. 5 ye - T !
. Jerx TR N _— % -
RS s ' TN %|ﬂ
\ N G SN S -
s A0 b ot

El 338: Computer Systems Engineering
(Operating Systems & Computer Architecture)
Dept. of Computer Science & Engineering

Chentao Wu
wuct@cs.sjtu.edu.cn

IPLEEVS:

SHANGHAI JIAD TOMNG UNIVERSITY

Download \ectures

o ftp://public.sjtu.edu.cn

e User: wuct
e Password: wuct123456

* http://www.cs.sjtu.edu.cn/~wuct/cse/

ftp://public.sjtu.edu.cn/

Computer Architecture

A Quantitative Approach, Fifth Edition

Appendix A

Instruction Set Principles

i Outline

Instruction Set Architecture
= 5 stage pipelining
= Structural and Data Hazards
= Forwarding
= Branch Schemes
= Exceptions and Interrupts
= Conclusion

i Instruction Set Architecture

= Instruction set architecture is the structure of
a computer that a machine language
programmer must understand to write a
correct (timing independent) program for that
machine.

= The instruction set architecture is also the
machine description that a hardware designer
must understand to design a correct
implementation of the computer.

Evolution of Instruction Sets

Single Accumulator (EDSAC 1950)
I
Accumulator + Index Registers

(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

/ \

High-level Language Based Concept of a Family

(B5000 196&)\ / (IBM 360 1964)

General Purpose Register Machines

/ T

Complex Instruction Sets Load/Store Architecture
(Vax, Intel 432 1977-80) (CIDC 6600, Cray 1 1963-76)
RISC

(Mips,Sparc,HP-PA,lBM RS6000,PowerPC . . .1987)
LIW/”EPIC”? (IA-64. ..1999)

i Evolution of Instruction Sets

= Major advances in computer architecture are
typically associated with landmark instruction

set designs
= Ex: Stack vs GPR (System 360)

= Design decisions must take into account:

= technology

= machine organization

= programming languages
= compiler technology

= operating systems

= And they in turn influence these

Instructions Can Be Divided into
3 Classes (I)

= Data movement instructions

= Move data from a memory location or register to another
memory location or register without changing its form

0 —source is memory and destination is register
0 —source is register and destination is memory

= Arithmetic and logic (ALU) instructions

= Change the form of one or more operands to produce a
result stored in another location

5 A), , etc.
= Branch instructions (control flow instructions)

= Alter the normal flow of control from executing the next
instruction in sequence

Y ,—unconditional or conditional branches

Classifying ISAs

Accumulator (before 1960):

1 address add A acc <— acc + mem[A]
Stack (1960s to 1970s):
0 address add tos <- tos + next
Memory-Memory (1970s to 1980s):
2 address add A, B mem[A] <- mem[A] + mem[B]
3 address add A, B, C mem[A] <- mem[B] + mem[C]
Register-Memory (1970s to present):
2 address add R1, A R1 <- R1 + mem[A]
load R1, A R1 <_ mem[A]
Register-Register (Load/Store) (1960s to present):
3 address add R1,R2,R3 R1<-R2+R3
load R1, R2 R1 <- mem[R2]

store R1, R2 mem[R1] <- R2

Classifying ISAs

(a) Stack (b) Accumulator (c) Register-memory (d) Register-register/load-store

Processor

108 — I

v

@ 2003 Flepvier Science (LUISAY All riahts reserved

nstruction set:

add, sub, mult, div, ...

push A, pop A

Stack Architectures

= Example: A*B - (A+C*B)

push A

push B

A

A*B

B*C

A+B*C:

mul
push A
push C
push B
mul
add
sub

A*B

A*B

A*B

A*B

)>>(-J>OUJ

Stacks: Pros and Cons

ros

=« Good code density (implicit operand addressing—> top of

stack)

= Low hardware requirements
= Easy to write a simpler compiler for stack architectures
= Cons

Stack becomes the bottleneck
Little ability for parallelism or pipelining

Data is not always at the top of stack when need, so
additional instructions like TOP and SWAP are needed

