. 5 ye - T !
. Jerx TR N _— % -
RS s ' TN %|ﬂ
\ N G SN S -
s A0 b ot

El 338: Computer Systems Engineering
(Operating Systems & Computer Architecture)
Dept. of Computer Science & Engineering

Chentao Wu
wuct@cs.sjtu.edu.cn

IPLEEVS:

SHANGHAI JIAD TOMNG UNIVERSITY

Download \ectures

o ftp://public.sjtu.edu.cn

e User: wuct
e Password: wuct123456

* http://www.cs.sjtu.edu.cn/~wuct/cse/

ftp://public.sjtu.edu.cn/

Computer Architecture

A Quantitative Approach, Fifth Edition

Chapter 2

Memory Hierarchy Design

Introduction

ogrammers want unlimited amounts of memory
with low latency

Fast memory technology is more expensive per bit
than slower memory

Solution: organize memory system into a hierarchy

= Entire addressable memory space available in largest,
slowest memory

= Incrementally smaller and faster memories, each
containing a subset of the memory below it, proceed in
steps up toward the processor
Temporal and spatial locality insures that nearly all
references can be found in smaller memories

= Gives the allusion of a large, fast memory being presented
to the processor

L.‘.e‘g,

Memory Hierarchy

L1 L2 L3
C C C § Memory
crg < < a L Memory I/Obus [Disk storage
e ; : .
| 2 4 ¢ Disk
memo
Register Level 1 Level 2 Level 3 Memory referenrge
reference Cache Cache Cache reference
reference reference reference
Size: 1000 bytes 64 KB 256 KB 2-4MB 4-16 GB 4-16 TB
Speed: 300 ps 1ns 3-10ns 10-20ns 50-100 ns 5-10 ms

(a) Memory hierarchy for server

L1 L
C c W Memory
CPU a a bus
c ¢
e .8 FLASH
Register Level 1 Level 2 Memory n}errnory
reference Cache Cache reference VSTGEHICS
reference reference
Size: 500 bytes 64 KB 256 KB 256—-512 MB 4-8 GB
Speed: 500 ps 2ns 10-20 ns 50-100 ns 25-50 us

(b) Memory hierarchy for a personal mobile device

‘L Memory Performance Gap

100,000

Performance

10 -

1980

| |
1985 1990

| I
1995 2000

Year

I
2005 2010

Memory Hierarchy Design

emory hierarchy design becomes more
crucial with recent multi-core processors:

= Aggregate peak bandwidth grows with # cores:

= Intel Core i7 can generate two references per core per
clock

« Four cores and 3.2 GHz clock
25.6 billion 64-bit data references/second +
12.8 billion 128-bit instruction references
= 409.6 GB/s!

« DRAM bandwidth is only 6% of this (25 GB/s)

= Requires:
Multi-port, pipelined caches
Two levels of cache per core
Shared third-level cache on chip

i Performance and Power

= High-end microprocessors have >10 MB
on-chip cache

= Consumes large amount of area and power
budget

Memory Hierarchy Basics

= When a word is not found in the cache, a
Mmiss OCCUrS:

= Fetch word from lower level in hierarchy,
requiring a higher latency reference

=« Lower level may be another cache or the main
memory

= Also fetch the other words contained within the
block

= Takes advantage of spatial locality

= Place block into cache in any location within its
set, determined by address
= block address MOD number of sets

i Memory Hierarchy Basics

= 1sets => n-way set associative
« Direct-mapped cache => one block per set
= Fully associative => one set

= Writing to cache: two strategies
« Write-through
= Immediately update lower levels of hierarchy

= Write-back

= Only update lower levels of hierarchy when an updated
block is replaced

= Both strategies use write buffer to make writes
asynchronous

Memory Hierarchy Basics

= MiIsSsS rate
= Fraction of cache access that result in a miss

= Causes of misses

= Compulsory
= First reference to a block
=« Capacity
= Blocks discarded and later retrieved

= Conflict

= Program makes repeated references to multiple
addresses from different blocks that map to the same
location in the cache

Memory Hierarchy Basics

Misses Miss rate X Memory accesses _ Miss rate x Memory accesses
[nstruction Instruction count S [nstruction

Average memory access time = Hit time + Miss rate X Miss penalty

= Note that speculative and multithreaded
processors may execute other instructions
during a miss
= Reduces performance impact of misses

