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Abstract—When the information spreads in the network, it is
easy to observe the happening time of each event while relatively
hard to know the whole structure of the network. But knowledge
about the edges in the network is of great importance since it
enables us to predict, maximize or minimize the influence of
certain information, so we need to infer the hidden structure,
that is, the edges between each node, from the given knowledge
about information propagation flow. It is natural to consider a
probabilistic model, which is first published by Manuel Gomez-
Rodriguez, JURE LESKOVEC, David Balduzzi and BERNHARD
SCH OLKOPF. However, this model ignores external influences
outside the network on the information propagation and does
not consider the content difference of different information and
slow dynamic changes in the network while I make several
modifications on it to apply to these situations. Further, their
original model sets a window size T to sample the cascades to
increase the accuracy but it increases large complexity while I
move off this window size to reduce the model’s complexity and
keep simplicity because if some nodes keep uninfected when the
information diffusion is going to stop, they are really unlikely
to be infected after the observing time T, that is, an ended
information diffusion process is not likely to revive and become
popular again. Unfortunately, because of the heavy work to
program and debug all by myself and limit of other resources
and time, I do not make experiments on the modified model.

I. INTRODUCTION

In the diffusion process, we can often observe when n-
odes(people, tweets, etc.) get infected by a virus, mention a
piece of information, buy a product, adopt a new behavior, or,
more generally, adopt a contagion while the hidden structure
of the diffusion network remains unclear. For instance, doctors
can know about when a person becomes ill, but they cannot
tell who infected the patient or how many exposures were
necessary for the infection to take hold; we can find when
friends post a tweet or retweet, but we cannot know what
is their information resource if they do not write about it;
marketers can track when customers buy products or subscribe
to services, but cannot observe who influenced customers
decisions, how long they took to make up their minds, or
when they would pass recommendations on to other customers.
In all these scenarios, we observe where and when but not
how or why information (or a virus, a tweet, a decision)
propagates through a network of population. In order to
describe how and why information propagates, the knowledge
about relationships between people, that is, the edges in the
network, is quite important. So given the times when nodes
adopt a set of contagions, the goal would then be to infer the

structure of the underlying network. But the external influence,
the difference of contents, the dynamic changes in the network
should also be considered. For example, a sick patient might
not be infected by others but ate some contaminated food.
Then his illness is caused by external influence outside his
friend circles. When the information is about sports, a person
may talk about it with those friends who like sports while
when the information is about politics, he may talk about it
with a different group of people who are interested in politics.
Besides, the relationships between people vary along with
time. Some relationships may decay and even vanish while
new relationships form and get enhanced. To take these factors
into consideration, I revise the original model and then we can
analyze the information pathways of real-world events, topics,
or content.

II. PROPOSED MODEL

A. Problem Statement

We use a directed graph G = (V,E) to model the network.
Each node in V represents a user and each edge has a weight
wi,j to represent the strength of the relationship between node
i and node j and describes how frequently information spreads
from node i to node j. If the weight wij is large, it means
that the relationship between user i and user j is close and
the information is more likely to propagate between them. If
the weight is zero, then user i and user j do not have any
relationships. Then G is a actually cluster with each pair of
nodes having two directed weighted edges.

Because the behavior of information diffusion is like that of
contagion infection, we use the word contagion to interchange
with the word information and use the word infect to mean the
diffusion process. A node getting infected is the same meaning
as information spreading to that node.

As the information spreads from infected nodes to unin-
fected nodes, it creates a cascade(Fig.1) represented by an
N-dimensional vector tc = (tc1, ..., t

c
N ), recording when each

of N nodes gets infected by the information, where N is the
number of infected nodes before our observation time T . For
those uninfected nodes, they do not appear in this vector. In an
information propagation setting, each cascade corresponds to a
different piece of information and the infection time of a node
is simply the time when the node first heard of or mentioned
the piece of information. We add another node x to V and all
the edges from and to node x to represent the external source



outside the social network. tx is the time the information
first appears in the mass media. Now we have a new graph
G′ = (V ′, E′) where V ′ = V ∪ x and E′ = E ∪ edge(x).

Now we have the mathematical interpretation of networks
and information diffusion. Given a set of cascades of many
different contagions, our goal is to infer the underlying net-
work over which contagions propagated. Importantly, the time-
stamps assigned to nodes in each cascade induce a directed
acyclic graph (DAG) involving those nodes, which need not
to be acyclic in the containing network topology. Thus, it is
meaningful to refer to parents and children within a cascade,
but not on the network. The DAG structure dramatically sim-
plifies the computational complexity of the inference problem.

Fig. 1.

B. Probabilistic Model

Because from only observations of a set of cascades of
different information, we cannot get the network structure for
sure. A probabilistic model is a natural choice to solve the
problem. The weight wi,j can also be regarded as the our
confidence about the relationships between node i and node
j. The more cascades in which we can observe node j infected
following node i infected, the more confident we are about the
existence and strength of directed edge between node i and j,
so the weight wi,j is larger. Clearly this is a generative model
in machine learning and we want to get the log likelihood of
joint probability of each node infected at their corresponding
time recorded in a set of cascades under the condition of our
inferred hidden structure. Then we maximize this likelihood
to find the best matched hidden network structure, that is, the
best parameters wi,j . So after we form a probabilistic model,
we can use maximum likelihood estimation(MLE) to solve this
convex problem.