Difficult to write an optimizing compiler for stack
architectures

Accumulator Architectures

e |nstruction set:
add A, sub A, mult A, divA, ...
load A, store A

* Example: A*B - (A+C*B) g™ "BREt FRTBRET TATERET IR TARE! [result
load B

mul C
add A
store D
load A
mul B
sub D

iAccumuIators: Pros and Cons

* Pros
—Very low hardware requirements

— Easy to design and understand
« Cons

—Accumulator becomes the bottleneck
— Little ability for parallelism or pipelining
—High memory traffic

il\/lemory-l\/lemory Architectures

* Instruction set:
(3operands) addA,B,C subA,B,C mulA,B,C

 Example: A*B - (A+C*B)
—3 operands
mul D, A, B
mul E, C, B
add E, A, E
sub E, D, E

Memory-Memory: Pros and Cons

* Pros
— Requires fewer instructions (especially if 3 operands)
— Easy to write compilers for (especially if 3 operands)
« Cons
— Very high memory traffic (especially if 3 operands)

— Variable number of clocks per instruction (especially if
2 operands)

— With two operands, more data movements are required

Register-Memory Architectures

* |nstruction set:

add R1, A
load R1, A

« Example: A*B - (A+C*B)

load R1, A
mul R1, B
store R1, D
load R2, C
mul R2, B
add R2, A
sub R2,D

subR1,A mulR]1, B
store R1, A

/* A*B */
/* C*B */
/* A+ CB */

[AB-(A+C*B) %

Memory-Register: Pros and Cons

* Pros
— Some data can be accessed without loading first
— Instruction format easy to encode
— Good code density

« Cons
— Operands are not equivalent (poor orthogonality)
— Variable number of clocks per instruction
— May limit number of registers

Load-Store Architectures

Instruction set:
add R1, R2, R3
load R1, R4

Example: A*B - (A+C*B)
load R1, &A
load R2, &B
load R3, &C
load R4, R1
load R5, R2
load R6, R3
mul R7, R6, R5
add R8, R7, R4
mul R9, R4, R5
sub R10, R9, R8

sub R1, R2, R3

mul R1, R2, R3

store R1, R4

/*
/*
/*
/*

C*B

A+ C*B

A*B

A*B - (A+C*B)

*/
*/
*/
*/

i Load-Store: Pros and Cons

* Pros
— Simple, fixed length instruction encoding
—Instructions take similar number of cycles
— Relatively easy to pipeline

 Cons
—Higher instruction count
—Not all instructions need three operands
— Dependent on good compiler

Registers:
Advantages and Disadvantages

« 'Advantages
— Faster than cache (no addressing mode or tags)
— Deterministic (no misses)
— Can replicate (multiple read ports)
— Short identifier (typically 3 to 8 bits)
— Reduce memory traffic

« Disadvantages

— Need to save and restore on procedure calls and context
switch

— Can’t take the address of a register (for pointers)
— Fixed size (can’t store strings or structures efficiently)
— Compiler must manage

General Register Machine and
Instruction Formats

CPU
: Instruction formats
Memory Registers
load load R8, Opl (R8 & Op1l)
OplAddr: Opl ' R8
load R8 OplAddr
(\ R6
R4
V add R2, R4, R6 (R2 a4 R4 + R6)
add R2 R4 R6
R2
Nexti |« Program
counter

Instruction Formats

i General Register Machine and

= It is the most common choice in today’s
general-purpose computers

= Which register is specified by small “"address”
(3 to 6 bits for 8 to 64 registers)

= Load and store have one long & one short
address: One and half addresses

= Arithmetic instruction has 3 “half” addresses

i Real Machines Are Not So Simple

= Most real machines have a mixture of 3, 2, 1,
0, and 1- address instructions

= A distinction can be made on whether
arithmetic instructions use data from memory

= If ALU instructions only use registers for
operands and result, machine type is

= Only load and store instructions reference memory

= Other machines have a mix of register-
memory and memory-memory instructions

Alignment Issues

If the architecture does not restrict memory accesses to be aligned then
— Software is simple

— Hardware must detect misalignment and make 2 memory
accesses

— Expensive detection logic is required

— All references can be made slower
Sometimes unrestricted alignment is required for backwards compatibility
If the architecture restricts memory accesses to be aligned then

— Software must guarantee alignment

— Hardware detects misalignment access and traps

— No extratime is spent when data is aligned

Since we want to make the common case fast, having restricted alignment
Is often a better choice, unless compatibility is an issue

vypes of Addressing Modes (VAX)

memory

1. Register direct Ri
2. Immediate (literal)#n

3. Displacement M[Ri + #n]

4. Register indirect M[RIi]

5. Indexed M[Ri + Rj]

6. Direct (absolute) M[#n]

7.MMemory Indirect M[M[RIi]]

