The detection of elephant flow in SDN

%5 5110309221

i. Abstract

Software defined network provides better network management and higher utilization, which
decouple control plane from data plane. The centralized control of entire network may result in
large overhead and limit the scalability of control plane. Previously, some researchers proposed
approach for reducing work load on controller with elephant flow detection. However, the
threshold of the detection system was pre-configured with a fixed value without considering the
dynamically changing traffic characteristics, which would cause high detection error rate. So, we
propose a two-stage adaptive elephant flow detection system. Also, we try to have a shorter time
delay in detecting the elephant flow, so as to improve the efficiency of our system. We do
experiment to test our system.

ii. Introduction

Software defined network (SDN) is an emerging network management paradigm that
separates control plane from the underlying physical devices. There is a centralized controller to
enforce the management of an entire network, in contrast to conventional network, where
operators have to codify functionality by complicated configuration. As SDN provides a globally
optimal management of network resources and a flow-level control of network traffic, the
centralized network control has also been considered in high-performance networks, such as data
center. OpenFlow is the first standard protocol designed specifically for SDN, which has been
supported by multiple hardware vendors. This paper is based on OpenFlow protocol to realize the
communication between control plane and data plane.

SDN provides much easier network configuration, higher utilization, and better network
management for data center. However, there is a bottleneck that control plane is difficult to scale
up to operate the rapidly changing traffic. First, the arrival and departure of flows are very fast in
data center, while it will take 10ms for controller to allocate resource for every new flow. Secondly,
it will need numerous controllers to meet the demands of data center because of the limited
processing capacity of existing controller. Third, TCAM storage space of every flow entry installation
is a valuable resource in switches which can only afford 1,500 wildcard rules in OpenFlow. Overall,
the centralized control mechanism is only practical if it is able to scale up to meet the demands of
the dynamic traffic in the data center.

Recently, some researchers propose elephant flow detection to improve the scalability of
control plane. This approach can reduce work load on control plane and save the valuable TCAM
resource in data plane. In measurements of 10 data centers, Benson et al. Research show that 80%
of the flows are smaller than 10KB in size and the most bytes are carried in the top 10% of large
flows. It is not necessary for controller to operate all flows and orchestrate their paths. For effective
traffic management, controller need only concentrates on the significant (or elephant) flows that
have impact on network performance. A large number of small (or mice) flows come and go too
fast to wait the flow entries installation according to controller’s policy. Thus, identifying elephant

Page1/10

flows is important to construct appropriate forwarding policy for various types of flows. However,

existing detection systems are pre-configured with a fixed value without consideration of the

dynamically changing traffic characteristics in data center, which will cause a lot of false positive

errors and false negative errors. We present a two-stage, adaptive elephant detecting system for

data center with SDN. The main contribution of this work includes:

® \We propose the two-stage elephant detection system which provides more accurate
identification of elephant flows. It reduces the load on controller which only handles the
elephant flows. Thus, mice flows will be forwarded without delay.

® We design a dynamic adaptive decision threshold for this detection system. By analyzing the
relationship between elephant threshold and traffic characteristic in data center network,
there is an optimal point that could balance the positive false rate and negative false rate of
detection. Inspired by the optimal receive system of baseband signal transmission through
the additional Gauss White Noise channel, we solve this optimization problem by computing
the intersection point of the two flow probability distribution curves.

® \We evaluated the performance of this detection system on real trace of data center. Numerical
experiments and validation results showed that it could significantly reduce the load pressure
on control plane. The overhead and delay caused by this system is only a small portion of the
typical long-lived, high-throughput elephant flows.

Controller |*

flows

T elephant

A
J|‘|\\

OpenFlow Protocol

suspicious
flows

collector stagﬂ‘* mice flows

Elephant Detecting System

Figure 1 Two-stage elephant flow detection architecture

In this project, my main contribution is in the first stage of the two-stage detection system
and the calculation of the time delay in each stage in the first stage. The first stage utilizes the
method of sampling. Sampling is a universal approach to obtain traffic measurement profiling.
Packet sampling method, sFlow, has been supported by a range of device vendors. It is very simple
to implement and adds negligible cost to a switch or router. The sFlow system is scalable to the
traffic volume, especially under the frequently changing traffic of data center. Comparing to
capturing every flow statistics, the agent samples the packets 1 out of k packets and only sends the
sampled header message to the central collector. Thousands of devices can be monitored by a
single sFlow Collector. Assuming that each device contributes 10k flows per second, the sFlow
detecting system can handle 10million flows per second comparing to 30k per second of NOX
controller. This approach has a drawback that it adopts the static decision threshold to select

