
EI 338: Computer Systems Engineering
(Operating Systems & Computer Architecture)

Dept. of Computer Science & Engineering
Chentao Wu

wuct@cs.sjtu.edu.cn

Download lectures

• ftp://public.sjtu.edu.cn

•User: wuct

•Password: wuct123456

•http://www.cs.sjtu.edu.cn/~wuct/cse/

ftp://public.sjtu.edu.cn/

3

Chapter 1

Fundamentals of Quantitative Design

and Analysis

Computer Architecture
A Quantitative Approach, Fifth Edition

Outline

Introduction

Quantitative Principles of Computer Design

Classes of Computers

Computer Architecture

Trends in Technology

Power in Integrated Circuits

Trends in Cost

Dependability

Performance

Fallacies and Pitfalls

Computer Technology

 Performance improvements:
 Improvements in semiconductor technology

 Feature size, clock speed

 Improvements in computer architectures
 Enabled by High-Level Language (HLL) compilers,

UNIX

 Lead to RISC architectures

 Together have enabled:
 Lightweight computers

 Productivity-based managed/interpreted
programming languages

Single Processor Performance

RISC

Move to multi-processor

Crossroads: Uniprocessor Performance

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
c
e

 (
v
s
.

V
A

X
-1

1
/7

8
0

)

25%/year

52%/year

??%/year

• VAX : 25%/year 1978 to 1986

• RISC + x86: 52%/year 1986 to 2002

• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer

Architecture: A Quantitative Approach, 4th

edition, October, 2006

Less than 20%

Current Trends in Architecture

 Cannot continue to leverage Instruction-Level
parallelism (ILP)
 Single processor performance improvement ended

in 2003

 New models for performance:
 Data-level parallelism (DLP)

 Thread-level parallelism (TLP)

 Request-level parallelism (RLP)

 These require explicit restructuring of the
application

Crossroads: Conventional Wisdom
in Computer Architecture

 Old Conventional Wisdom: Power is free, Transistors
expensive

 New Conventional Wisdom: “Power wall” Power
expensive, Transistors free
(Can put more on chip than can afford to turn on)

 Old CW: Sufficiently increasing Instruction Level
Parallelism via compilers, innovation (Out-of-order,
speculation, …)

 New CW: “ILP wall” law of diminishing returns on more
HW for ILP

 Old CW: Multiplies are slow, Memory access is fast

 New CW: “Memory wall” Memory slow, multiplies fast
(200 clock cycles to DRAM memory, 4 clocks for multiply)

Crossroads: Conventional Wisdom
in Computer Architecture

 Old CW: Uniprocessor performance 2X / 1.5 yrs

 New CW: Power Wall + ILP Wall + Memory Wall = Brick
Wall

 Uniprocessor performance now 2X / 5(?) yrs

 Sea change in chip design: multiple “cores”
(2X processors per chip / ~ 2 years)

 More simpler processors are more power efficient

Sea Change in Chip Design

 Intel 4004 (1971): 4-bit processor,
2312 transistors, 0.4 MHz,
10 micron PMOS, 11 mm2 chip

• Processor is the new transistor?

• RISC II (1983): 32-bit, 5 stage
pipeline, 40,760 transistors, 3 MHz,
3 micron NMOS, 60 mm2 chip

• 125 mm2 chip, 0.065 micron CMOS
= 2312 RISC II+FPU+Icache+Dcache

– RISC II shrinks to ~ 0.02 mm2 at 65 nm

– Caches via DRAM or 1 transistor SRAM (www.t-ram.com) ?

– Proximity Communication via capacitive coupling at > 1 TB/s ?
(Ivan Sutherland @ Sun / Berkeley)

http://www.t-ram.com/

Taking Advantage of Parallelism
• Increasing throughput of server computer via multiple processors

or multiple disks
• Detailed HW design

– Carry lookahead adders uses parallelism to speed up computing sums
from linear to logarithmic in number of bits per operand

– Multiple memory banks searched in parallel in set-associative caches

• Pipelining: overlap instruction execution to reduce the total time
to complete an instruction sequence.
– Not every instruction depends on immediate predecessor 

executing instructions completely/partially in parallel possible
– Classic 5-stage pipeline:

1) Instruction Fetch (Ifetch),
2) Register Read (Reg),
3) Execute (ALU),
4) Data Memory Access (Dmem),
5) Register Write (Reg)

Pipelined Instruction Execution

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Limits to pipelining
• Hazards prevent next instruction from executing during its

designated clock cycle

– Structural hazards: attempt to use the same hardware to
do two different things at once

– Data hazards: Instruction depends on result of prior
instruction still in the pipeline

– Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow
(branches and jumps).