8. Autoincrement M[Ri++]

9. Autodecrement M[Ri - -] reg. file
10. Scaled M[Ri + Rj*d + #n]

Summary of Use of Addressing

Modes

Memory indirect

Scaled

Register indirect

Immediate

Displacement

TeX
spice
gcc

TeX
spice
gce

TeX
spice
gcc

TeX
spice
gce

TeX
spice
gcce

24%

32% |
> 55%
40%
0% 10% 20% 30% 40% 50% 60%

Frequency of the addressing mode

"

istribution of Displacement Values

Percentage of
displacement

0%

35%

30% [

25°/o s

20%

15%

10%

5%

0%

Integer average

Floating-point average

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of bits of displacement

¢ Frequency of Inmediate Operands

Loads

ALU operations

All instructions

0%

B Floating-point average
B Integer average

23%

25%

21%

5% 10% 15% 20% 25% 30%

© 2003 Elsevier Science (USA). All rights reserved.

i Types of Operations
= Arithmetic and Logic: AND, ADD

= Data Transfer:
= Control

= System

= Floating Point
= Decimal

= String

= Graphics

MOVE, LOAD, STORE
BRANCH, JUMP, CALL
0S CALL, VM

ADDF, MULF, DIVF
ADDD, CONVERT
MOVE, COMPARE
(DE)COMPRESS

Distribution of Data Accesses by Size

Roulie word — 70%

(64 bits) 59%
Word 29%
(32 bits) 26%

—

Half word | oo
(16 bits) 5% B Floating-point average

F 0 Integer average
Byte | 1%
(8 bits) 10%

0% 20% 40% 60% 80%

© 2003 Elsevier Science (USA). All rights reserved.

Relative Frequency of Control
Instructions

B Floating-point average
B Integer average

8%

Call/return

Jump

82%
Conditional branch 75%

50% 75% 100%

Frequency of branch instructions

0% 25%

© 2003 Elsevier Science (USA). All rights reserved.

i Control instructions (contd.)

= Addressing modes

=« PC-relative addressing (independent of
program load & displacements are close by)
= Requires displacement (how many bits?)
= Determined via empirical study. [8-16 works!]

= For procedure returns/indirect
jumps/kernel traps, target may not be
known at compile time.
= Jump based on contents of register

= Useful for switch/(virtual) functions/function
ptrs/dynamically linked libraries etc.

Branch Distances (in terms of
number of instructions)

30%

2506 e e

20%) e s e e e a S R Al
Integer
Percentage . average
ofdistance O[T

Floating-point average
100/0 e e e W e O e S S o N PSS S RS AL S G S e :

5(%) ...

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Bits of branch displacement

0%

Frequency of Different Types of
Compares in Conditional Branches

Not equal

Equal

Greater than or equal

Greater than

Less than or equal

Less than

5%
2%

—

0%

P 1 1%

0%
0%

16%
18%

B Floating-point average
B Integer average

44%
33%

34%
35%

0%

20%

40% 50%

Frequency of comparison types in branches

i Encoding an Instruction set

= a desire to have as many registers and
addressing mode as possible

= the impact of size of register and addressing
mode fields on the average instruction size and
hence on the average program size

= a desire to have instruction encode into
lengths that will be easy to handle in the
implementation

Three choice for encoding the
instruction set

Operation and | Address Address e » = | Address Address
no. of operands | specifier 1 field 1 specifier field
(a) Variable (e.g., VAX, Intel 80x86)
Operation Address Address Address
field 1 field 2 field 3

(b) Fixed (e.g., Alpha, ARM, MIPS, PowerPC, SPARC, SuperH)

Operation Address Address
specifier field

Operation Address Address Address
specifier 1 specifier 2 field

Operation Address Address Address
specifier field 1 field 2

(c) Hybrid (e.g., IBM 360/70, MIPS16, Thumb, TI TMS320C54x)

L‘.f&,

Compilers and ISA

= Compiler Goals

= All correct programs compile correctly

= Most compiled programs execute quickly
= Most programs compile quickly
= Achieve small code size

=« Provide debugging support
= Multiple Source Compilers

= Same compiler can compiler different languages
= Multiple Target Compilers

= Same compiler can generate code for different
machines

Compilers Phases

Jependencies

-anguage dependent;
nachine independent

Somewhat language dependent;
argely machine independent

Small language dependencies;
nachine dependencies slight
e.g., register counts/types)

dighly machine dependent;
anguage independent

Front end per
language

/ntermediate
representation

High-level
optimizations

Global
optimizer

| Code generator .

