrd] <= WB

WB <= r

Ifetch

opFetch-DeCoDe

PC <= IRjaddrif bop(A,B)

PC <= PC+IRim

br jmp
RR

r <= A opIRop IRim

Reg[IRrd] <= WB

WB <= r

RI

r <= A + IRim

WB <= Mem[r]

Reg[IRrd] <= WB

LD

ST
JAL

JR

7

5-Stage MIPS Datapath
(has pipeline latches)

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
L
U

M
e
m

ory

R
e
g F

ile

M
U

X
M

U
X

D
ata

M
e
m

ory

M
U

X

Sign
Extend

Zero?

I
F
/I

D

I
D
/E

X

M
E
M

/W
B

E
X
/M

E
M

4

A
d
d
e
r

Next SEQ PC Next SEQ PC

RD RD RD

W
B

 D
at

a

• Data stationary control
– local decode for each instruction phase / pipeline stage

Next PC

A
d
d
re

ss

RS1

RS2

Imm

M
U

X

Stages: 1 2 3 4 5

8

Visualizing Pipelining

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

9

Pipelining is not quite that easy!

 Limits to pipelining: Hazards prevent next instruction

from executing during its designated clock cycle

 Structural hazards: HW cannot support this

combination of instructions (having a single person to

fold and put clothes away at same time)

 Data hazards: Instruction depends on result of prior

instruction still in the pipeline (having a missing sock

in a later wash; cannot put away)

 Control hazards: Caused by delay between the fetching

of instructions and decisions about changes in control

flow (branches and jumps).

10

One Memory_Port /
Structural_Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L
U

DMemIfetch Reg

11

One Memory Port/Structural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L
U

DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

How do you “bubble” the pipe?

12

Code SpeedUp Equation for
Pipelining

pipelined

dunpipeline

 TimeCycle

 TimeCycle

CPI stall Pipeline CPI Ideal

depth Pipeline CPI Ideal
 Speedup 






pipelined

dunpipeline

 TimeCycle

 TimeCycle

CPI stall Pipeline 1

depth Pipeline
 Speedup 




Instper cycles Stall Average CPI Ideal CPIpipelined 

For simple RISC pipeline, Ideal CPI = 1:

13

Example: Dual-port vs. Single-port

 Machine A: Dual ported memory (“Harvard Architecture”)

 Machine B: Single ported memory, but its pipelined
implementation has a 1.05 times faster clock rate

 Ideal CPI = 1 for both

 Assume loads are 20% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)

= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.2 x 1) x (clockunpipe/(clockunpipe

/ 1.05)

= (Pipeline Depth/1.20) x 1.05 {105/120 = 7/8}

= 0.875 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.875 x Pipeline Depth)
= 1.14

 Machine A is 1.14 times faster

14

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Data Hazard on Register R1
(If No Forwarding)

Time (clock cycles)

IF ID/RF EX MEM WB No forwarding

needed since

write reg in 1st half

cycle, read reg in

2nd half cycle.

15

 Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

 Caused by a “(True) Dependence” (in compiler
nomenclature). This hazard results from an
actual need for communicating a new data value.

Three Generic Data Hazards

I: add r1,r2,r3

J: sub r4,r1,r3

16

 Write After Read (WAR)
InstrJ writes operand before InstrI reads it

 Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

 Cannot happen in MIPS 5 stage pipeline
because:
 All instructions take 5 stages, and

 Register reads are always in stage 2, and

 Register writes are always in stage 5

I: sub r4,r1,r3

J: add r1,r2,r3

K: mul r6,r1,r7

Three Generic Data Hazards

17

Three Generic Data Hazards
 Write After Write (WAW)

InstrJ writes operand before InstrI writes it.

 Called an “output dependence” by compiler
writers
This also results from the reuse of name “r1”.

 Cannot happen in MIPS 5 stage pipeline because:
 All instructions take 5 stages, and

 Register writes are always in stage 5

 Will see WAR and WAW in more complicated pipes

I: sub r1,r4,r3

J: add r1,r2,r3

K: mul r6,r1,r7

18

Time (clock cycles)

Forwarding to Avoid Data Hazard

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Need no forwarding
since write reg is in
1st half cycle, read
reg in 2nd half cycle.

Forwarding of ALU
outputs needed as ALU
inputs 1 & 2 cycles later.

Forwarding of LW
MEM outputs to SW
MEM or ALU inputs
1 or 2 cycles later.

19

HW Datapath Changes
(in red) for Forwarding

M
E

M
/W

R

I
D

/E
X

E
X

/M
E

M

Data
Memory

A
L
U

m
ux

m
ux

R
e
giste

rs

NextPC

Immediate

m
ux

What circuit detects and resolves this hazard?