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

The Principle of Locality

• The Principle of Locality:

– Program access a relatively small portion of the address space
at any instant of time.

• Two Different Types of Locality:

– Temporal Locality (Locality in Time): If an item is referenced, it
will tend to be referenced again soon (e.g., loops, reuse)

– Spatial Locality (Locality in Space): If an item is referenced,
items whose addresses are close by tend to be referenced soon
(e.g., straight-line code, array access)

• Last 30 years, HW relied on locality for memory perf.

P MEM$

Levels of the Memory
Hierarchy

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Disk
10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
~$1 / GByte

Registers

L1 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
32-64 bytes

OS
4K-8K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

L2 Cache
cache cntl
64-128 bytesBlocks

What Computer Architecture brings to Table

• Other fields often borrow ideas from architecture
• Quantitative Principles of Design

1. Take Advantage of Parallelism
2. Principle of Locality
3. Focus on the Common Case
4. Amdahl’s Law
5. The Processor Performance Equation

• Careful, quantitative comparisons
– Define, quantity, and summarize relative performance
– Define and quantity relative cost
– Define and quantity dependability
– Define and quantity power

• Culture of anticipating and exploiting advances in
technology

• Culture of well-defined interfaces that are carefully
implemented and thoroughly checked

Comp. Arch. is an Integrated
Approach

• What really matters is the functioning of the
complete system

– hardware, runtime system, compiler, operating system,
and application

– In networking, this is called the “End to End argument”

• Computer architecture is not just about
transistors, individual instructions, or particular
implementations

– E.g., Original RISC projects replaced complex instructions
with a compiler + simple instructions

Computer Architecture is
Design and Analysis

D e s i g n

A n a l y s i s

Architecture is an iterative process:
• Searching the space of possible designs
• At all levels of computer systems

Creativity

Good Ideas

Mediocre IdeasBad Ideas

Cost /
Performance
Analysis

Outline

Introduction

Quantitative Principles of Computer Design

Classes of Computers

Computer Architecture

Trends in Technology

Power in Integrated Circuits

Trends in Cost

Dependability

Performance

Fallacies and Pitfalls

Focus on the Common Case
• Common sense guides computer design

– Since its engineering, common sense is valuable
• In making a design trade-off, favor the frequent case over the

infrequent case
– E.g., Instruction fetch and decode unit used more

frequently than multiplier, so optimize it 1st
– E.g., If database server has 50 disks / processor, storage

dependability dominates system dependability, so optimize
it 1st

• Frequent case is often simpler and can be done faster than the
infrequent case
– E.g., overflow is rare when adding 2 numbers, so improve

performance by optimizing more common case of no
overflow

– May slow down overflow, but overall performance improved
by optimizing for the normal case

• What is frequent case and how much performance improved by
making case faster => Amdahl’s Law

Amdahl’s Law

 
enhanced

enhanced
enhanced

new

old
overall

Speedup

Fraction
 Fraction

1

ExTime

ExTime
 Speedup





1

Best you could ever hope to do:

 enhanced
maximum Fraction - 1

1
 Speedup 

  









enhanced

enhanced
enhancedoldnew Speedup

Fraction
Fraction ExTime ExTime 1

Amdahl’s Law example
• New CPU 10X faster

• I/O bound server, so 60% time waiting for I/O

 

 
56.1

64.0

1

10

0.4
 0.4 1

1

Speedup

Fraction
 Fraction 1

1
 Speedup

enhanced

enhanced
enhanced

overall











• Apparently, its human nature to be attracted by 10X
faster, vs. keeping in perspective its just 1.6X faster

Processor performance
equation

CPU time = Seconds = Instructions x Cycles x Seconds

Program Program Instruction Cycle

inst count

CPI

Cycle time

Inst Count CPI Clock Rate

Program X

Compiler X (X)

Inst. Set X X

Organization X X

Technology X

What’s a Clock Cycle?