L.‘.e‘g,

Function

Transform language to
common intermediate form

For example, loop
transformations and
procedure inlining
(also called
procedure integration)

Including global and local
optimizations + register
allocation

Detailed instruction selection
and machine-dependent
optimizations; may include
or be followed by assembler

Compiler Based Register
Optimization

Assume small nhumber of registers (16-32)
Optimizing use is up to compiler
HLL programs have no explicit references to

registers
= usually — is this always true?

Assign symbolic or virtual register to each
candidate variable

Map (unlimited) symbolic registers to real
registers

Symbolic registers that do not overlap can
share real registers

If you run out of real registers some variables
use memory

Allocation of Variables

Stack
= used to allocate local variables
= grown and shrunk on procedure calls and returns

= register allocation works best for stack-allocated
objects

= Global data area
= used to allocate global variables and constants

= many of these objects are arrays or large data
structures

= impossible to allocate to registers if they are aliased
= Heap

= used to allocate dynamic objects

= heap objects are accessed with pointers

= hever allocated to registers

Compilation

i Designing ISA to Improve

= Provide enough general purpose registers to
ease register allocation (more than 16).

= Provide regular instruction sets by keeping the
operations, data types, and addressing modes
orthogonal.

= Provide primitive constructs rather than trying
to map to a high-level language.

= Simplify trade-off among alternatives.

= Allow compilers to help make the common
case fast.

ISA Metrics

= Orthogonality

= No special registers, few special cases, all operand
modes available with any data type or instruction

type
= Completeness

=« Support for a wide range of operations and target
applications

= Regularity

= No overloading for the meanings of instruction
fields

= Streamlined Design

= Resource needs easily determined. Simplify
tradeoffs.

= Ease of compilation (programming?), Ease of
implementation, Scalability

Quick Review of

Design Space of ISA

ive Primary Dimensions

= Number of explicit operands (0,1, 2,3)

= Operand Storage
= Effective Address

= Type & Size of Operands
= Operations

Other Aspects
= Successor

= Conditions
determined?

= Encodings
= Parallelism

Where besides memory?

How is memory location
specified?

byte, int, float, vector, . ..
How is it specified?
add, sub, mul, ...

How is it specifed?

How is it specified?
How are they

Fixed or variable? Wide?

ISA Metrics

Aesthetics:
= Orthogonality

= No special registers, few special cases, all operand
modes available with any data type or instruction

type

= Completeness

= Support for a wide range of operations and target
applications

= Regularity

= No overloading for the meanings of instruction
fields
= Streamlined
= Resource needs easily determined
Ease of compilation (programming?)
Ease of implementation
Scalability

A "Typical" RISC

32-bit fixed format instruction (3 formats)

32 32-bit GPR (RO contains zero, Double
Precision takes a register pair)

3-address, reg-reg arithmetic instruction

Single address mode for load/store:
base + displacement

= ho indirection
Simple branch conditions

Delayed branch

see: SPARC, MIPS, MC88100, AMD2900, 1960, i860
PARisc, DEC Alpha, Clipper,
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3

i MIPS data types

= Bytes
= characters

= Half-words
= Short ints, OS related data-structures

= Words
= Single FP, Integers

= Doublewords

= Double FP, Long Integers (in some
implementations)

Instruction Layout for MIPS

I-type instruction
6 .5 5 16

Opcode rs rt Immediate

Encodes: Loads and stores of bytes, half words, words,
double words. All immediates (rt = rs op immediate)

Conditional branch instructions (rs is register, rd unused)
Jump register, jump and link register
(rd = 0, rs = destination, immediate = 0)

R-type instruction
6 5 5 5 5 6

Opcode rs rt rd shamt funct

Register-register ALU operations: rd - rs funct rt
Function encodes the data path operation: Add, Sub, .
Read/write special registers and moves

J-type instruction
6 26

Opcode Offset added to PC

Jump and jump and link
Trap and return from exception

MIPS (32 bit instructions)

1. Register-Register

31 26 25 2120 16 15 1110 6 5 0
Op Rsl Rs2 Rd Opx
2a. Register-Immediate
31 26 25 2120 16 15 0
Op Rs1 Rd Immediate
2b. Branch (displacement)
31 26 25 2120 16 15 0
Op Rs1 |R52/Opx Displacement
3. Jump / Call
31 26 25 0