Equations on Appendix B-4

CPU execution time = (CPU clock cycles + Memory stall cycles) x Clock cycle time

Memory stall cycles = Number of misses x Miss penalty

IC x MISSC.S x Miss penalty

Instruction

1

Memory accesses
Instruction

IC x

x Miss rate x Miss penalty

Memory stall clock cycles = IC x Reads per instruction X Read miss rate X Read miss penalty
+ IC x Writes per instruction X Write miss rate X Write miss penalty

Memory accesses
Instruction

Memory stall clock cycles = IC X X Miss rate X Miss penalty

13

Example on B-5

Assume we have a computer where the cycles per instruction (CPI) is 1.0 when
all memory accesses hit in the cache. The only data accesses are loads and stores,
and these total 50% of the instructions. If the miss penalty is 25 clock cycles and
the miss rate is 2%, how much faster would the computer be if all instructions
were cache hits?

14

Answer on B-5

First compute the performance for the computer that always hits:

CPU execution time = (CPU clock cycles + Memory stall cycles) x Clock cycle
= (IC x CPI + 0) x Clock cycle
= IC x 1.0 x Clock cycle

Now for the computer with the real cache, first we compute memory stall cycles:

Memory accesses
Instruction

= ICx(1+0.5)x0.02x25
= ICx0.75

Memory stall cycles = IC x X Miss rate x Miss penalty

where the middle term (1 + 0.5) represents one instruction access and 0.5 data
accesses per instruction. The total performance is thus

CPU execution time, ;. = (ICx 1.0 +IC x 0.75) x Clock cycle
= 1.75 X IC x Clock cycle

The performance ratio is the inverse of the execution times:

CPU execution ime, . 1,75 x IC x Clock cycle
CPU execution time 1.0 x IC x Clock cycle
= 1.75

The computer with no cache misses is 1.75 times faster. 15

‘L Example on B-6

Example To show equivalency between the two miss rate equations, let’s redo the example
above, this time assuming a miss rate per 1000 instructions of 30. What is mem-
ory stall time in terms of instruction count?

Answer Recomputing the memory stall cycles:

Memory stall cycles = Number of misses X Miss penalty

= JC'X M x Miss penalty
Instruction

Misses :
IC /1000 x Imstraction x 1000 x Miss penalty

= IC /1000 x 30 x 25
= IC/1000 x 750
= ICx0.75

We get the same answer as on page B-5, showing equivalence of the two equations.
16

In a cache?

m If each block has only one place it can appear in the cache, the cache is said to
be direct mapped. The mapping is usually

‘L B-7 Q1: where can a block be placed

(Block address) MOD (Number of blocks in cache)

m If a block can be placed anywhere in the cache, the cache is said to be fuily
associative.

s If a block can be placed in a restricted set of places in the cache, the cache is
set associative. A set is a group of blocks in the cache. A block is first
mapped onto a set, and then the block can be placed anywhere within that set.
The set is usually chosen by bit selection; that is,

(Block address) MOD (Number of sets in cache)

If there are n blocks in a set, the cache placement is called n-way set

assoclative.
17

B-7 Q2: how is a block found if i
in the cache?

Fully associative: Direct mapped: Set associative:
block 12 can go block 12 can go block 12 can go
anywhere only into block 4 anywhere in set 0
(12 MOD 8) (12 MOD 4)
Block 01234567 Block 01234567 Block 01234567
no. no. no. '
" Cache

Set Set Set Set
0O 1 2 3

Block frame address

Block

1 2
no. 01234567890 7

11111111222222222233
2345678901234567890 1

Memory

18

B-9 Q2: how is a block found if it

IS In the cache? (contd.)

Biock address

Tag

Index

Block
offset

Figure B.3 The three portions of an address in a set associative or direct-mapped
cache. The tag is used to check all the blocks in the set, and the index is used to select
the set. The block offset is the address of the desired data within the block. Fully asso-

ciative caches have no index field.