Page2/10

elephant flows upon existing solution. However, it is significant to adaptively adjust the threshold
according to dynamically changing traffic. Moreover, it involves the problem of low accuracy, which
might result in positive false error and negative false error. In order to maintain both detecting
efficiency and accuracy, we design the two-stage, adaptive elephant flows detecting system. We
adopt packet sampling measurement in first stage of detection to distinguish suspicious flows from
mice flows initially. The decision threshold of elephant flows can be changed over the dynamic

traffic. Then, these suspicious elephant flows are sent to second stage to improve the accuracy.

iii. The first stage: detecting elephant flow using the sampling

method

In the first stage, we find the suspicious elephant flow and then the suspicious flows are
passed to the second stage for more precise detecting. Because of the inherent drawback of the
sampling method, we cannot accurately get the speed of each flow, what we get is just the sampled
packets every k packets. In this stage we take the advantage of the sFlow protocol. We make this
choice for many reasons. First is that the sFlow protocol is a very mature protocol, they have been
many tools that could analyses the sFlow packets. This can help us a lot in the experiments. The
second reasons is that a tools called Sflow-RT also has the function of detecting elephant flows.
We can compare the time delay of our program and the time delay of the Sflow-RT.

We built up a test environment to compute the delay of our elephant detection system. Loop
delay describes how performance aware SDN responds to the appearance of an elephant flow. The
first component of delay is the measurement delay, the time taken by the elephant flow detection
system to identify the elephant flows.

graphite

sFlow-RT

Performance dashboard
e.g. Graphite

Figure 2. sFlow-RT collector

We selected two different sFlow collector, sFlow-RT and sflowtool. The former provides clear

graphic al user interface as illustrated in Figure 1, the latter displays the samples by command line.

The sFlow counter export mechanism extends beyond the network to include server and
application performance metrics and the article, Cluster performance metrics, shows how queries
to the sFlow-RT analyzer's REST API are used to feed performance metrics from server clusters to
operations tools like Graphite. sFlow-RT shows the real-time information summarizing network
wide packet loss and error rates can easily be gathered, even if there are thousands of switches
and tens of thousands of links. It may take about several hundreds of milliseconds to identify an
elephant flow by using sFlow-RT. The sflowtool command line utility is used to convert standard

Page3/10

http://blog.sflow.com/2013/02/cluster-performance-metrics.html
http://www.inmon.com/products/sFlow-RT.php
http://en.wikipedia.org/wiki/Representational_state_transfer
http://graphite.wikidot.com/
http://www.inmon.com/technology/sflowTools.php

sFlow records into a variety of different formats. This collector is much effective than sFlow-RT, but
more experiments are needed for further validation.

We did experiment to test the difference in the time delay. The result shows that Sflow-RT is
really slow in detecting elephant flow. So, in our sequential we abort the usage of sFlow-RT and
focus on developing our own algorithm.

iv. A new algorithm in the first stage

Large flow refers to flows who occupy a large proportion of the total bandwidth during a
certain time interval. Here we can define a factor to denote this proportion. The definition of large
flow seems quite simple, but this is an unknown factor in the definition, the time interval. We can
choose one second, one minutes or several minutes. It’s hard to say which is the best, it may
depend on our network conditions to choose a suitable time interval. Just because of this point, |
think that definition of detecting large flows is based on certain assumptions. Only based on this
assumption we can retain the accuracy of large flow detection.

In fact what we measure in the average speed of a flow during certain time interval. But
the character of large flows vary. Some flow may have small speed but large volumes of total
packets. Some may send large quantities of packets in a small time. When we try to choose a
suitable time interval, this factor cannot be ignored. Also for different network conditions, it may
have special demands. Some networks need low time delay and some networks require high
accuracy. So when we try to find a common way to detect a large flow in unknown network
conditions, it’s hard for us to choose a certain time interval, and how can we solve this problem? |
think we can choose two time interval, a small one and a large one. We use two variables to detect
large flows. For example the small one is 0.2s, and the large one is 20s. We can get real time speed
of the flow, meantime we have the information of the total packets it sends in a long time interval.
We can combine these two factors to detect large flow. For flows that exist a long time but the real
time speed is small, the packets it send in a long time should be large enough. For flows that may
exist shorter but send large volumes of packet in short time, it’s real time speed should be large.
The program should provide a method that can balance the two factors to detect large flows.

