. 5 ye - T !
. Jerx TR N _— % -
RS s ' TN %|ﬂ
\ N G SN S -
s A0 b ot

El 338: Computer Systems Engineering
(Operating Systems & Computer Architecture)
Dept. of Computer Science & Engineering

Chentao Wu
wuct@cs.sjtu.edu.cn

IPLEEVS:

SHANGHAI JIAD TOMNG UNIVERSITY

Download \ectures

o ftp://public.sjtu.edu.cn

e User: wuct
e Password: wuct123456

* http://www.cs.sjtu.edu.cn/~wuct/cse/

ftp://public.sjtu.edu.cn/

Chapter 14: File System
Implementation

=

’w’:ﬁ Chapter 14: File System Implementation

File-System Structure
File-System Operations
Directory Implementation
Allocation Methods
Free-Space Management
Efficiency and Performance
Recovery

Example: WAFL File System

14.4

=

o

!

B Describe the details of implementing local file systems
and directory structures

B Discuss block allocation and free-block algorithms and
trade-offs

®m Explore file system efficiency and performance issues
B Look at recovery from file system failures
B Describe the WAFL file system as a concrete example

0
£.50
i P

145

=

o

o File-System Structure

®m File structure
e Logical storage unit
e Collection of related information
m File system resides on secondary storage (disks)
e Provided user interface to storage, mapping logical to physical

e Provides efficient and convenient access to disk by allowing data
to be stored, located retrieved easily

®m Disk provides in-place rewrite and random access
e |/O transfers performed in blocks of sectors (usually 512 bytes)

m File control block (FCB) — storage structure consisting of
Information about a file

m Device driver controls the physical device
®m File system organized into layers

14.6

Layered File System

application programs

J

logical file system

y

file-organization module

J

basic file system

J

/O control

J

devices

14.7

!

=

o

557 File System Layers

m Device drivers manage I/O devices at the 1/0O control layer

e Given commands like “read drivel, cylinder 72, track 2,
sector 10, into memory location 1060” outputs low-level
hardware specific commands to hardware controller

m Basic file system given command like “retrieve block 123"
translates to device driver

® Also manages memory buffers and caches (allocation,
freeing, replacement)

e Buffers hold data in transit
e Caches hold frequently used data

®m File organization module understands files, logical address,
and physical blocks

m Translates logical block # to physical block #
B Manages free space, disk allocation

14.8

=

«§%7 File System Layers (Cont.)

®m Logical file system manages metadata information

e Translates file name into file number, file handle, location
by maintaining file control blocks (inodes in UNIX)

o Directory management

e Protection

m Layering useful for reducing complexity and redundancy, but
adds overhead and can decrease performanceTranslates file
name into file number, file handle, location by maintaining file

control blocks (inodes in UNIX)

e Logical layers can be implemented by any coding method
according to OS designer

0
£.59
- | !

} ﬂ(}:,’ .

14.9

=

o

5 File System Layers (Cont.)

® Many file systems, sometimes many within an operating
system

e Each with its own format (CD-ROM is ISO 9660; Unix has
UFS, FFS; Windows has FAT, FAT32, NTFS as well as
floppy, CD, DVD Blu-ray, Linux has more than 130 types,
with extended file system ext3 and ext4 leading; plus
distributed file systems, etc.)

e New ones still arriving — ZFS, GoogleFS, Oracle ASM,
FUSE

14.10

o

=

- File-System Operations

m We have system calls at the API level, but how do we

Implement their functions?
e On-disk and in-memory structures

Boot control block contains info needed by system to boot
OS from that volume

e Needed if volume contains OS, usually first block of
volume

Volume control block (superblock, master file table)
contains volume details

e Total # of blocks, # of free blocks, block size, free block
pointers or array

Directory structure organizes the files
e Names and inode numbers, master file table A5

14.11

=

) File-System Implementation (Cont.)

m Per-file File Control Block (FCB) contains many details about
the file

e typically inode number, permissions, size, dates

e NFTS stores into in master file table using relational DB
structures

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks A5

14.12

=

-

“$»7 In-Memory File System Structures

® Mount table storing file system mounts, mount points, file system
types

m system-wide open-file table contains a copy of the FCB of each
file and other info

B per-process open-file table contains pointers to appropriate
entries in system-wide open-file table as well as other info

m The following figure illustrates the necessary file system structures
provided by the operating systems

Figure 12-3(a) refers to opening a file

Figure 12-3(b) refers to reading a file

Plus buffers hold data blocks from secondary storage
Open returns a file handle for subsequent use

Data from read eventually copied to specified user process memory

address 2
f(\\

14.13

=

oo :
=%/ In-Memory File System Structures

A

directory structure
open (file name) o
directory structure

file-control block

user space kernel memory secondary storage
(a)
index
o7
r e data blocks
read (index) [T
per-process system-wide file-control block

open-file table open-file table

user space kernel memory secondary storage

) -/)"'ys%

14.14

!