• Old days: 10 levels of gates
• Today: determined by numerous time-of-

flight issues + gate delays
– clock propagation, wire lengths, drivers

Latch
or

register

combinational
logic

Examples on Pages 47-48

26

Examples on Pages 47-48

27

Principles of Computer Design

 The Processor Performance Equation

Principles of Computer Design

 Different instruction types having
different CPIs

Examples on Pages 50-51

30

Examples on Pages 50-51

31

Outline

Introduction

Quantitative Principles of Computer Design

Classes of Computers

Computer Architecture

Trends in Technology

Power in Integrated Circuits

Trends in Cost

Dependability

Performance

Fallacies and Pitfalls

Classes of Computers
 Personal Mobile Device (PMD)

 e.g. start phones, tablet computers

 Emphasis on energy efficiency and real-time

 Desktop Computing
 Emphasis on price-performance

 Servers
 Emphasis on availability, scalability, throughput

 Clusters / Warehouse Scale Computers
 Used for “Software as a Service (SaaS)”

 Emphasis on availability and price-performance

 Sub-class: Supercomputers, emphasis: floating-point
performance and fast internal networks

 Embedded Computers
 Emphasis: price

Outline

Introduction

Quantitative Principles of Computer Design

Classes of Computers

Computer Architecture

Trends in Technology

Power in Integrated Circuits

Trends in Cost

Dependability

Performance

Fallacies and Pitfalls

Parallelism

 Classes of parallelism in applications:
 Data-Level Parallelism (DLP)

 Task-Level Parallelism (TLP)

 Classes of architectural parallelism:
 Instruction-Level Parallelism (ILP)

 Vector architectures/Graphic Processor Units
(GPUs)

 Thread-Level Parallelism

 Request-Level Parallelism

Flynn’s Taxonomy

 Single instruction stream, single data stream (SISD)
 a single processor executes a single instruction stream

 Instruction Level Parallelism (ILP): pipelining

 Single instruction stream, multiple data streams (SIMD)
 Multiple processors perform an instruction steam on multiple data

stream simultaneously

 Vector architectures

 Multimedia extensions

 Graphics processor units

 Multiple instruction streams, single data stream (MISD)
 No commercial implementation

 Multiple instruction streams, multiple data streams (MIMD)
 Tightly-coupled MIMD

 Loosely-coupled MIMD

Instruction Set Architecture:
Critical Interface

• Properties of a good abstraction
– Lasts through many generations (portability)
– Used in many different ways (generality)
– Provides convenient functionality to higher levels
– Permits an efficient implementation at lower levels

instruction set

software

hardware

Example: MIPS architecture
0r0

r1
°
°
°
r31

PC
lo
hi

Programmable storage

2^32 x bytes

31 x 32-bit GPRs (R0=0)

32 x 32-bit FP regs (paired DP)

HI, LO, PC

Data types ?

Format ?

Addressing Modes?

Arithmetic logical
Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU,
AddI, AddIU, SLTI, SLTIU, AndI, OrI, XorI, LUI
SLL, SRL, SRA, SLLV, SRLV, SRAV

Memory Access
LB, LBU, LH, LHU, LW, LWL,LWR
SB, SH, SW, SWL, SWR

Control
J, JAL, JR, JALR
BEq, BNE, BLEZ,BGTZ,BLTZ,BGEZ,BLTZAL,BGEZAL

32-bit instructions on word boundary

Register to register

Transfer, branches

Jumps

MIPS architecture instruction set format

ISA vs. Computer Architecture
• Old definition of computer architecture

= instruction set design
– Other aspects of computer design called implementation
– Insinuates implementation is uninteresting or less

challenging

• Our view is computer architecture >> ISA
• Architect’s job much more than instruction set design;

technical hurdles today more challenging than those in
instruction set design

• Since instruction set design not where action is, some
conclude computer architecture (using old definition) is
not where action is
– We disagree on conclusion
– Agree that ISA not where action is (ISA in CA:AQA 4/e

appendix)

Defining Computer Architecture

 “Old” view of computer architecture:
 Instruction Set Architecture (ISA) design

 i.e. decisions regarding:
 registers, memory addressing, addressing modes,

instruction operands, available operations, control flow
instructions, instruction encoding

 “Real” computer architecture:
 Specific requirements of the target machine

 Design to maximize performance within constraints:
cost, power, and availability

 Includes ISA, microarchitecture, hardware

Outline

Introduction

Quantitative Principles of Computer Design

Classes of Computers

Computer Architecture

Trends in Technology

Power in Integrated Circuits

Trends in Cost

Dependability

Performance

Fallacies and Pitfalls

Moore’s Law: 2X transistors / “year”