We try to implement large flow detection utilizing sflowtool. It’s a slow collector. Sflow
agents send two types of sample information: flow sample and counter sample. | this term, the
flow sample is useful for us, while the counter sample including information about the condition
of the switch can be neglected. We get flow information from sflowtool and store them in
databases. Every flow has two counters. We call one counter that count the times of a flow being
samples in the small time the small-time counter, and another the long-time counter. We then
need to set a threshold. The threshold should takes both the two counter into consideration also,
it should be adaptive. That means it should also consider the overall network condition. We then
need to define a variable to calculate the character of a certain flow. When the variable exceeds
the threshold, it will be detected as a large flow. Here | come up with an idea. We can calculate the
percentage of a certain flow’s small-time counter and long-time counter in the whole small-time
counters and long-time counters. We add up all the flows’ small-time counters and long-time
counters to get the whole small-time counters and long-time counters. The whole counters have
taken the networks’ overall conditions into condition. Then we can simply calculate the linear
combination of the two percentages and compare it with the threshold.

Page 4 /10

There are several place that can be improved to better detect large flows. We can include flow
predictive model into this method. The coefficients of the linear combination denote the impact
of the small-time counter and long-time counter on the threshold. We can change it for better
performance. Another place that can be improved is the two time interval chosen, we can choose
different time intervals, we can even choose three time intervals, but | think now two is enough.
More time intervals means more complexity, and to which extend it improve the performance of

detecting large flow is hard to say.

V. Experiment testing the algorithm

We defined a factor to denote the proportion of the total bandwidth during a certain time
interval. As the character of elephant flows vary. Some flow may have small speed but large
volumes of total packets. Some may send large quantities of packets in a small time. When we try
to choose a suitable time interval, this factor cannot be ignored. Also for different network
conditions, it may have special demands. Some networks need low time delay and some networks
require high accuracy. We choose two time interval threshold, a small one and a large one. We use
two variables to detect large flows. For example the small one is 0.2s, and the large one is 20s. We
can get real time speed of the flow. Meantime we have the information of the total packets it sends
in a long time interval. We can combine these two factors to detect large flow. For flows that exist
a long time but the real time speed is small, the packets it send in a long time should be large
enough. For flows that may exist shorter but send large volumes of packet in short time, it’s real
time speed should be large. The program should provide a method that can balance the two factors
to detect large flows.

In the experiment, we get flow information from sFlowtool and store them in databases. Every
flow has two counters. We call one counter that count the times of a flow being samples in the
small time the small-time counter, and another the long-time counter. We then need to set a
threshold. The threshold should takes both the two counter into consideration also, it should be
adaptive. That means it should also consider the overall network condition. We then need to define
a variable to calculate the character of a certain flow. When the variable exceeds the threshold, it
will be detected as a large flow. Here | come up with an idea. We can calculate the percentage of a
certain flow’s small-time counter and long-time counter in the whole small-time counters and long-
time counters. We add up all the flows’ small-time counters and long-time counters to get the
whole small-time counters and long-time counters. The whole counters have taken the networks’
overall conditions into condition. Then we can simply calculate the linear combination of the two
percentages and compare it with the threshold. The coefficients of the linear combination denote
the impact of the small-time counter and long-time counter on the threshold. We can change it for
better performance. In another hand, we set up a test bed to measure the total detection delay.
We apply the SCP to send large file and record the triggering time in detector. We found that it
occupied about 15.1 percent of the transmission time with some detection error. Because the
history command can only provide second level and we need smaller scale of time stamp. We will
collect the record of tcpdump method for further measurement.

vi. The analysis of the time delay in the first stage

All the experiments were done with the existence of background flows, which were generated
by our Openstack cloud computing platform. This time, we mainly focus on the accurate time delay

Page5/10

of the first stage.
Just as shown in the figure above, the first stage is cut off by three timestamp into two parts.
We define the first timestamp as the time the first packet is generated by a certain flow. Time
stamp two refers to when our program finishing parsing the first Sflow packet and restored that
flow’s information into our database. The duration between the two points is called the
measurement delay. The third timestamp points to the time when a flow is marked as a suspicious
elephant flow.
Obviously, we thought the time delay of the measurement part should be quite short. The planning
delay should be where most of the time was wasted. But our result contradicts this assumption.
The result was shown below. The time delay in the first was so long, occupied more than two
thirds of the total time stage of the first stage. That seems quite ridiculous to us.