Op target

i MIPS (addressing modes)

= Register direct

= Displacement

= Immediate

= Byte addressable & 64 bit address

= RO <& always contains value 0

= Displacement = 0- register indirect

= RO + Displacement=0 - absolute addressing

i Types of Operations

= Loads and Stores

= ALU operations

= Floating point operations

= Branches and Jumps (control-related)

Load/Store Instructions

Example instruction

Instruction name

Meaning

LD R1,30(R2)

Load double word

Regs[R1] . Mem[30+Regs[R2]]

LD R1,1000(R0O) Load double word Regs [R1] ¢, Mem[1000+0]
LW R1,60(R2) Load word Regs [R1]«g, (Mem[60+Regs[R2]],)** ## Mem[60+Regs[R2]]
LB R1,40(R3) Load byte Regs[R1]«—g, (Mem[40+Regs[R3]],)% #¢
Mem[40+Regs [R3]]
LBU R1,40(R3) Load byte unsigned Regs[R1]«¢, 0°® ## Mem[40+Regs[R3]]
LK R1,40(R3) Load half word Regs[R1] e, (Mem[40+Regs[R3]],)% ##

Mem[40+Regs [R3]]##Mem[41+Regs [R3]]

.S FO,50(R3)

Load FP single

Regs [FO] <, Mem[50+Regs[R3]] ## 0%

L.D FO,50(R2)

L.oad FP double

Regs [FO] <4, Mem[50+Regs[R2]]

S0 R3,500(R4)

Store double word

Mem[500+Regs [R4]] g, Regs[R3]

SW R3,500(R4)

Store word

Mem[500+Regs [R4]]¢;, Regs[R3]

5.5 F0,40(R3)

Store FP single

Mem[40+Regs [R3]] 3, Regs[F0];. 3,

$.D F0,40(R3) Store FP double Mem[40+Regs [R3]] <4, Regs[FO]
SH R3,502(R2) Store half Mem[502+Regs [R2]] ¢ Regs[R3]4s. 43
SB R2,41(R3) Store byte Mem[41+Regs[R3]]«5 Regs[R2] ¢ ¢z

Figure 2.28 The load and store instructions in MIPS. All use a single addressing mode and require that the mem-
ory value be aligned. Of course, both loads and stores are available for all the data types shown.,

N

‘_L Sample ALU Instructions

Example instruction Instruction name Meaning

DADDU R1,R2,R3 Add unsigned Regs [R1] <Regs [R2]+Regs [R3]
DADDIU R1,R2,#3 Add immediate unsigned Regs [R1]Regs [R2]+3

LUT R1,#42 Load upper immediate Regs [R1] 0% 4#42440"

DSLL RI1,R2,#5 Shift left logical Regs [R1]«Regs [R2]<<5

DSLT ~ R1,R2,R3 Set less than if (Regs[R2]<Regs[R3])

Regs [R1]«1 else Regs[R1]«0

- ————rnonre—

Figure 2.29 Examples of arithmetic/logical instructions on MIPS, both with and
without immediates.

Control Flow Instructions

Example

instruction Instruction name Meaning

J name Jump PCs6. g3<—name

JAL name Jump and link Regs [R31]«~PC+4; PCye y¢—name;
((PC+4)-2%7) < name < ((PC+4)+2%)

JALR R2 Jump and link register Regs [R31]«PC+4; PC<—Regs[R2]

JR R3 Jump register PC—Regs[R3]

BEQZ R4,name Branch equal zero if (Regs[R4]==0) PC<—name;

((PC+4)=2'7) < name < ((PC+4)+217)

BNE R3,R4,name Branch not equal zero if (Regs[R3]!= Regs[R4]) PCe—name;
((PC+4)-2"7) < name < ((PC+4)+217)

MOVZ R1,R2,R3 Conditional move if (Regs[R3]==0) Regs[R1] «Regs [R?]
if zero

Figure 2.30 Typical control flow instructions in MIPS. All control instructions, except
jumps to an address in a register, are PC-relative. Note that the branch distances are
longer than the address field would suggest; since MIPS instructions are all 32 bits long,
the byte branch address is multiplied by 4 to get a longer distance.