19

D) X #AAAY
B-9 Q3: which block should be
replaced on a cache miss?

a Random—To spread allocation uniformly, candidate blocks are randomly
selected. Some systems generate pseudorandom block numbers to get repro-
ducible behavior, which is particularly useful when debugging hardware.

m Least recently used (LRU)—To reduce the chance of throwing out informa-
tion that will be needed soon, accesses to blocks are recorded. Relying on the
past to predict the future, the block replaced is the one that has been unused
for the longest time. LRU relies on a corollary of locality: If recently used
blocks are likely to be used again, then a good candidate for disposal is the
least recently used block.

w Firstin, first out (FIFO)—Because LRU can be complicated to calculate, this
approximates LRU by determining the oldest block rather than the LRU.

20

B-10 Q4: what happens on a write?

Write-through—The information is written to both the block in the cache and
to the block in the lower-level memory.

Write-back—The information is wrtten only to the block in the cache. The
modified cache block is written to main memory only when it is replaced.

Write allocate—The block is allocated on a write miss, followed by the write
hit actions above. In this natural option, write misses act like read misses.

No-write allocate—This apparently unusual alternative is write misses do not
affect the cache. Instead, the block is modified only in the lower-level memory.

21

FRirE

B-10 Q4: what happens on a write?
(contd.)

Example

Assume a fully associative write-back cache with many cache entries that starts
empty. Below is a sequence of five memory operations (the address is in square
brackets):

Write Mem[100];
Write Mem[100];
Read Mem[200];
Write Mem[200];
Write Mem[100].

What are the number of hits and misses when using no-write allocate versus
write allocate?

22

XEXLLG

B-10 Q4: what happens on a write?
(contd.)

Answer

For no-write allocate, the address 100 is not in the cache, and there is no alloca-
tion on write, so the first two writes wil} result in misses. Address 200 is also not
in the cache, so the read is also a miss. The subsequent write to address 200 is a.
hit. The last wnte to 100 1s still a miss. The result for no-write allocate is four
misses and one hit.

For wrnte allocate, the first accesses to 100 and 200 are misses, and the rest
are hits since 100 and 200 are both found in the cache. Thus, the result for write
allocate is two misses and three hits.

23

AMD Opteron Processor

-

Block (1)
Block address offset

CPU

address

Data Data
in out

<25> <9> <6>
Tag Index | H
Valid Tag Data
<1> <25> <64> y y
(512 i
blocks) -
(512 [
blocks)

e ——
v

@) \

....... P SORAPRL W Victim
buffer

Lower-level membry B 24

B-16 Cache Performance

Example

Average memory access time = Hit time + Miss rate X Miss penalty

Which has the lower miss rate: a 16 KB instruction cache with a 16 KB data
cache or a 32 KB unified cache? Use the miss rates in Figure B.6 to help calcu-
late the correct answer, assuming 36% of the instructions are data transfer
instructions. Assume a hit takes 1 clock cycle and the miss penalty is 100 clock
cycles. A load or store hit takes 1 extra clock cycle on a unified cache if there is
only one cache port to satisfy two simultaneous requests. Using the pipelining
terminology of Chapter 3, the unified cache leads to a structural hazard. What is
the average memory access time in each case? Assume write-through caches with
a write buffer and ignore stalls due to the write buffer.

25

% B-16 Cache Performance (contd.)

Answer First let’s convert misses per 1000 instructions into miss rates. Solving the gen-
eral formula from above, the miss rate is

Misses
1000 Instructions/ 1000
Memory accesses
Instruction

Miss rate =

Since every instruction access has exactly one memory access to fetch the
instruction, the instruction miss rate 1s

: 3.82/1000
Miss Tate ¢ KB instruction — T = 0.004

Since 36% of the instructions are data transfers, the data miss rate is

40.9/1000

036 - 0.114

Miss [ate, ¢ kB data =

The unified miss rate needs to account for instruction and data accesses:

2 43.3/1000
Miss rate32 KB unified — m = (0.0318

As stated above, about 74% of the memory accesses are instruction references.
Thus, the overall miss rate for the split caches is

(74% x 0.004) + (26% x 0.114) = 0.0326

Thus, a 32 KB unified cache has a slightly lower effective miss rate than two
16 KB caches.

