
EI 338: Computer Systems Engineering
(Operating Systems & Computer Architecture)

Dept. of Computer Science & Engineering
Chentao Wu

wuct@cs.sjtu.edu.cn

Download lectures

• ftp://public.sjtu.edu.cn

•User: wuct

•Password: wuct123456

•http://www.cs.sjtu.edu.cn/~wuct/cse/

ftp://public.sjtu.edu.cn/

3

Appendix A

Instruction Set Principles

Computer Architecture
A Quantitative Approach, Fifth Edition

4

Outline

 Instruction Set Architecture

 5 stage pipelining

 Structural and Data Hazards

 Forwarding

 Branch Schemes

 Exceptions and Interrupts

 Conclusion

Instruction Set Architecture

 Instruction set architecture is the structure of
a computer that a machine language
programmer must understand to write a
correct (timing independent) program for that
machine.

 The instruction set architecture is also the
machine description that a hardware designer
must understand to design a correct
implementation of the computer.

Evolution of Instruction Sets

Single Accumulator (EDSAC 1950)

Accumulator + Index Registers

(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

High-level Language Based Concept of a Family

(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(Mips,Sparc,HP-PA,IBM RS6000,PowerPC . . .1987)

LIW/”EPIC”? (IA-64. . .1999)

Evolution of Instruction Sets

 Major advances in computer architecture are
typically associated with landmark instruction
set designs
 Ex: Stack vs GPR (System 360)

 Design decisions must take into account:
 technology

 machine organization

 programming languages

 compiler technology

 operating systems

 And they in turn influence these

Instructions Can Be Divided into
3 Classes (I)

 Data movement instructions
 Move data from a memory location or register to another

memory location or register without changing its form

 Load—source is memory and destination is register

 Store—source is register and destination is memory

 Arithmetic and logic (ALU) instructions
 Change the form of one or more operands to produce a

result stored in another location

 Add, Sub, Shift, etc.

 Branch instructions (control flow instructions)
 Alter the normal flow of control from executing the next

instruction in sequence

 Br Loc, Brz Loc2,—unconditional or conditional branches

Classifying ISAs

Accumulator (before 1960):
1 address add A acc <- acc + mem[A]

Stack (1960s to 1970s):
0 address add tos <- tos + next

Memory-Memory (1970s to 1980s):
2 address add A, B mem[A] <- mem[A] + mem[B]
3 address add A, B, C mem[A] <- mem[B] + mem[C]

Register-Memory (1970s to present):
2 address add R1, A R1 <- R1 + mem[A]

load R1, A R1 <_ mem[A]

Register-Register (Load/Store) (1960s to present):
3 address add R1, R2, R3 R1 <- R2 + R3

load R1, R2 R1 <- mem[R2]
store R1, R2 mem[R1] <- R2

Classifying ISAs

Stack Architectures
 Instruction set:

add, sub, mult, div, . . .

push A, pop A

 Example: A*B - (A+C*B)
push A

push B

mul

push A

push C

push B

mul

add

sub

A B

A

A*B

A*B

A*B

A*B

A

A

C

A*B

A A*B

A C B B*C A+B*C result

Stacks: Pros and Cons

 Pros
 Good code density (implicit operand addressing top of

stack)

 Low hardware requirements

 Easy to write a simpler compiler for stack architectures

 Cons
 Stack becomes the bottleneck

 Little ability for parallelism or pipelining

 Data is not always at the top of stack when need, so
additional instructions like TOP and SWAP are needed

 Difficult to write an optimizing compiler for stack
architectures

Accumulator Architectures

• Instruction set:

add A, sub A, mult A, div A, . . .

load A, store A

• Example: A*B - (A+C*B)

load B

mul C

add A

store D

load A

mul B

sub D

B B*C A+B*C AA+B*C A*B result

Accumulators: Pros and Cons

• Pros

–Very low hardware requirements

–Easy to design and understand

• Cons

–Accumulator becomes the bottleneck

– Little ability for parallelism or pipelining

–High memory traffic

Memory-Memory Architectures

• Instruction set:

(3 operands) add A, B, C sub A, B, C mul A, B, C

• Example: A*B - (A+C*B)

– 3 operands

mul D, A, B

mul E, C, B

add E, A, E

sub E, D, E

Memory-Memory: Pros and Cons

• Pros

– Requires fewer instructions (especially if 3 operands)

– Easy to write compilers for (especially if 3 operands)

• Cons

– Very high memory traffic (especially if 3 operands)

– Variable number of clocks per instruction (especially if
2 operands)

– With two operands, more data movements are required

Register-Memory Architectures

• Instruction set:

add R1, A sub R1, A mul R1, B

load R1, A store R1, A

• Example: A*B - (A+C*B)

load R1, A

mul R1, B /* A*B */

store R1, D

load R2, C

mul R2, B /* C*B */

add R2, A /* A + CB */

sub R2, D /* AB - (A + C*B) */

Memory-Register: Pros and Cons

• Pros

– Some data can be accessed without loading first

– Instruction format easy to encode

– Good code density

• Cons

– Operands are not equivalent (poor orthogonality)