First we define fin(∆ti,j ;wi,j) as the likelihood of node
i infecting node j ∆ti,j time after node i was infected
where ∆ti,j = tj − ti and the parameter wi,j controls the
transmission rate. Similarly we define fex(∆tx,j ;wx,j) as the
likelihood of node j getting infected by the external source x
∆tx,j time after the information first appears at mass media
where ∆tx,j = tj − tx and the parameter wx,j controls the

transmission rate from the external source x to the internal
node j. Note that node j cannot be infected by node i if
node i is infected after node j because the infection event
obeys the rule of causality. We have defined the probabil-
ity density function fin and fex and then comes the cor-
responding probability cumulative function Fin(∆ti,j ;wi,j)
and Fex(∆tx,j ;wx,j). Next we define the corresponding sur-
vival function as Sin(∆ti,j ;wi,j) = 1 − Fin(∆ti,j ;wi,j)
and Sex(∆tx,j ;wx,j) = 1 − Fex(∆tx,j ;wx,j). Then, we
define the corresponding hazard function Hin(∆ti,j ;wi,j) =
fin(∆ti,j ;wi,j)
Sin(∆ti,j ;wi,j)

= −S
′
in(∆ti,j ;wi,j)
Sin(∆ti,j ;wi,j)

and Hex(∆tx,j ;wx,j) =
fex(∆tx,j ;wx,j)
Sex(∆tx,j ;wx,j)

= −S
′
ex(∆tx,j ;wx,j)
Sex(∆tx,j ;wx,j)

. The hazard function mean-
s instantaneous infection rate, that is, the infection rate after
time ∆ti,j or ∆tx,j conditioned on survival for time ∆ti,j or
∆tx,j . Finally, to get the joint probability, we need to compute
the single probability of one node j infected at moment tj in
one cascade c under the condition of the hidden structure.
We define fj(tj) as the probability density of node j getting
infected at moment tj and we calculate it by the following
equations:

fj(tj ;W ) = fex(∆tx,j ;wx,j)
∏

k∈c,tk<tj

Sin(∆tk,j ;wk,j)+∑
i∈c,ti<tj

fin(∆ti,j ;wi,j)
∏

k∈c,k 6=i,tk<tj

Sin(∆tk,j ;wk,j)Sex(∆tx,j ;wx,j)

=
∏

k∈c,tk<tj

Sin(∆tk,j ;wk,j)Sex(∆tx,j ;wx,j)(
fex(∆tx,j ;wx,j)

Sex(∆tx,j ;wx,j)
+

∑
i∈c,ti<tj

fin(∆ti,j ;wi,j)

Sin(∆ti,j ;wi,j)
)

=
∏

k∈c,tk<tj

Sin(∆tk,j ;wk,j)Sex(∆tx,j ;wx,j)(Hex(∆tx,j ;wx,j)+∑
i∈c,ti<tj

Hin(∆ti,j ;wi,j))

(1)

The infection of nodes are independent with each other,
so the joint distribution of infection events happening in one
cascade c is fc(tc;W ) =

∏
j∈c fj(tj ;W ). In most cases,

we observe several cascades of different information and
we define the set of cascades as set Q, then the likelihood
of all cascades is the product of the likelihoods of each
individual cascade fQ(tQ;W ) =

∏
c∈Q fc(tc;W ). Note that

because this is a generative model, we must suppose a
distribution of prior probability p(W ) of different network
structure where W is just the matrix consisting of each
edge weight wi,j(including wx,j) and fin(∆ti,j ;wi,j) and
fex(∆tx,j ;wx,j). We think each network structure is of same
possibility, that is, p(W ) is a uniform distribution, and thus
according to Bayes’ Theorem, maximum likelihood(ML) prob-
lem f(W |Q) =

fQ(tQ;W )p(W )∑
W fQ(tQ;W )p(W ) changes into maximum a

posterior(MAP) problem f(W |Q) → fQ(tQ;W ). As for the
distribution of fin(∆ti,j ;wi,j) and fex(∆tx,j ;wx,j), we can
apply different or same distributions to these two. Exponential,
power-law and Rayleigh distribution(Fig.2) are the common



choices for these two distributions where αi,j in the table
is just wi,j . Next we use MLE to estimate the best possible
parameter matrix W.

Fig. 2.