The average memory access time formula can be divided into instruction and
data accesses:

Average memory access time
= % instructions X (Hit time + Instruction miss rate X Miss penalty)
+ % data x (Hit time + Data miss rate X Miss penalty)

Therefore, the time for each organization is

Average memory access tme;,

= 74% x (1 +0.004 X 200) + 26% x (1 + 0.114 x 200)

= (74% x 1.80) + (26% x 23.80) = 1.332 +6.188 = 7.52
Average memory access time ...,
= 74% x (1 +0.0318 x200) + 26% x (1 + 1 + 0.0318 x 200)
= (74% x7.36) + (26% x 8.36) = 5446 +2.174 = 7.62

\v

P’

[N

L.‘.j&,

27

Processor Performance

CPU time = (CPU execution clock cycles + Memory stall clock cycles) x Clock cycle time

Example Let's use an in-order execution computer for the first example. Assume that the
cache miss penalty is 200 clock cycles, and all instructions normally take 1.0
clock cycles (ignoring memory stalls). Assume that the average miss rate is 2%.
there is an average of 1.5 memory references per instruction, and the average
number of cache misses per 1000 instructions is 30. What is the impact on perfor-
mance when behavior of the cache is included? Calculate the impact using both
misses per instruction and miss rate.

28

B-17 Avg. Memory Access Time
ancll Processor Performance

Memory stall clock cycles
execution [nstruction

Answer CPU time = IC x (CP]

) x Clock cycle time

The performance, including cache misses, 1s

CPU time i cache = 1C X [1.0 + (30/1000 X 200)] x Clock cycle time
= IC X 7.00 X Clock cycle time

Now calculating performance using miss rate:

, Memory accesses
+ Miss rate x ry

CPU time = ICx (Cplcxecution Instruction

X Miss penalty) x Clock cycle time

CPU time i, cache = 1C X [1.0 + (1.5 X 2% % 200)] X Clock cycle time
= [C X 7.00 X Clock cycle time

The clock cycle time and instruction count are the same, with or without a
cache. Thus, CPU time increases sevenfold, with CPI from 1.00 for a “perfect
cache” to 7.00 with a cache that can miss. Without any memory hierarchy at all
the CPI would increase again to 1.0 + 200 x 1.5 or 301—a factor of more than 40
times longer than a system with a cache!

Execution Processors

Memory stall cycles = Misses
[nstruction Instruction

X (Total miss latency — Overlapped miss latency)

m Length of memory latency—What to consider as the start and the end of a
memory operation in an out-of-order processor

w Length of latency overlap—What is the start of overlap with the processor (or,
equivalently, when do we say a memory operation is stalling the processor)

30

-

Example

Answer

B-20 Miss Penalty and Out- of-Order
Execution Processors

Let’s redo the example above, but this time we assume the processor with the
longer clock cycle time supports out-of-order execution yet still has a direct-
mapped cache. Assume 30% of the 65 ns miss penalty can be overlapped; that is,
the average CPU memory stall time 1s now 45.5 ns.

Average memory access time for the out-of-order (OOQO) computer is

Average memory access time|_y,y ooo = 0.35 % 1.35 + (0.021 x 45.5) = 1.43 ns
The performance of the OOQO cache is

CPU time |,y 000 = ICX[1.6X0.35 X 1.35 +(0.021 x 1.4 x45.5)] = 2.09 xIC

Hence, despite a much slower clock cycle time and the higher miss rate of a
direct-mapped cache, the out-of-order computer can be slightly faster if it can
hide 30% of the miss penalty.

31

Six basic cache optimizations

Average memory access time = Hit time + Miss rate X Miss penalty

s Reducing the miss rate—larger block size, larger cache size, and higher asso-
ciativity

m Reducing the miss penalty—multilevel caches and giving reads priority over
writes

m Reducing the time to hit in the cache—avoiding address translation when
indexing the cache

32

Six basic cache optimizations

Compulsory—The very first access to a block cannot be in the cache, so the
block must be brought into the cache. These are also called cold-start misses
or first-reference misses.

Capacity—If the cache cannot contain all the blocks needed during execution
of a program, capacity misses (in addition to compulsory misses) will occur
because of blocks being discarded and later retrieved.

Conflict—If the block placement strategy is set associative or direct mapped,
conflict misses (in addition to compulsory and capacity misses) will occur
because a block may be discarded and later retrieved if too many blocks map
to its set. These misses are also called collision misses. The 1dea is that hits in
a fully associative cache that become misses in an n-way set-associative
cache are due to more than 1 requests on some popular sets.