=

o

SRy Directory Implementation

®m Linear list of file names with pointer to the data blocks
e Simple to program
e Time-consuming to execute
» Linear search time

» Could keep ordered alphabetically via linked list or use
B+ tree

®m Hash Table — linear list with hash data structure

e Decreases directory search time

e Collisions — situations where two file names hash to the
same location

e Only good if entries are fixed size, or use chained-

overflow method -
A8

14.15

=

~%»7 Allocation Methods - Contiguous

®m An allocation method refers to how disk blocks are
allocated for files:

m Contiguous allocation — each file occupies set of
contiguous blocks

e Best performance in most cases

e Simple — only starting location (block #) and length
(number of blocks) are required

e Problems include finding space for file, knowing
file size, external fragmentation, need for
compaction off-line (downtime) or on-line

14.16

Contiguous Allocation

® Mapping from logical to physical

/Q

LA/512

AN
R

Block to be accessed = Q +
starting address
Displacement into block = R

<
Se————

count

ol 101 2[] 3]
f

al] 5[] e[] 7LJ

sl ol J1o[1110
t

12D13D14E]1rsl]

16117 J18[_J19L]

mail

20 J21[J22[J23[]
24[l25(l2g[l27[]

list

directory

file start length

count 0 2
tr 14 3
mail 19 6
list 28 4
f 6 2

28129 130[]31[]
_/

14.17

=

» JP o

. g Extent-Based Systems

® Many newer file systems (i.e., Veritas File System) use
a modified contiguous allocation scheme

B Extent-based file systems allocate disk blocks in extents
B An extent is a contiguous block of disks

e Extents are allocated for file allocation
e A file consists of one or more extents

14.18

N

«$%’ Allocation Methods - Linked

®m Linked allocation — each file a linked list of blocks
e File ends at nil pointer
e No external fragmentation
e Each block contains pointer to next block
e No compaction, external fragmentation

e Free space management system called when new block
needed

e Improve efficiency by clustering blocks into groups but
Increases internal fragmentation

e Reliability can be a problem
e Locating a block can take many I/Os and disk seeks

20
£.50
LGN

14.19

=

«% Allocation Methods — Linked (Cont.)

m FAT (File Allocation Table) variation
e Beginning of volume has table, indexed by block number
e Much like a linked list, but faster on disk and cacheable
e New block allocation simple

14.20

=,

/e
{, o

557 Linked Allocation

m Each file is a linked list of disk blocks: blocks may be
scattered anywhere on the disk

block = pointer
B Mapping
Q
LA/511<
R

Block to be accessed is the Qth block in the linked chain of
blocks representing the file.

Displacement into block = R + 1 £

14.21

w,.., Linked Allocation

/"’\ directory
___./ file start end

jeep 9 25

17118 _J19[]
20[J21[Jp2[J23[]
24 J25[Jo6[127[]

28 129[130[131[]
N -

14.22

4

' :qml - .
b e File-Allocation Table
directory entry
test sov 217
name start block 4
— 217 618
339 -~
618 339 I¢
number of disk blocks -1

FAT

14.23

«4%7 Allocation Methods - Indexed

B Indexed allocation

e Each file has its own index block(s) of pointers to its data
blocks

m Logical view

N
7~

N
P

N
e

N
e

N
P

index table

14.24

oo -
~$»/ Example of Indexed Allocation

directory
file index block
jeep 19

24[|25 l26[_J27[]

28 129 I30[131[]

O

14.25

=

S Indexed Allocation (Cont.)

® Need index table
B Random access

® Dynamic access without external fragmentation, but have
overhead of index block

® Mapping from logical to physical in a file of maximum size of
256K bytes and block size of 512 bytes. We need only 1
block for index table

Q
LA517

R

Q = displacement into index table
R = displacement into block

14.26

'\

ey

“%”” Indexed Allocation — Mapping (Cont.)

O Mappmg from logical to physical in a file of unbounded length
(block size of 512 words)

m Linked scheme — Link blocks of index table (no limit on size)

Q,
LA/ (512 x 511)<
Rl

Q, = block of index table
R, is used as follows:

Q,
R,/ 512<
RZ

Q, = displacement into block of index table
R, displacement into block of file:

14.27

'\

ey

“%”” Indexed Allocation — Mapping (Cont.)

m Two-level index (4K blocks could store 1,024 four-byte pointers in
outer index -> 1,048,567 data blocks and file size of up to 4GB)

Q.
LA/ (512 x 512)<
R1

Q, = displacement into outer-index
R, is used as follows:

Q,
R,/ 51z<
RZ

Q, = displacement into block of index table
R, displacement into block of file:

14.28

=

, ,.q.--,l,*] -
“%7/ Indexed Allocation — Mapping (Cont.)