 “Cramming More Components onto Integrated Circuits”
 Gordon Moore, Electronics, 1965

 # on transistors / cost-effective integrated circuit double every N months (12 ≤
N ≤ 24)

Tracking Technology Performance
Trends

 Drill down into 4 technologies:
 Disks,
 Memory,
 Network,
 Processors

 Compare ~1980 Archaic (Nostalgic) vs.
~2000 Modern (Newfangled)
 Performance Milestones in each technology

 Compare for Bandwidth vs. Latency improvements in
performance over time

 Bandwidth: number of events per unit time
 E.g., M bits / second over network, M bytes / second

from disk
 Latency: elapsed time for a single event

 E.g., one-way network delay in microseconds,
average disk access time in milliseconds

Disks: Archaic(Nostalgic) vs.
Modern(Newfangled)

 CDC Wren I, 1983

 3600 RPM

 0.03 GBytes capacity

 Tracks/Inch: 800

 Bits/Inch: 9550

 Three 5.25” platters

 Bandwidth:
0.6 MBytes/sec

 Latency: 48.3 ms

 Cache: none

 Seagate 373453, 2003

 15000 RPM (4X)

 73.4 GBytes (2500X)

 Tracks/Inch: 64000 (80X)

 Bits/Inch: 533,000 (60X)

 Four 2.5” platters
(in 3.5” form factor)

 Bandwidth:
86 MBytes/sec (140X)

 Latency: 5.7 ms (8X)

 Cache: 8 MBytes

Latency Lags Bandwidth
(for last ~20 years)

 Performance Milestones

 Disk: 3600, 5400, 7200,
10000, 15000 RPM (8x, 143x)

(latency = simple operation w/o contention

BW = best-case)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative

BW

Improve

ment

Disk

(Latency improvement

= Bandwidth improvement)

Memory: Archaic (Nostalgic) vs.
Modern (Newfangled)

 1980 DRAM
(asynchronous)

 0.06 Mbits/chip

 64,000 xtors, 35 mm2

 16-bit data bus per
module, 16 pins/chip

 13 Mbytes/sec

 Latency: 225 ns

 (no block transfer)

 2000 Double Data Rate Synchr.
(clocked) DRAM

 256.00 Mbits/chip (4000X)

 256,000,000 xtors, 204 mm2

 64-bit data bus per
DIMM, 66 pins/chip (4X)

 1600 Mbytes/sec (120X)

 Latency: 52 ns (4X)

 Block transfers (page mode)

Latency Lags Bandwidth
(last ~20 years)

 Performance Milestones

 Memory Module: 16bit plain
DRAM, Page Mode DRAM,
32b, 64b, SDRAM,
DDR SDRAM (4x,120x)

 Disk: 3600, 5400, 7200,
10000, 15000 RPM (8x, 143x)

(latency = simple operation w/o contention

BW = best-case)1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative

BW

Improve

ment

Memory
Disk

(Latency improvement

= Bandwidth improvement)

LANs: Archaic (Nostalgic) vs.
Modern (Newfangled)

 Ethernet 802.3

 Year of Standard:
1978

 10 Mbits/s
link speed

 Latency: 3000 msec

 Shared media

 Coaxial cable

• Ethernet 802.3ae

• Year of Standard: 2003

• 10,000 Mbits/s (1000X)
link speed

• Latency: 190 msec (15X)

• Switched media

• Category 5 copper wire

Coaxial Cable:

Copper core
Insulator

Braided outer conductor

Plastic Covering

Copper, 1mm thick,

twisted to avoid antenna effect

Twisted Pair:

"Cat 5" is 4 twisted pairs in bundle

Latency Lags Bandwidth
(last ~20 years)

 Performance Milestones

 Ethernet: 10Mb, 100Mb,
1000Mb, 10000 Mb/s (16x,1000x)

 Memory Module: 16bit plain
DRAM, Page Mode DRAM,
32b, 64b, SDRAM,
DDR SDRAM (4x,120x)

 Disk: 3600, 5400, 7200,
10000, 15000 RPM (8x, 143x)

(latency = simple operation w/o contention

BW = best-case)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative

BW

Improve

ment

Memory

Network

Disk

(Latency improvement

= Bandwidth improvement)

CPUs: Archaic (Nostalgic) vs.
Modern (Newfangled)