33

Memory Hierarchy Basics

IX basic cache optimizations:

« Larger block size
= Reduces compulsory misses
= Increases capacity and conflict misses, increases miss penalty

= Larger total cache capacity to reduce miss rate
= Increases hit time, increases power consumption

= Higher associativity
= Reduces conflict misses
= Increases hit time, increases power consumption

=« Higher number of cache levels
= Reduces overall memory access time

= Giving priority to read misses over writes
= Reduces miss penalty

=« Avoiding address translation in cache indexing
= Reduces hit time

i Ten Advanced Optimizations

= Small and simple first level caches

= Critical timing path:
= addressing tag memory, then
= comparing tags, then
= selecting correct set

=« Direct-mapped caches can overlap tag
compare and transmission of data

=« Lower associativity reduces power because
fewer cache lines are accessed

L1 Size and Associativity

Access time in picrosecornds

900 -

m 1-way o 2-way
m 4-way m 8-way

800

700 1

600

500 +

400

300

200 1

100

16 KB 32KB 64 KB 128 KB 256 KB
Cache size

Access time vs. size and associativity

L1 Size and Associativity

0.5 1

W 1-way O 2-way
M 4-way @ 8-way

0.45 +

o
e
1

0.35

ot
(7]
1

0.25

o
na
1

0.15

Energy per read in nano joules

o
"

0.05 -

16 KB 32 KB 64 KB 128 KB 256 KB
Cache size

Energy per read vs. size and associativity

Way Prediction

= To improve hit time, predict the way to
pre-set mux
= Mis-prediction gives longer hit time

= Prediction accuracy
= > 90% for two-way
= > 80% for four-way
= I-cache has better accuracy than D-cache

= First used on MIPS R10000 in mid-90s
= Used on ARM Cortex-AS8
= Extend to predict block as well

= "Way selection”
« Increases mis-prediction penalty

Pipelining Cache

= Pipeline cache access to improve
bandwidth

« Examples:
= Pentium: 1 cycle
= Pentium Pro — Pentium III: 2 cycles
=« Pentium 4 — Core i7: 4 cycles

= Increases branch mis-prediction penalty
= Makes it easier to increase associativity

Nonblocking Caches

Allow hits before
previous misses
complete
= "Hit under miss”
g “I-!it under multiple
miss”
= L2 must support
this
= In general,
processors can
hide L1 miss
penalty but not L2
miss penalty

Ratio of cache miss penalty

100%
—l— Hit-undar-1-miss
90% 4 + Hit-under-2-misses |
—@— Hit-under-64-misses
B0 —frreessreceoma i s
T0%
60%
50% 4%
40% -
30% -
20%
L
GOID T T T T T T T T T T T T T
Lok N 5 ™ e
EE @"\Q‘i&o{% & & &Q{:P“\G Q}Qﬂg}rﬁ\ PR \i\; @Q\\@%E;_Qi{}azo«i &
A TSN P *(\q’d:'\‘{\ 4 \?‘G"c}ﬁc’ CE K ot
& < \'Oo' & P

Multibanked Caches

= Urganize cache as independent banks to
support simultaneous access
= ARM Cortex-A8 supports 1-4 banks for L2
=« Intel i7 supports 4 banks for L1 and 8 banks for

L2
= Interleave banks according to block address

Block Block Block Block

address Bank 0 address Bank 1 address Bank 2 address Bank 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte

addressing.

:h Critical Word First, Early Restart

Critical word first
= Request missed word from memory first
= Send it to the processor as soon as it arrives

= Early restart
= Request words in normal order

= Send missed work to the processor as soon
as it arrives

= Effectiveness of these strategies
depends on block size and likelihood of
another access to the portion of the
block that has not yet been fetched

Merging Write Buffer

= When storing to a block that is already pending
in the write buffer, update write buffer

= Reduces stalls due to full write buffer
= Do not apply to I/0 addresses

Write address Ay

No write
buffering

108 Memn[108]

Mem([1186]

v
100 1 | Mem[100]
1
1
1

o |o | o | o | <
o | o | o | o | <

[=} [[=] =}

Mem[124]

Mem[100] Mem[108] Mem[116] Mem([124]