Instruction type/opcode

Instruction meaning

{hata transfers

LB,LBU,SB
LM, LHU,SH

Move data between registers and memory, or berween the integer and FP or special
registers: onlv memory address mode is 16-bit displacement A contents of a GPR

Load byte. load byte unsigned. store byte (to/from integer registers)
Load half word, Joad half word unsigned, store half word (to/from integer registers)

LW, LWU,SW Load word. load word unsigned, store word (1o/from inleger registers)
10,5D Load double word. store double word (to/from integer registers)
L.5,L.D,5.5.5.D Load SP fioar, load DP float. store SP float, store DP float

MECO,MTCO Copy from/to GPR to/from a special register

MOV.S,MOV.D Copy one SP or DP FP register to another FP register

MIC],MTC1 Copy 32 bits from/to FP registers 10/from integer registers

Arithmeticllogical
DADD,DADDI ,DADDU, DADDIU
OSUB,DSUBU

OMUL, DMULU,DDTV,
DDIVU,MADD

AND L ANDT
OR,ORT, XOR, XORI
LUl

O50LL,DSRL,DSRA,DSLLYV,
DSRLV ,DSRAV

SLT,SLTILSLTU,SLTIU

Opevationy an integer or logical data in GPRS; signed arithmeric trap on overflow
Add, add immediate (all immediates are 16 bits); signed and unsigned

Subtract: signed and unsigned

Multiply and divide. signed and unsigned: multiply-add; all operations take and yield 64-
bit values

And, and immediate

Or, or immediate, exclusive or. exclusive or immediate

Load upper immediate: loads bits 32 to 47 of register with immediate. then sign-extends

Shifis: both immediate (DS__) and variable form (DS__ V): shifts are shift left logical,
right logical. right arithmetic

Set less than, set less than immediate; signed and unsigned

{ onreol

Conditional branches and jumps,; PC-relative or through register

HEQZ ,BNEZ Branch GPR equal/not equal 1o zero: 16-bit offset from PC + 4

BEQ, BNE Branch GPR equal/not equal; 16-bit offser from PC + 4

BC1T,BC1F Test comparison bit 1n the FP status register and branch; 16-bit offset from PC + 4
MOVN ,MOVZ Copy GPR 1o another GPR if third GPR is negative, zero

J IR Jumps: 26-bit offset from PC + 4 (J) or target in register (JR)

JAL ,JALR Jump and link: save PC + 4 in R31, 1arget is PC-relative (JAL) or a register (JALR)
AP Transfer 10 operating system at a vectored address

LRET Return to user code from an exception: restore user mode

Floating point FP operations on DP and SP formats

ADD.D,ADD.S,ADD.PS Add DP, SP numbers. and pairs of SP numbers

SUB.D,SUB.S,ADD.PS
MUL.D,MUL.S,MUL.PS
MADD.D,MADD. 5, MADD. PS
PIV.D,DIV.S,DIV.PS
VY. _._

TR 1 H R

Subtract DP. SP numbers, and pairs of SP numbers
Multiply DP, SP floating point. and pairs of SP numbers
Multiply-add DP, SP numbers and pairs of SP numbers
Divide DP, SP fioating point, and pairs of SP numbers

Convert instructions: CVT. x.y converts from type x to type y, where x and y are L
(64-bit integer), W (32-bit integer), D (DP), or S (SP). Both operands are FPRs.

DP and SP compares: *__" = LT,GT,LE,GE,EQ,NE; sets bit in FP status register

Filgure 2.31 Subset of the instructions in MIPS64. Figure 2.27 lists the formats of these instructions. SP = single
precision; DP = double precision. This list can also be found on the page preceding the back inside cover,

&

x

Datapath vs Control

Datapath

Controller

signals
-’

Control Points

= Datapath: Storage, Functional Units, Interconnections
sufficient to perform the desired functions
= Inputs are Control Points
= Outputs are signals
o Comroller: State machine to orchestrate operation on the data
a
p. Based on desired function and signals

Approaching an ISA

Instruction Set Architecture
= Defines set of operations, instruction format, hardware supported
data types, named storage, addressing modes, sequencing
Meaning of each instruction is described by RTL (register
transfer language) on architected registers and memory

Given technology constraints, assemble adequate
datapath

= Architected storage mapped to actual storage

= Function Units (FUs) to do all the required operations

= Possible additional storage (eg. Internal registers: MAR, MDR, IR,
..{Memory Address Register, Memory Data Register, Instruction
Register}

= Interconnect to move information among registers and function
units

Map each instruction to a sequence of RTL operations

Collate sequences into symbolic controller state
transition diagram (STD)

Lower symbolic STD to control points
Implement controller

i Homework

= A.1,A5 A.7