 1982 Intel 80286

 12.5 MHz

 2 MIPS (peak)

 Latency 320 ns

 134,000 xtors, 47 mm2

 16-bit data bus, 68 pins

 Microcode interpreter,
separate FPU chip

 (no caches)

 2001 Intel Pentium 4

 1500 MHz (120X)

 4500 MIPS (peak) (2250X)

 Latency 15 ns (20X)

 42,000,000 xtors, 217 mm2

 64-bit data bus, 423 pins

 3-way superscalar,
Dynamic translate to RISC,
Superpipelined (22 stage),
Out-of-Order execution

 On-chip 8KB Data caches,
96KB Instr. Trace cache,
256KB L2 cache

Latency Lags Bandwidth
(last ~20 years)

 Performance Milestones

 Processor: ‘286, ‘386, ‘486,
Pentium, Pentium Pro,
Pentium 4 (21x,2250x)

 Ethernet: 10Mb, 100Mb,
1000Mb, 10000 Mb/s (16x,1000x)

 Memory Module: 16bit plain
DRAM, Page Mode DRAM,
32b, 64b, SDRAM,
DDR SDRAM (4x,120x)

 Disk : 3600, 5400, 7200,
10000, 15000 RPM (8x, 143x)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative

BW

Improve

ment

Processor

Memory

Network

Disk

(Latency improvement

= Bandwidth improvement)

CPU high,

Memory low

(“Memory

Wall”)

Rule of Thumb for Latency Lagging BW

 In the time that bandwidth doubles, latency
improves by no more than a factor of 1.2 to 1.4

(and capacity improves faster than bandwidth)

 Stated alternatively:
Bandwidth improves by more than the square of
the improvement in Latency

6 Reasons Latency Lags Bandwidth

1. Moore’s Law helps BW more than latency
• Faster transistors, more transistors,

more pins help Bandwidth

 MPU Transistors: 0.130 vs. 42 M xtors (300X)

 DRAM Transistors: 0.064 vs. 256 M xtors (4000X)

 MPU Pins: 68 vs. 423 pins (6X)

 DRAM Pins: 16 vs. 66 pins (4X)

• Smaller, faster transistors but communicate
over (relatively) longer lines: limits latency

 Feature size: 1.5 to 3 vs. 0.18 micron (8X,17X)

 MPU Die Size: 35 vs. 204 mm2 (ratio sqrt  2X)

 DRAM Die Size: 47 vs. 217 mm2 (ratio sqrt  2X)

6 Reasons Latency Lags Bandwidth
(cont’d)

2. Distance limits latency
• Size of DRAM block  long bit and word lines

 most of DRAM access time

• Speed of light and computers on network

• 1. & 2. explains linear latency vs. square BW?

3. Bandwidth easier to sell (“bigger=better”)
• E.g., 10 Gbits/s Ethernet (“10 Gig”) vs.

10 msec latency Ethernet

• 4400 MB/s DIMM (“PC4400”) vs. 50 ns latency

• Even if just marketing, customers now trained

• Since bandwidth sells, more resources thrown at bandwidth,
which further tips the balance

6 Reasons Latency Lags Bandwidth
(cont’d)

4. Latency helps BW, but not vice versa
• Spinning disk faster improves both bandwidth and

rotational latency

 3600 RPM  15000 RPM = 4.2X

 Average rotational latency: 8.3 ms  2.0
ms

 Things being equal, also helps BW by 4.2X

• Lower DRAM latency 
More access/second (higher bandwidth)

• Higher linear density helps disk BW
(and capacity), but not disk Latency

 9,550 BPI  533,000 BPI  60X in BW

6 Reasons Latency Lags Bandwidth
(cont’d)

5. Bandwidth hurts latency
• Queues help Bandwidth, hurt Latency (Queuing

Theory)

• Adding chips to widen a memory module increases
Bandwidth but higher fan-out on address lines may
increase Latency

6. Operating System overhead hurts
Latency more than Bandwidth

• Long messages amortize overhead;
overhead bigger part of short messages

Trends in Technology
 Integrated circuit technology

 Transistor density: 35%/year

 Die size: 10-20%/year

 Integration overall: 40-55%/year

 DRAM capacity: 25-40%/year (slowing)