T -
N T
\ oy
\\
outer-index\\

index table

14.29

(P - .
%7/ Combined Scheme: UNIX UFS

4K bytes per block, 32-bit addresses

file
metadata

singleindirect | E—’ L X
blocks = b |datal
double indirect : — |data
blocks — I_—:-. datal
e it |] d— fn)

= | i

’E—o — |data|

: H

[4—>

P e

[[datal

i [data]

More index blocks than can be addressed with 32-bit ﬂle 50
pointer el o

14.30

=

_arrrnd

G Performance

® Best method depends on file access type
e Contiguous great for sequential and random
® Linked good for sequential, not random
B Declare access type at creation -> select either contiguous or linked
® Indexed more complex

e Single block access could require 2 index block reads then data
block read

e Clustering can help improve throughput, reduce CPU overhead

® For NVM, no disk head so different algorithms and optimizations
needed

e Using old algorithm uses many CPU cycles trying to avoid non-
existent head movement

e With NVM goal is to reduce CPU cycles and overall path
needed for I/O 2

. /“*‘-\' N

~—

-l

14.31

=

g

g Performance (Cont.)

® Adding instructions to the execution path to save one disk I/O
IS reasonable

e Intel Core 17 Extreme Edition 990x (2011) at 3.46Ghz =
159,000 MIPS

» http://en.wikipedia.org/wiki/Instructions_per_second
e Typical disk drive at 250 I/Os per second

» 159,000 MIPS / 250 = 630 million instructions during one
disk 1/0

e Fast SSD drives provide 60,000 IOPS

» 159,000 MIPS / 60,000 = 2.65 millions instructions
during one disk I/O

0
£50
i N

14.32

=,

g

NG T Free-Space Management

®m File system maintains free-space list to track available blocks/clusters

e (Using term “block” for simplicity)
B Bit vector or bit map (n blocks)

01 2 n-1

o 1 = block]i] free
bit[i] =
0 = block]i] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit

14.33

e

=

~“$»7 Free-Space Management (Cont.)

B Bit map requires extra space
e Example:
block size = 4KB = 212 bytes
disk size = 240 bytes (1 terabyte)
n = 240/212 = 228 bjts (or 32MB)
iIf clusters of 4 blocks -> 8MB of memory

B Easy to get contiguous files

14.34

w‘:ﬁ Linked Free Space List on Disk

® Linked list (free list)

e Cannot get contiguous free-space list head
space easily

e No waste of space

e No need to traverse
the entire list (if # free
blocks recorded)

14.35

=

o

N Free-Space Management (Cont.)

® Grouping

e Modify linked list to store address of next n-1 free blocks in first
free block, plus a pointer to next block that contains free-block-
pointers (like this one)

m Counting

e Because space is frequently contiguously used and freed, with
contiguous-allocation allocation, extents, or clustering

» Keep address of first free block and count of following free
blocks

» Free space list then has entries containing addresses and
counts

14.36

=

)

«§%»’ Free-Space Management (Cont.)

m Space Maps
e Usedin ZFS
e Consider meta-data I/O on very large file systems

» Full data structures like bit maps couldn’ t fit in memory ->
thousands of 1/Os

e Divides device space into metaslab units and manages
metaslabs

» Given volume can contain hundreds of metaslabs
e Each metaslab has associated space map
» Uses counting algorithm
e But records to log file rather than file system
» Log of all block activity, in time order, in counting format

e Metaslab activity -> load space map into memory in balanced-
tree structure, indexed by offset

» Replay log into that structure y f“’“j\i

» Combine contiguous free blocks into single entry & .

14.37

y

=

<57 TRIMing Unused Blocks

m HDDS overwrite in place so need only free list
m Blocks not treated specially when freed
e Keeps its data but without any file pointers to it, until overwritten

m Storage devices not allowing overwrite (like NVM) suffer badly with
same algorithm

e Must be erased before written, erases made in large chunks
(blocks, composed of pages) and are slow

e TRIM is a newer mechanism for the file system to inform the
NVM storage device that a page is free

» Can be garbage collected or if block is free, now block can be
erased

14.38

>

g

w7 Efficiency and Performance

m Efficiency dependent on:
e Disk allocation and directory algorithms
e Types of data kept in file” s directory entry

e Pre-allocation or as-needed allocation of metadata
structures

e Fixed-size or varying-size data structures

14.39

>

g

«$»7 Efficiency and Performance (Cont.)