Write
buffering

o o o - | <
=] o o - | <
=] [=] o - <
=] [=] o - <

i Compiler Optimizations

= Loop Interchange

= Swap nested loops to access memory in
sequential order

= Blocking

=« Instead of accessing entire rows or
columns, subdivide matrices into blocks

= Requires more memory accesses but
improves locality of accesses

i Hardware Prefetching

Fetch two blocks on miss (include next
sequential block)

2.20
2.00 i 1.97
= i
g 1.80 i
g " i
e i
= :
o 1.60 7
e] 1.49
g 145 |
5 1401 i - 1.40
i) i o
& E 10 129
i 1.20 1.21
1.204 1.16 i 1.18 I I I I
1.0’0 I T :I I T T T T T T T T
gap mcf fam3d wupwise galgel facerec swim applu lucas mgrid equake
SPECint2000 SPECip2000

Pentium 4 Pre-fetching

i Compiler Prefetching

Insert prefetch instructions before data
is needed

= Non-faulting: prefetch doesn’t cause
exceptions

= Register prefetch
= Loads data into register

= Cache prefetch
= Loads data into cache

= Combine with loop unrolling and
software pipelining

Summary 3
Hit Band- Miss Miss Power Hardware cost/

Technique time width penalty rate consumption complexity Comment

Small and simple + - + 0 Trivial: widely used

caches

Way-predicting caches + + 1 Used in Pentium 4

Pipelined cache access - + 1 Widely used

Nonblocking caches + + 3 Widely used

Banked caches + + 1 Used in L2 of both 17 and
Cortex-A8

Critical word first + 2 Widely used

and early restart

Merging write buffer + 1 Widely used with write
through

Compiler techniques to + 0 Software is a challenge, but

recluce cache misses many compilers handle
commeon linear algebra
calculations

Hardware prefetching + + - 2 instr., Most provide prefetch

of instructions and data 3 data instructions; modern high-
end processors also
automatically prefetch in
hardware.

Compiler-controlled + + 3 Needs nonblocking cache;

prefetching possible instruction overhead;

in many CPUs

Figure 2.11 Summary of 10 advanced cache optimizations showing impact on cache performance, power con-
sumption, and complexity. Although generally a technique helps only one factor, prefetching can reduce misses if
done sufficiently early; if not, it can reduce miss penalty. + means that the technique improves the factor, - means it
hurts that factor, and blank means it has no impact. The complexity measure is subjective, with 0 being the easiest and
3 being a challenge.

Memory Technology

Performance metrics

= Latency is concern of cache

=« Bandwidth is concern of multiprocessors
and I/0

= Access time
= Time between read request and when desired
word arrives

= Cycle time
= Minimum time between unrelated requests to
memory

= DRAM used for main memory, SRAM
used for cache

Memory Technology

o M

= Requires low power to retain bit
= Requires 6 transistors/bit

= DRAM

= Must be re-written after being read

= Must also be periodically refeshed
= Every ~ 8 ms
= Each row can be refreshed simultaneously

= One transistor/bit

= Address lines are multiplexed:
= Upper half of address: row access strobe (RAS)
« Lower half of address: column access strobe (CAS)

Memory Technology

= Amdahl:

= Memory capacity should grow linearly with processor
speed

=« Unfortunately, memory capacity and speed has not
kept pace with processors

= Some optimizations:
= Multiple accesses to same row

= Synchronous DRAM
=« Added clock to DRAM interface
=« Burst mode with critical word first

= Wider interfaces
Double data rate (DDR)
Multiple banks on each DRAM device

Memory Optimizations

Row access strobe (RAS)

Slowest Fastest Column access strobe (CAS)/ Cycle
Production year Chipsize DRAM Type DRAM(ns) DRAM (ns) data transfer time (ns) time (ns)
1980 64K bit DRAM 180 150 75 250
1983 256K bit DRAM 150 120 50 220
1986 1M bat DRAM 120 100 25 190
1989 4M bat DRAM 100 80 20 165
1992 16M bit DRAM 80 60 15 120
1996 64M bat SDRAM 70 50 2 110
1998 128M bit SDRAM 70 50 10 100
2000 256M bit DDRI 65 45 7 90
2002 512M bit DDR1 60 40 5 80
2004 1G bit DDR2 55 35 5 70
2006 2G bit DDR2 50 30 2.5 60
2010 4G bit DDR3 36 28 1 37
2012 8G bit DDR3 30 24 0.5 31

Figure 2.13 Times of fast and slow DRAMs vary with each generation. (Cycle time is defined on page 95.) Perfor-
mance improvement of row access time is about 5% per year. The improvement by a factor of 2 in column access in
1986 accompanied the switch from NMOS DRAMs to CMOS DRAMs. The introduction of various burst transfer
modes in the mid-1990s and SDRAMs in the late 1990s has significantly complicated the calculation of access time
for blocks of data; we discuss this later in this section when we talk about SDRAM access time and power. The DDR4
designs are due for introduction in mid- to late 2012, We discuss these various forms of DRAMs in the next few pages.