– Variable number of clocks per instruction

– May limit number of registers

Load-Store Architectures

• Instruction set:

add R1, R2, R3 sub R1, R2, R3 mul R1, R2, R3

load R1, R4 store R1, R4
• Example: A*B - (A+C*B)

load R1, &A

load R2, &B

load R3, &C

load R4, R1

load R5, R2

load R6, R3

mul R7, R6, R5 /* C*B */

add R8, R7, R4 /* A + C*B */

mul R9, R4, R5 /* A*B */

sub R10, R9, R8 /* A*B - (A+C*B) */

Load-Store: Pros and Cons

• Pros

–Simple, fixed length instruction encoding

– Instructions take similar number of cycles

–Relatively easy to pipeline

• Cons

–Higher instruction count

–Not all instructions need three operands

–Dependent on good compiler

Registers:
Advantages and Disadvantages

• Advantages

– Faster than cache (no addressing mode or tags)

– Deterministic (no misses)

– Can replicate (multiple read ports)

– Short identifier (typically 3 to 8 bits)

– Reduce memory traffic

• Disadvantages

– Need to save and restore on procedure calls and context
switch

– Can’t take the address of a register (for pointers)

– Fixed size (can’t store strings or structures efficiently)

– Compiler must manage

General Register Machine and
Instruction Formats

M emory

O p1Addr: O p1
load

N exti P rogram

counter

load R 8 , O p1 (R 8 ฌ O p1)

C PU

R egisters

R 8

R 6

R 4

R 2

Instruction formats

R 8load O p1Addr

a dd R 2, R 4, R 6 (R 2 ฌ R 4 + R 6)

R 2add R 6R 4

General Register Machine and
Instruction Formats

 It is the most common choice in today’s
general-purpose computers

 Which register is specified by small “address”
(3 to 6 bits for 8 to 64 registers)

 Load and store have one long & one short
address: One and half addresses

 Arithmetic instruction has 3 “half” addresses

Real Machines Are Not So Simple

 Most real machines have a mixture of 3, 2, 1,
0, and 1- address instructions

 A distinction can be made on whether
arithmetic instructions use data from memory

 If ALU instructions only use registers for
operands and result, machine type is load-
store
 Only load and store instructions reference memory

 Other machines have a mix of register-
memory and memory-memory instructions

Alignment Issues

• If the architecture does not restrict memory accesses to be aligned then

– Software is simple

– Hardware must detect misalignment and make 2 memory
accesses

– Expensive detection logic is required

– All references can be made slower

• Sometimes unrestricted alignment is required for backwards compatibility

• If the architecture restricts memory accesses to be aligned then

– Software must guarantee alignment

– Hardware detects misalignment access and traps

– No extra time is spent when data is aligned

• Since we want to make the common case fast, having restricted alignment
is often a better choice, unless compatibility is an issue

Types of Addressing Modes (VAX)

1. Register direct Ri

2. Immediate (literal)#n

3. Displacement M[Ri + #n]

4. Register indirect M[Ri]

5. Indexed M[Ri + Rj]

6. Direct (absolute) M[#n]

7. Memory Indirect M[M[Ri]]

8. Autoincrement M[Ri++]

9. Autodecrement M[Ri - -]

10. Scaled M[Ri + Rj*d + #n]

memory

reg. file

Summary of Use of Addressing
Modes

Distribution of Displacement Values

Frequency of Immediate Operands

Types of Operations

 Arithmetic and Logic: AND, ADD

 Data Transfer: MOVE, LOAD, STORE

 Control BRANCH, JUMP, CALL

 System OS CALL, VM

 Floating Point ADDF, MULF, DIVF

 Decimal ADDD, CONVERT

 String MOVE, COMPARE

 Graphics (DE)COMPRESS

Distribution of Data Accesses by Size

Relative Frequency of Control
Instructions

Control instructions (contd.)

 Addressing modes

 PC-relative addressing (independent of
program load & displacements are close by)

 Requires displacement (how many bits?)

 Determined via empirical study. [8-16 works!]

 For procedure returns/indirect
jumps/kernel traps, target may not be
known at compile time.

 Jump based on contents of register

 Useful for switch/(virtual) functions/function
ptrs/dynamically linked libraries etc.

Branch Distances (in terms of
number of instructions)

Frequency of Different Types of
Compares in Conditional Branches

Encoding an Instruction set

 a desire to have as many registers and
addressing mode as possible

 the impact of size of register and addressing
mode fields on the average instruction size and
hence on the average program size

 a desire to have instruction encode into
lengths that will be easy to handle in the
implementation

Three choice for encoding the
instruction set

Compilers and ISA

 Compiler Goals

 All correct programs compile correctly

 Most compiled programs execute quickly

 Most programs compile quickly

 Achieve small code size

 Provide debugging support

 Multiple Source Compilers

 Same compiler can compiler different languages

 Multiple Target Compilers

 Same compiler can generate code for different
machines

Compilers Phases

Compiler Based Register
Optimization

 Assume small number of registers (16-32)

 Optimizing use is up to compiler

 HLL programs have no explicit references to
registers
 usually – is this always true?