(From ALU)

To forward
ALU output
1 cycle to
ALU inputs

To forward
ALU, MEM
2 cycles to
ALU

(From
LW Data
Memory)

m
ux

To forward MEM
1 cycle to SW
MEM input

20

Time (clock cycles)

Forwarding Avoids ALU-ALU & LW-SW Data
Hazards

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

lw r4, 0(r1)

sw r4,12(r1)

or r8,r6,r9

xor r10,r9,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

21

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

LW-ALU Data Hazard Even with
Forwarding

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

No forwarding

needed since

write reg in 1st half

cycle, read reg in

2nd half cycle.

22

Data Hazard Even with Forwarding
Time (clock cycles)

or r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
L
U

DMemIfetch Reg

RegIfetch

A
L
U

DMem RegBubble

Ifetch

A
L
U

DMem RegBubble Reg

Ifetch

A
L
U

DMemBubble Reg

How is this hazard detected?

No forwarding

needed since

write reg in 1st half

cycle, read reg in

2nd half cycle.

23

Try producing fast code with no stalls for

a = b + c;

d = e – f;

assuming a, b, c, d ,e, and f are in memory.
Slow code:

LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW a,Ra

LW Re,e

LW Rf,f

SUB Rd,Re,Rf

SW d,Rd

Software Scheduling to Avoid
Load Hazards

Fast code (no stalls):

LW Rb,b

LW Rc,c

LW Re,e

ADD Ra,Rb,Rc

LW Rf,f

SW a,Ra

SUB Rd,Re,Rf

SW d,Rd
Compiler optimizes for performance. Hardware checks for safety.

Stall ===>

Stall ===>

Important technique !

24

Outline

 MIPS – An ISA for Pipelining

 5 stage pipelining

 Structural and Data Hazards

 Forwarding

 Branch Schemes

 Exceptions and Interrupts

 Conclusion

25

5-Stage MIPS Datapath
(has pipeline latches)

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
L
U

M
e
m

ory

R
e
g F

ile

M
U

X
M

U
X

D
ata

M
e
m

ory

M
U

X

Sign
Extend

Zero?

I
F
/I

D

I
D
/E

X

M
E
M

/W
B

E
X
/M

E
M

4

A
d
d
e
r

Next SEQ PC Next SEQ PC

RD RD RD

W
B

 D
at

a

• Old simple design put branch completion in stage 4 (Mem)

Next PC

A
d
d
re

ss

RS1

RS2

Imm

M
U

X

Will move red circuits

to 2nd stage to make

branch delays shorter

Stages: 1 2 3 4 5

26

Control Hazard on Branch - Three Cycle Stall
(Caused if Decide Branches in 4th Stage)

10: beq r1,r3,34

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

34: xor r10,r1,r11

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

What can be done with the 3 instructions between beq & xor?

Code between beq&xor must not start until know beq not branch => 3 stalls

Adding 3 cycle stall after every branch (1/7 of instructions) => CPI += 3/7. BAD!

MEMID/RF

27

Branch Stall Impact if Commit in
Stage 4

 If CPI = 1 and 15% of instructions are branches,
Stall 3 cycles => new CPI = 1.45 (1+3*.15) Too much!

 Two-part solution:

 Determine sooner whether branch taken or not, AND

 Compute taken branch address earlier

 MIPS branch tests if register = 0 or  0

 Original 1986 MIPS Solution:

 Move zero_test to ID/RF (Inst Decode & Register Fetch)
stage(2) (4=MEM)

 Add extra adder to calculate new PC (Program Counter) in ID/RF
stage

 Result is 1 clock cycle penalty for branch versus 3 when
decided in MEM

28

A
d
d
e
r

I
F
/I

D

New Pipelined MIPS Datapath:
Faster Branch

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
L
U

M
e
m

ory

R
e
g F

ile

M
U

X

D
ata

M
e
m

ory

M
U

X

Sign
Extend

Zero?

M
E
M

/W
B

E
X
/M

E
M

4

A
d
d
e
r

Next
SEQ PC

RD RD RD

W
B

 D
at

a

• Example of interplay of instruction set design and cycle time.

Next PC

A
d
d
re

ss

RS1

RS2

Imm
M

U
X

I
D
/E

X

The fast_branch design

needs a slightly longer

stage 2 cycle time,

making the clock a

little slower for all

stages.