 Flash capacity: 50-60%/year
 15-20X cheaper/bit than DRAM

 Magnetic disk technology: 40%/year
 15-25X cheaper/bit then Flash

 300-500X cheaper/bit than DRAM

Bandwidth and Latency

 Bandwidth or throughput
 Total work done in a given time

 10,000-25,000X improvement for processors

 300-1200X improvement for memory and disks

 Latency or response time
 Time between start and completion of an event

 30-80X improvement for processors

 6-8X improvement for memory and disks

Bandwidth and Latency

Log-log plot of bandwidth and latency milestones

Outline

Introduction

Quantitative Principles of Computer Design

Classes of Computers

Computer Architecture

Trends in Technology

Power in Integrated Circuits

Trends in Cost

Dependability

Performance

Fallacies and Pitfalls

Transistors and Wires

 Feature size
 Minimum size of transistor or wire in x or y

dimension

 10 microns in 1971 to .032 microns in 2011

 Transistor performance scales linearly
 Wire delay does not improve with feature size!

 Integration density scales quadratically

Power and Energy

 Problem: Get power in, get power out

 Thermal Design Power (TDP)
 Characterizes sustained power consumption

 Used as target for power supply and cooling
system

 Lower than peak power, higher than average
power consumption

 Clock rate can be reduced dynamically to limit
power consumption

Power

 Intel 80386
consumed ~ 2 W

 3.3 GHz Intel Core
i7 consumes 130 W

 Heat must be
dissipated from 1.5
x 1.5 cm chip

 This is the limit of
what can be cooled
by air

Define and quantity power (1 / 2)

 For CMOS chips, traditional dominant energy consumption

has been in switching transistors, called dynamic
power:

witchedFrequencyS VoltageLoadCapacitive5.0Power 2 dynamic

• For mobile devices, energy better metric

2Voltage LoadCapacitiveEnergy dynamic

• For a fixed task, slowing clock rate (frequency switched) reduces
power, but not energy

• Capacitive load a function of number of transistors connected to
output and technology, which determines capacitance of wires and
transistors

• Dropping voltage helps both, so went from 5V to 1V

• To save energy & dynamic power, most CPUs now turn off clock of
inactive modules (e.g. Fl. Pt. Unit)

Example of quantifying power

 Suppose 15% reduction in voltage
results in a 15% reduction in frequency.
What is impact on dynamic power?

dynamic

dynamic

dynamic

OldPower

OldPower

witchedFrequencySVoltageLoadCapacitive

witchedFrequencySVoltageLoadCapacitivePower

















6.0

)85(.

)85(.85.2/1

2/1

3

2

2

Define and quantity power (2 / 2)

 Because leakage current flows even
when a transistor is off, now static power
important too

• Leakage current increases in processors with smaller
transistor sizes

• Increasing the number of transistors increases power
even if they are turned off

• In 2006, goal for leakage is 25% of total power
consumption; high performance designs at 40%

• Very low power systems even gate voltage to inactive
modules to control loss due to leakage

VoltageCurrentPower staticstatic 

Reducing Power

 Techniques for reducing power:
 Do nothing well

 Dynamic Voltage-Frequency Scaling

 Low power state for DRAM, disks

 Overclocking, turning off cores

Outline

Introduction

Quantitative Principles of Computer Design

Classes of Computers

Computer Architecture

Trends in Technology

Power in Integrated Circuits

Trends in Cost

Dependability

Performance

Fallacies and Pitfalls

Trends in Cost

 Cost driven down by learning curve
 Yield

 DRAM: price closely tracks cost

 Microprocessors: price depends on
volume
 10% less for each doubling of volume

The price of Intel Pentium 4 and Pentium M

AMD Opteron Microprocessor Die

A 300mm silicon wafer contains 117 AMD

Opteron microprocessor chips in a 90nm process

Integrated Circuit Cost
 Integrated circuit

 Bose-Einstein formula:

 Defects per unit area = 0.016-0.057 defects per square cm
(2010)

 N = process-complexity factor = 11.5-15.5 (40 nm, 2010)

Examples on Page 31

75

Die yield =
Defects per unit area X Die area

a

Wafer yield X (1 +)
-a

Wafer yield: measures how many wafers are completely bad

a = 4

Bose-Einstein formula

corresponds to masking levels in manufacturing process

Example:

Die area = 1.5cm X 1.5 cm = 2.25cm^2

Die yield = 0.44

Defect density = 0.4 per cm^2

Die area = 1.0cm X 1.0 cm = 1cm^2

Die yield = 0.68

Smaller die area gives more die yield

Outline

Introduction

Quantitative Principles of Computer Design

Classes of Computers

Computer Architecture

Trends in Technology

Power in Integrated Circuits

Trends in Cost

Dependability

Performance

Fallacies and Pitfalls

Define and quantity dependability
(1/3)