 Assign symbolic or virtual register to each
candidate variable

 Map (unlimited) symbolic registers to real
registers

 Symbolic registers that do not overlap can
share real registers

 If you run out of real registers some variables
use memory

Allocation of Variables
 Stack

 used to allocate local variables

 grown and shrunk on procedure calls and returns

 register allocation works best for stack-allocated
objects

 Global data area

 used to allocate global variables and constants

 many of these objects are arrays or large data
structures

 impossible to allocate to registers if they are aliased

 Heap

 used to allocate dynamic objects

 heap objects are accessed with pointers

 never allocated to registers

Designing ISA to Improve
Compilation

 Provide enough general purpose registers to
ease register allocation (more than 16).

 Provide regular instruction sets by keeping the
operations, data types, and addressing modes
orthogonal.

 Provide primitive constructs rather than trying
to map to a high-level language.

 Simplify trade-off among alternatives.

 Allow compilers to help make the common
case fast.

ISA Metrics
 Orthogonality

 No special registers, few special cases, all operand
modes available with any data type or instruction
type

 Completeness

 Support for a wide range of operations and target
applications

 Regularity

 No overloading for the meanings of instruction
fields

 Streamlined Design

 Resource needs easily determined. Simplify
tradeoffs.

 Ease of compilation (programming?), Ease of
implementation, Scalability

Quick Review of
Design Space of ISA

Five Primary Dimensions

 Number of explicit operands (0, 1, 2, 3)

 Operand Storage Where besides memory?

 Effective Address How is memory location
specified?

 Type & Size of Operands byte, int, float, vector, . . .

How is it specified?

 Operations add, sub, mul, . . .

How is it specifed?

Other Aspects

 Successor How is it specified?

 Conditions How are they
determined?

 Encodings Fixed or variable? Wide?

 Parallelism

ISA Metrics
Aesthetics:
 Orthogonality

 No special registers, few special cases, all operand
modes available with any data type or instruction
type

 Completeness

 Support for a wide range of operations and target
applications

 Regularity

 No overloading for the meanings of instruction
fields

 Streamlined

 Resource needs easily determined
Ease of compilation (programming?)

Ease of implementation

Scalability

A "Typical" RISC

 32-bit fixed format instruction (3 formats)

 32 32-bit GPR (R0 contains zero, Double
Precision takes a register pair)

 3-address, reg-reg arithmetic instruction

 Single address mode for load/store:
base + displacement

 no indirection

 Simple branch conditions

 Delayed branch

see: SPARC, MIPS, MC88100, AMD2900, i960, i860
PARisc, DEC Alpha, Clipper,
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3

MIPS data types

 Bytes

 characters

 Half-words

 Short ints, OS related data-structures

 Words

 Single FP, Integers

 Doublewords

 Double FP, Long Integers (in some
implementations)

Instruction Layout for MIPS

MIPS (32 bit instructions)

Op

31 26 01516202125

Rs1 Rd Immediate

Op

31 26 025

Op

31 26 01516202125

Rs1 Rs2

target

Rd Opx

1. Register-Register

561011

2a. Register-Immediate

Op

31 26 01516202125

Rs1 Rs2/Opx Displacement

2b. Branch (displacement)

3. Jump / Call

MIPS (addressing modes)

 Register direct

 Displacement

 Immediate

 Byte addressable & 64 bit address

 R0  always contains value 0

 Displacement = 0 register indirect

 R0 + Displacement=0  absolute addressing

Types of Operations

 Loads and Stores

 ALU operations

 Floating point operations

 Branches and Jumps (control-related)

Load/Store Instructions

Sample ALU Instructions

Control Flow Instructions

56

Datapath vs Control

 Datapath: Storage, Functional Units, Interconnections
sufficient to perform the desired functions
 Inputs are Control Points
 Outputs are signals

 Controller: State machine to orchestrate operation on the data
path
 Based on desired function and signals

Datapath Controller

Control Points

signals

57

Approaching an ISA
 Instruction Set Architecture

 Defines set of operations, instruction format, hardware supported
data types, named storage, addressing modes, sequencing

 Meaning of each instruction is described by RTL (register
transfer language) on architected registers and memory

 Given technology constraints, assemble adequate
datapath
 Architected storage mapped to actual storage

 Function Units (FUs) to do all the required operations

 Possible additional storage (eg. Internal registers: MAR, MDR, IR,
…{Memory Address Register, Memory Data Register, Instruction
Register}

 Interconnect to move information among registers and function
units

 Map each instruction to a sequence of RTL operations

 Collate sequences into symbolic controller state
transition diagram (STD)

 Lower symbolic STD to control points

 Implement controller

58

Homework

 A.1, A.5, A.7