m Performance
e Keeping data and metadata close together

e Buffer cache — separate section of main memory for
frequently used blocks

e Synchronous writes sometimes requested by apps or
needed by OS

» No buffering / caching — writes must hit disk before
acknowledgement

» Asynchronous writes more common, buffer-able,
faster

e Free-behind and read-ahead — technigues to optimize
sequential access

e Reads frequently slower than writes | /;x\\

14.40

=

NG Page Cache

B A page cache caches pages rather than disk blocks
using virtual memory techniques and addresses

B Memory-mapped I/O uses a page cache

® Routine I/O through the file system uses the buffer
(disk) cache

B This leads to the following figure

14.41

=

% 1/0 Without a Unified Buffer Cache

I/O using

memory-mapped I/O read() and write()

I

page cache

\

buffer cache

|

file system

14.42

--:-q-m_i

»“,,..f Unified Buffer Cache

B A unified buffer cache uses the same page cache to cache

both memory-mapped pages and ordinary file system 1/O to
avoid double caching

B But which caches get priority, and what replacement
algorithms to use?

14.43

“%7/ 1/0 Using a Unified Buffer Cache

I/O using
read() and write()

N/

buffer cache

|

file system

memory-mapped |/O

14.44

=,

g

- Recovery

m Consistency checking — compares data in directory
structure with data blocks on disk, and tries to fix
Inconsistencies

e Can be slow and sometimes falls

m Use system programs to back up data from disk to another
storage device (magnetic tape, other magnetic disk, optical)

®m Recover lost file or disk by restoring data from backup

14.45

=

o

- Log Structured File Systems

® Log structured (or journaling) file systems record each metadata
update to the file system as a transaction

!

m All transactions are written to a log

e A transaction is considered committed once it is written to the
log (sequentially)

e Sometimes to a separate device or section of disk
e However, the file system may not yet be updated

® The transactions in the log are asynchronously written to the file
system structures

e When the file system structures are modified, the transaction is
removed from the log

m If the file system crashes, all remaining transactions in the log must
still be performed

®m Faster recovery from crash, removes chance of inconsistency of P

metadata A
!

-l

14.46

=

«§% Example: WAFL File System

m Used on Network Appliance “Filers” — distributed file system
appliances

m “Write-anywhere file layout”

m Serves up NFS, CIFS, http, ftp

® Random I/O optimized, write optimized
e NVRAM for write caching

m Similar to Berkeley Fast File System, with extensive
modifications

14.47

The WAFL File Layout

root inode

inode file

|

free block map

free inode map

file in the file system...

14.48

4

g;:;,.‘z Snapshots in WAFL

root inode

blockA\k‘ D E

(a) Before a snapshot.

root inode new snapshot

/

block A |[B||C||D||E

(b) After a snapshot, before any blocks change.

root inode new snapshot

/

blockA|{|B||C||D]||E D’

(c) After block D has changed to D".

14.49

4

The Apple File System

In 2017, Apple, Inc., released a new file system to replace its 30-year-old HFS+
file system. HFS+ had been stretched to add many new features, but as usual,
this process added complexity, along with lines of code, and made adding
more features more difficult. Starting from scratch on a blank page allows a
design to start with current technologies and methodologies and provide the
exact set of features needed.

Apple File System (APFS) is a good example of such a design. Its goal
is to run on all current Apple devices, from the Apple Watch through the
iPhone to the Mac computers. Creating a file system that works in watchOS,
1/0s, tvOS, and macOS is certainly a challenge. APFS is feature-rich, including
64-bit pointers, clones for files and directories, snapshots, space sharing, fast
directory sizing, atomic safe-save primitives, copy-on-write design, encryp-
tion (single- and multi-key), and 1/0 coalescing. It understands NVM as well
as HDD storage.

Most of these features we’ve discussed, but there are a few new concepts
worth exploring. Space sharing is a ZFS-like feature in which storage is avail-
able as one or more large free spaces (containers) from which file systems
can draw allocations (allowing APFS-formatted volumes to grow and shrink).
Fast directory sizing provides quick used-space calculation and updating,.
Atomic safe-save is a primitive (available via API, not via file-system com-
mands) that performs renames of files, bundles of files, and directories as
single atomic operations. 1/0O coalescing is an optimization for NVM devices
in which several small writes are gathered together into a large write to
optimize write performance.

Apple chose not to implement RAID as part of the new APFS, instead
depending on the existing Apple RAID volume mechanism for software RAID.
APFS is also compatible with HFS+, allowing easy conversion for existing
deployments.

14.50

w,,w Homework

B Exercises at the end of Chapter 14 (OS book)
e 14.1

14.51

End of Chapter 14