 How decide when a system is operating properly?
 Infrastructure providers now offer Service Level

Agreements (SLA) to guarantee that their
networking or power service would be dependable

 Systems alternate between 2 states of service with
respect to an SLA:

1. Service accomplishment, where the service is
delivered as specified in SLA

2. Service interruption, where the delivered service is
different from the SLA

 Failure = transition from state 1 to state 2
 Restoration = transition from state 2 to state 1

Define and quantity dependability
(2/3)

 Module reliability = measure of continuous service
accomplishment (or time to failure).
2 metrics

1. Mean Time To Failure (MTTF) measures Reliability
2. Failures In Time (FIT) = 1/MTTF, the rate of failures

• Traditionally reported as failures per billion hours of
operation

 Mean Time To Repair (MTTR) measures Service
Interruption
 Mean Time Between Failures (MTBF) = MTTF+MTTR

 Module availability measures service as alternate
between the 2 states of accomplishment and
interruption (number between 0 and 1, e.g. 0.9)

 Module availability = MTTF / (MTTF + MTTR)

Examples on Pages 34-35

82

Examples on Pages 34-35

83

Outline

Introduction

Quantitative Principles of Computer Design

Classes of Computers

Computer Architecture

Trends in Technology

Power in Integrated Circuits

Trends in Cost

Dependability

Performance

Fallacies and Pitfalls

Measuring Performance
 Typical performance metrics:

 Response time

 Throughput

 Speedup of X relative to Y
 Execution timeY / Execution timeX

 Execution time
 Wall clock time: includes all system overheads

 CPU time: only computation time

 Benchmarks
 Kernels (e.g. matrix multiply)

 Toy programs (e.g. sorting)

 Synthetic benchmarks (e.g. Dhrystone)

 Benchmark suites (e.g. SPEC06fp, TPC-C)

Performance: What to measure
 Usually rely on benchmarks vs. real workloads

 To increase predictability, collections of benchmark applications,
called benchmark suites, are popular

 SPECCPU: popular desktop benchmark suite

 CPU only, split between integer and floating point programs

 SPECint2000 has 12 integer, SPECfp2000 has 14 integer
pgms

 SPECCPU2006 to be announced Spring 2006

 SPECSFS (NFS file server) and SPECWeb (WebServer) added
as server benchmarks

 Transaction Processing Council measures server performance
and cost-performance for databases

 TPC-C Complex query for Online Transaction Processing

 TPC-H models ad hoc decision support

 TPC-W a transactional web benchmark

 TPC-App application server and web services benchmark

How Summarize Suite Performance (1/5)

 Arithmetic average of execution time of all pgms?

 But they vary by 4X in speed, so some would be more
important than others in arithmetic average

 Could add a weights per program, but how pick
weight?

 Different companies want different weights for their
products

 SPECRatio: Normalize execution times to
reference computer, yielding a ratio
proportional to performance

time on reference computer

time on computer being rated

How Summarize Suite Performance (2/5)

 If program SPECRatio on Computer A is
1.25 times bigger than Computer B, then

B

A

A

B

B

reference

A

reference

B

A

ePerformanc

ePerformanc

imeExecutionT

imeExecutionT

imeExecutionT

imeExecutionT

imeExecutionT

imeExecutionT

SPECRatio

SPECRatio



25.1

• Note that when comparing 2 computers as a ratio,
execution times on the reference computer drop
out, so choice of reference computer is irrelevant

How Summarize Suite Performance (3/5)

 Since ratios, proper mean is geometric mean
(SPECRatio unitless, so arithmetic mean
meaningless)

n

n

i

iSPECRatioeanGeometricM 



1

1. Geometric mean of the ratios is the same as the
ratio of the geometric means

2. Ratio of geometric means
= Geometric mean of performance ratios
 choice of reference computer is irrelevant!

• These two points make geometric mean of ratios
attractive to summarize performance

How Summarize Suite Performance (4/5)

 Does a single mean well summarize performance of
programs in benchmark suite?