Y SEVT -

Memory Optimizations

Standard Clockrate (MHz) M transfers per second DRAM name MB/sec /DIMM DIMM name

DDR 133 266 DDR266 2128 PC2100
DDR 150 300 DDR300 2400 PC2400
DDR 200 400 DDR400 3200 PC3200
DDR2 266 533 DDR2-533 4264 PC4300
DDR2 333 667 DDR2-667 53336 PC5300
DDR2 400 800 DDR2-800 6400 PC6400
DDR3 333 1066 DDR3-1066 8528 PC8500
DDR3 666 1333 DDR3-1333 10,664 PC10700
DDR3 800 1600 DDR3-1600 12,800 PC12800
DDR4 1066-1600 2133-3200 DDR4-3200 17.056-25,600 PC25600

Figure 2.14 Clock rates, bandwidth, and names of DDR DRAMS and DIMMs in 2010. Note the numerical relation-
ship between the columns. The third column is twice the second, and the fourth uses the number from the third col-
umn in the name of the DRAM chip. The fifth column is eight times the third column, and a rounded version of this
number is used in the name of the DIMM. Although not shown in this figure, DDRs also specify latency in clock cycles
as four numbers, which are specified by the DDR standard. For example, DDR3-2000 CL 9 has latencies of 9-9-9-28,
What does this mean? With a 1 ns clock (clock cycle is one-half the transfer rate), this indicate 9 ns for row to columns
address (RAS time), 9 ns for column access to data (CAS time), and a minimum read time of 28 ns. Closing the row
takes 9 ns for precharge but happens only when the reads from that row are finished. In burst mode, transfers occur
on every clock on both edges, when the first RAS and CAS times have elapsed. Furthermore, the precharge in not
needed until the entire row is read. DDR4 will be produced in 2012 and is expected to reach clock rates of 1600 MHz
in 2014, when DDRS5 is expected to take over. The exercises explore these details further.

i Memory Optimizations

= DDR:

= DDR2

= Lower power (2.5V -> 1.8V)

= Higher clock rates (266 MHz, 333 MHz, 400 MHz)
= DDR3

= 1.5V

= 800 MHz
= DDR4

= 1-1.2V

= 1600 MHz

= GDDRS5 is graphics memory based on
DDR3

Memory Optimizations

raphics memory:

= Achieve 2-5 X bandwidth per DRAM vs.
DDR3
= Wider interfaces (32 vs. 16 bit)

= Higher clock rate

Possible because they are attached via soldering instead
of socketted DIMM modules

= Reducing power in SDRAMs:
=« Lower voltage

= Low power mode (ignores clock, continues
to refresh)

‘L Memory Power Consumption

Power in mW

600 -

500 -
400 -

300 -
200 -

100 -

B Read, write, terminate
power

O Activate power
B Background power

0

ow
pc::wer
mode

Typlcal
usage

Fully
active

Flash Memory

+

Type of EEPROM

Must be erased (in blocks) before being
overwritten

Non volatile
Limited number of write cycles

Cheaper than SDRAM, more expensive
than disk

Slower than SRAM, faster than disk

i Memory Dependability

= Memory is susceptible to cosmic rays

s SOft errors: dynamic errors

=« Detected and fixed by error correcting codes
(ECC)

s Hard errors: permanent errors
=« Use sparse rows to replace defective rows

= Chipkill: a RAID-like error recovery
technique

Virtual Memory

Protection via virtual memory

Keeps processes in their own memory space

= Role of architecture:

Provide user mode and supervisor mode
Protect certain aspects of CPU state

Provide mechanisms for switching between
user mode and supervisor mode

Provide mechanisms to limit memory
accesses

Provide TLB to translate addresses

Virtual Machines

upports isolation and security
Sharing a computer among many unrelated users

Enabled by raw speed of processors, making the
overhead more acceptable

Allows different ISAs and operating systems to be
presented to user programs
=« 'System Virtual Machines”