Stages: 1 2 3 4 5

29

Four Branch Hazard Alternatives

#1: Stall until branch direction is clearly known

#2: Predict Branch Not Taken – Easy Solution

 Execute the next instructions in sequence

 PC+4 already calculated, so use it to get next
instruction

 Nullify bad instructions in pipeline if branch is
actually taken

 Nullify easier since pipeline state updates are late
(MEM, WB)

 47% MIPS branches not taken on average

Four Branch Hazard Alternatives

#3: Predict Branch Taken

 53% MIPS branches taken on average

 But have not calculated branch target
address in MIPS

 MIPS still incurs 1 cycle branch penalty

 Some other CPUs: branch target known
before outcome

30

31

Last of Four Branch Hazard
Alternatives

#4: Delayed Branch (Used Only in 1st MIPS “Killer Micro”)

 Define branch to take place AFTER a following instruction

branch instruction

sequential successor1
sequential successor2
........

sequential successorn

branch target if taken

 1 slot delay allows proper decision and branch target address in 5
stage pipeline

 MIPS 1st used this (Later versions of MIPS did not; pipeline
deeper)

Branch delay of length n

32

Scheduling Branch Delay Slots

 A is the best choice, fills delay slot & reduces instruction count (IC)

 In B, the sub instruction may need to be copied, increasing IC

 In B and C, must be okay to execute an extra sub when branch fails

add $1,$2,$3

if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3

if $1=0 then

delay slot

add $1,$2,$3

if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3

if $1=0 then

sub $4,$5,$6

add $1,$2,$3

if $1=0 then

sub $4,$5,$6

sub $4,$5,$6

33

Delayed Branch Not Used in Modern
CPUs

 Compiler effectiveness 1/2 for single branch
delay slot:

 Fills about 60% of branch delay slots

 About 80% of instructions executed in branch
delay slots useful in computation

 Only half of (60% x 80%) slots usefully filled;
cannot fill 2 or more

Delayed Branch Not Used in Modern
CPUs

 Delayed Branch downside: As processor
designs use deeper pipelines and multiple
issue, the branch delay grows and needs many
more delay slots

 Delayed branching soon lost effectiveness and
popularity compared to more expensive but more
flexible dynamic approaches

 Growth in available transistors soon permitted
dynamic approaches that keep records of branch
locations, taken/not-taken decisions, and target
addresses

 Multi-issue 2 => 3 delay slots needed, 4 => 7 slots, 8
=> 15 slots

34

35

Evaluating Branch Alternatives

Assume 4% unconditional jump, 10% conditional branch-taken,
6% conditional branch-not-taken, base CPI = 1.

Scheduling Branch CPI speedup vs. speedup vs.

Scheme penalty no-pipe 5 cycles stall_pipeline

Stall pipeline (Stage 4) 3 1.60 3.1 1.00

Predict taken (Stage 2) 1 1.20 4.2 1.33

Predict not taken (St.2) 1 1.14 4.4 1.40

Delayed branch (Stg 2) 0.5 1.10 4.5 1.45

(Sample 1.60=1+3(4+10+6)% (4.5=5/1.10) (1.45=1.6/1.1)

calcu- 1.20=1+1(4+10+6)% (to calculate taken target)

lations) 1.14=1+1(4+10)% (refetch for jump, taken-branch)

Pipeline speedup = Pipeline depth
1 +Branch frequencyBranch penalty

36

Another Problem with Pipelining

 Exception: An unusual event happens to an instruction during
its execution {caused by instructions executing}

 Examples: divide by zero, undefined opcode

 Interrupt: Hardware signal to switch the processor to a new
instruction stream {not directly caused by code}

 Example: a sound card interrupts when it needs more audio output
samples (an audio “click” happens if it is left waiting)

 Precise Interrupt Problem: Must seem as if the exception or
interrupt appeared between 2 instructions (Ii and Ii+1) although
several instructions were executing at the time

 All instructions up to and including Ii are totally completed

 No effect of any instruction after Ii is allowed to be saved

 After a precise interrupt, the interrupt (exception) handler
either aborts the program or restarts at instruction Ii+1

37

Precise Exceptions in Static
Pipelines

Key observation: “Architected” states change only in
memory (M) and register write (W) stages.

Fetch Decode Execute

Memory

Stages: F D E M W

38

And In Conclusion: Control and
Pipelining

 Quantify and summarize performance
 Ratios, Geometric Mean, Multiplicative Standard Deviation

 F&P: Benchmarks age, disks fail, single-point failure
 Control via State Machines and Microprogramming
 Just overlap tasks; easy if tasks are independent
 Speed Up  Pipeline Depth; if ideal CPI is 1, then:

 Hazards limit performance on computers by stalling:
 Structural: need more HW resources
 Data (RAW,WAR,WAW): need forwarding, compiler

scheduling
 Control: delayed branch or branch (taken/not-taken)

prediction
 Exceptions and interrupts add complexity

pipelined

dunpipeline

 TimeCycle

 TimeCycle

CPI stall Pipeline 1

depth Pipeline
 Speedup 




Homework

 C.1

39