 Can decide if mean a good predictor by
characterizing variability of distribution using
standard deviation

 Like geometric mean, geometric standard deviation
is multiplicative rather than arithmetic

 Can simply take the logarithm of SPECRatios,
compute the standard mean and standard deviation,
and then take the exponent to convert back:

 

   i

n

i

i

SPECRatioStDevtDevGeometricS

SPECRatio
n

eanGeometricM

lnexp

ln
1

exp
1











 



How Summarize Suite Performance (5/5)

 Standard deviation is more informative if
know distribution has a standard form

 bell-shaped normal distribution, whose data are
symmetric around mean

 lognormal distribution, where logarithms of data--
not data itself--are normally distributed (symmetric)
on a logarithmic scale

 For a lognormal distribution, we expect that

68% of samples fall in range

95% of samples fall in range

 Note: Excel provides functions EXP(), LN(),
and STDEV() that make calculating geometric
mean and multiplicative standard deviation
easy

 gstdevmeangstdevmean ,/

 22 ,/ gstdevmeangstdevmean 

Example Standard Deviation (1/2)

 GM and multiplicative StDev of SPECfp2000 for
Itanium 2

0

2000

4000

6000

8000

10000

12000

14000

w
u
p
w

is
e

s
w

im

m
g
ri
d

a
p
p
lu

m
e
s
a

g
a
lg

e
l

a
rt

e
q
u
a
k
e

fa
c
e
re

c

a
m

m
p

lu
c
a
s

fm
a
3
d

s
ix

tr
a
c
k

a
p
s
i

S
P

E
C

fp
R

a
ti

o

1372

5362

2712

GM = 2712

GSTEV = 1.98

Example Standard Deviation (2/2)

 GM and multiplicative StDev of SPECfp2000 for AMD
Athlon

0

2000

4000

6000

8000

10000

12000

14000

w
u
p
w

is
e

s
w

im

m
g
ri
d

a
p
p
lu

m
e
s
a

g
a
lg

e
l

a
rt

e
q
u
a
k
e

fa
c
e
re

c

a
m

m
p

lu
c
a
s

fm
a
3
d

s
ix

tr
a
c
k

a
p
s
i

S
P

E
C

fp
R

a
ti

o

1494

2911

2086

GM = 2086

GSTEV = 1.40

Comments on Itanium 2 and Athlon

 Standard deviation of 1.98 for Itanium 2 is
much higher-- vs. 1.40--so results will
differ more widely from the mean, and
therefore are likely less predictable

 Falling within one standard deviation:
 10 of 14 benchmarks (71%) for Itanium 2

 11 of 14 benchmarks (78%) for Athlon

 Thus, the results are quite compatible with
a lognormal distribution (expect 68%)

Outline

Introduction

Quantitative Principles of Computer Design

Classes of Computers

Computer Architecture

Trends in Technology

Power in Integrated Circuits

Trends in Cost

Dependability

Performance

Fallacies and Pitfalls

Fallacies and Pitfalls
 Fallacies - commonly held misconceptions

 When discussing a fallacy, we try to give a counterexample.

 Pitfalls - easily made mistakes.
 Often generalizations of principles true in limited context

 Show Fallacies and Pitfalls to help you avoid these errors

 Fallacy: Benchmarks remain valid indefinitely
 Once a benchmark becomes popular, tremendous pressure to

improve performance by targeted optimizations or by aggressive
interpretation of the rules for running the benchmark:
“benchmarksmanship.”

 70 benchmarks from the 5 SPEC releases. 70% were dropped from
the next release since no longer useful

 Pitfall: A single point of failure
 Rule of thumb for fault tolerant systems: make sure that

every component was redundant so that no single
component failure could bring down the whole system
(e.g, power supply)

 Fallacy - Rated MTTF of disks is 1,200,000 hours or

 140 years, so disks practically never fail

 But disk lifetime is 5 years  replace a disk every 5 years; on

average, 28 replacements wouldn't fail

 A better unit: % that fail (1.2M MTTF = 833 FIT)

 Fail over lifetime: if had 1000 disks for 5 years

= 1000*(5*365*24)*833 /109 = 36,485,000 / 106 = 37

= 3.7% (37/1000) fail over 5 yr lifetime (1.2M hr MTTF)

 But this is under pristine conditions

 little vibration, narrow temperature range  no power failures

 Real world: 3% to 6% of SCSI drives fail per year

 3400 - 6800 FIT or 150,000 - 300,000 hour MTTF [Gray & van Ingen 05]

 3% to 7% of ATA drives fail per year

 3400 - 8000 FIT or 125,000 - 300,000 hour MTTF [Gray & van Ingen 05]

Homework

 Read 1.11

 Question 1.8 & 1.11

98