C. Proposed Solution

The final form of the problem is as follows:

minW L(W ) = −
∑
c∈Q

log(fc(tc;W ))

subject towi,j ≥ 0, for all i, j ∈ V ′ = V ∪ x
(2)

It is easy to verify that the constraints are convex sets.
The object function is also convex because it only consists of
log function, hazard function H and survival function S. We
know that log function, hazard function and survival function
are all concave, and the combination and addition of these
three functions are still concave, so the negative of a concave
function turns into a convex object function. We can use many
shelf-off tools to solve this form of MLE problem using the
method like stochastic gradient descent or Newton method.
To save time, if node i or j do not appear in any cascade,
we set wi,j = 0, wj,i = 0, wx,j = 0, wx,i = 0 since node
i or j are not infected by the information and thus we do
not have enough evident to infer the edges between them. For
every node j, we set wj,x = 0 because it is intuitive that the
information spreads from mass media to the social networks
while the reverse direction makes no much sense. Otherwise
iterate the following formula until convergence or wj,i = 0:

w
(k+1)
j,i = w

(k)
j,i − α∆wj,i

L(W (k)) (3)

This is just the method of gradient descent. Because we
have take Naive Bayes assumption that different parameters
wi,j are independent from each other, so the optimization
problem can split into many several subproblems and we can
parallelly compute different parameters which reduces the time
complexity much.

III. FURTHER MODIFICATIONS

Previously we assume wj,i is same for different cascades
while this is often not the case. Our friends actually can be
separated into different groups. Some of them have common

interests with us. For example, they also like sports or movies.
Some of them may be our research partners. Then the infor-
mation about research may spread quickly among the latter
group while the information about sports may diffuse quickly
among the former group. In a word, we have different kinds of
relationships with different people and this kind of differences
can be reflected by the difference of spreading pattern between
different cascades. Also, our relationships vary along with
time. Some may decay till disappear. Just consider the case of
the relationship between us and our primary school classmates.
Some may become stronger or new connections are built.
Some may also change the form. For example, you may
talk about topics about sports with your research partner in
occasion and you surprisingly find that he is also a sports fan
just like you. Then your relationship is not an academic one
but also becomes a private one and he belongs to both groups
of friends. To take all these situations into consideration, we
change the parameter wj,i into wj,i,c,t which means that wj,i
relies on the content of cascade c and the time t of the
information diffusion process.

This is a really complex model, but we can use the idea of
discretization to simplify it. To clear the subscript variable c
from wj,i,c,t, we can divide many different information into
just a few groups such as entertainment, academy and etc.
according to the content. Then for each group, the problem
is the same as before with variable c disappearing and we
can learn different parameter matrix W for different groups
simultaneously. As for the subscript variable t, we can give
more weights to the parameter wj,i,t inferred by the latest
cascade and then take weighted average on all wj,i,t to clear
the variable t and get the final wj,i. This model can be
rewritten as wj,i,t = mj,iwj,i where mj,i just represents
the relative weight of parameter wj,i. To calculate mj,i, the
simplest way is to suppose a same time decay model for all
edges but this wrongly assumes that all edges decay and decay
to the same extent when time passes by. A better way is to
combine mj,i to form a transformation matrix M to represent
the dynamics changes in the network. We suppose the network
only changes a little in a certain period of time while changes
a lot between these time periods. Without losing generality,
just assume this period of time is a month. Then we infer
parameter matrix Wt for a month, using cascades happening
in that month and infer parameter matrix Wt+1 for the next
month. These two parameter matrix satisfy Wt+1 = MWt.
Hence, the transformation matrix M can be calculated by
M = W−1t Wt+1. Repeat this procedure and take average to
revise the original matrix M to get the latest one. If we want
to predict the network structure in the next year, we can just
calculate it by Wnext−year = M12Wthis−year since a year
has 12 months.

IV. CONCLUSION OF MY CONTRIBUTION

Based on the previous probabilistic model on information
propagation, I do several modifications:
a) The original model only considers information diffusion

inside the network but ignores external influences while I



consider the external influences by introducing an external
source node x, new edges edge(x) and new function
fex, Fex, Sex, Hex to the original model.

b) The original work does not consider the effects of d-
ifference of content between different cascades on the
parameters while I consider that by replacing wj,i with
wj,i,c,t and then clear variable c by separating information
into just a few groups and running the original algorithm
simultaneously for these few groups.

c) The original model assumes all relationships decay and
decay to the same extent when time passes by while I
consider the more general case using a transformation
matrix M and to learn this matrix by using data(cascades)
from two successive period of time. Then use this matrix
M to predict the network structure in the future.

d) The original model also sets a window size T which
increases the model complexity but I think it does not make
much sense so I remove it off for simplicity because if
some nodes keep uninfected when the information diffusion
is going to stop, they are really unlikely to be infected
after the observing time T, that is, an ended information
diffusion process is not likely to revive and become popular
again.

V. FUTURE WORK

Due to the limit of resource and time, I have not experi-
mented my model in real data yet. Also, I suppose the network
almost remains static in a period of time and only changes
between time periods, which is a relative simple hypothesis
about the dynamic changes in the network. Recently, a paper
about the Bursty Dynamics of the Twitter Information Network
published by Seth Myers and Jure Leskovec talks about the
abrupt changes in the network and finds that the abrupt
changes are often accompanied by information diffusion pro-
cess. Combining with their ideas, I may propose a more robust
model under the dynamic situation. In short, my following
work include these two parts:
a) Continue programming and debugging the model and then

test it on the synthetic data and real data.
b) Deeper research on dynamic networks, such as abrupt

changes(burst) in networks using Seth Myers and Jure
Leskovec’s idea.
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