= SVM software is called “virtual machine monitor” or
“hypervisor”

= Individual virtual machines run under the monitor are
called “guest VMs”

Impact of VMs on Virtual Memory

= Each guest OS maintains its own set of
page tables

= VMM adds a level of memory between
physical and virtual memory called “real
memory”

« VMM maintains shadow page table that
maps guest virtual addresses to physical
addresses

= Requires VMM to detect guest’s changes to its
own page table

= Occurs naturally if accessing the page table
pointer is a privileged operation

Example on Page 80

Example

Answer

Using the data in Figure B.8 in Appendix B and Figure 2.3, determine whether a
32 KB four-way set associative L1 cache has a faster memory access time than a
32 KB two-way set associative L1 cache. Assume the miss penalty to L2 is 15
times the access time for the faster L1 cache. Ignore misses beyond L2. Which
has the faster average memory access time?

Let the access time for the two-way set associative cache be 1. Then, for the two-
way cache:
Average memory access time, . = Hit time + Miss rate X Miss penalty

= 1+0.038x15 = 1.38

For the four-way cache, the access time is 1.4 times longer. The elapsed time of
the miss penalty is 15/1.4 = 10.1. Assume 10 for simplicity:
Average memory access time Lviay = Hit timez_Way x 1.4 + Miss rate x Miss penalty
= 1.4+0037x10 = 1.77
Clearly, the higher associativity looks like a bad trade-off; however, since cache

access in modern processors is often pipelined, the exact impact on the clock
cycle time is difficult to assess.

61

i Example on Page 82

Example

Answer

Assume that there are half as many D-cache accesses as [-cache accesses, and
that the I-cache and D-cache are responsible for 25% and 15% of the processor’s
power consumption in a normal four-way set associative implementation. Deter-
mine if way selection improves performance per watt based on the estimates
from the study above.

For the [-cache, the savings in power is 25 X 0.28 = 0.07 of the total power, while
for the D-cache it is 15 x 0.35 = 0.05 for a total savings of 0.12. The way predic-
tion version requires (.88 of the power requirement of the standard 4-way cache.
The increase in cache access time is the increase in I-cache average access time
plus one-half the increase in D-cache access time, or 1.04 + 0.5 x 0.13 = 1.11
times longer. This result means that way selection has 0.90 of the performance of
a standard four-way cache. Thus, way selection improves performance per joule
very slightly by a ratio of 0.90/0.88 = 1.02. This optimization is best used where
power rather than performance is the key objective.

62

Example on Page 83

Example Which is more important for floating-point programs: two-way set associativity or
hit under one miss for the primary data caches? What about integer programs?
Assume the following average miss rates for 32 KB data caches: 5.2% for floating-
point programs with a direct-mapped cache, 4.9% for these programs with a two-
way set associative cache, 3.5% for integer programs with a direct-mapped cache,
and 3.2% for integer programs with a two-way set associative cache. Assume the
miss penalty to L2 is 10 cycles, and the L2 misses and penalties are the same.

Answer For floating-point programs, the average memory stall times are

Muiss ratepyy X Miss penalty = 5.2% x 10 =0.52
Miss rate; ,,, X Miss penalty = 4.9% x 10 = 0.49

63

‘L Example on Page 83 (contd.)

The cache access latency (including stalls) for two-way associativity is 0.49/0.52
or 94% of direct-mapped cache. The caption of Figure 2.5 says hit under one
miss reduces the average data cache access latency for floating point programs to
87.5% of a blocking cache. Hence, for floating-point programs, the direct
mapped data cache supporting one hit under one miss gives better performance
than a two-way set-associative cache that blocks on a miss.

For integer programs, the calculation 1s

Miss ratepy, X Miss penalty = 3.5% x 10 = 0.35
Miss rate, ,,, X Miss penalty = 3.2% x 10 = 0.32

The data cache access latency of a two-way set associative cache is thus 0.32/0.35
or 91% of direct-mapped cache, while the reduction in access latency when

allowing a hit under one miss is 9%, making the two choices about equal.
64

i Homework

= 2.8, B.1

65