Timestamp Three

First stage Second stage
Al Al
(0 >
T N ~
Y Y Y Y Time
Measurement delay Planning delay Response delay Configuration delay
Parse the Sflow packet mark flow flags controller orchestration switch commands
Timestamp One Timestamp Two
First stage
Delay 1.30s
(~)
>
N J .
A —— Time
Measurement delay Planning delay
Delay 0.91s Delay 0.39s

Flow duration
Duration 8.58s
JN

(AN
_ Time
First stage
Delay 1.30s

Figure 3 the time delay of the first stage

So we analyze the time duration of the two parts. In the first part, the first sFlow packet is
sent to the server, we use the Sflowtool to parse the packet and restore that flow’s information
Page 6 /10

into the database. Why does this process take so long? Is that because the program spends too
much time processing the Sflow packet. So extra experiment was designed. This time we used the
Wireshark to capture the Sflow packet sent to the server to see when that first Sflow packet arrived.
Then we modified the program to print out the time the program finished processing the flow’s
information. The result proved our previous assumption the program was indeed a little bit slow
in processing the flow’s information.

The first part is the duration between the time when the elephant flow started and the time
its packet got sampled and was sent to the server through the Sflow packets. Obviously, we thought
the time delay during this part should be quite short.

Secondly, when the suspicious flow’s packets were sampled enough times, the algorithm of
our large flow detection program worked to mark this flow as an elephant flow. We thought this
should be where most of the time was wasted. This process is quite complex. The time delay during
this part depends on various factors which includes not only the algorithm but also the speed of
the suspicious elephant flow and the speed of other flows, which also means that we need to
control the testing environment to be stable. During all our experiments, all the sFlow packets sent
to our server was sampled in the same switch whose flows were quite stable, which means stable
background flows. Algorithm is also very important, which is the core part of our program. There
are lots of different algorithms for detecting elephant flow, we will later test different methods and
gradually optimize our algorithm. During the test, we just use an algorithm which we think is
suitable.

The third part is the part a flow is configured as an elephant flow and the controller take
actions. The goal of our test is to compute mainly the first two time delays. We also designed
experiments to test the time delay of the third part. We think it is mainly composed of the time
needed to compute the route and send the route table to the switch.

From the figure below, it isn’t hard to find that the time delay of the second part is comparably
short, but the time delay of the first part is quite long, which contradicts out previous assumption
and why? We first thought the second part needs lots of time because of the algorithm. But in fact,
it took quit long for the first sFlow packet to come. When we analyzed this problem, we thought
maybe the program took lots of time to analyze the sFlow packet.

Also, we analyze the time delay of the second part. We think the time is short enough. That’s
a quite good thing. But we cannot ignore that the time delay of the second part depends on several
factors. Algorithm is one of them, and we think it is the core of our program. We have already
optimized our mechanism from one counter recording the times a certain flow’s packet was
sampled to two counters, recording more information than before. The two-counter mechanism
gives our more option in detecting the elephant flow. We have introduced the mechanism before,
so next time we plan to compare the one-counter mechanism and the two-counter mechanism to
see which mechanism is more accurate, whether the two-counter mechanism will take more time
than the one-counter mechanism. Also, we can modify the parameters in the two-counter

mechanism to optimize its performance.

Vii. Conclusion

In the detecting of elephant flow, we need to balance the accuracy and the time delay. These
two factors are contradictory. We should try our best to attain more information from the sampled
packets. We need to use the mathematical method to gain the statistical characteristic of the flows

Page 7 /10

to choose which are suspicious and send them to stage two for more precise detection. We
compare the efficiency of our program and sFlow-RT, the accuracy is similar but the time delay of
sFlow-RT is longer. Also, we invent a new algorithm using two counters instead of one. From the
experiments, we can see that two-counter algorithm is better than the previous one-counter
algorithm. The time delay is similar but the accuracy is improved. That proves that our new
algorithm is a successful one.

viii. Appendix: How to use the Sflow-RT

Sflow-RT

—. %%

wget http://www.inmon.com/products/sFlow-RT/sflow-rt.tar.gz

tar -xvzf sflow-rt.tar.gz

cd sflow-rt

./start.sh

A D) B3 2% B4l http://localhost:8008 R LAl % 5 HI &5 REST API LASHEAT AR G I &L,
g X flow, WH threshold, A flow HI{E5, & Event {5 E 55,

Sflow-RT ERIA WS localhost [6343 Ui [, agent SAEIE BN 1% A& % 3 H i 1 o

OVS JT /5 sflow fir 4 Sl :

ovs-vsctl -- --id=@sflow create sflow agent=eth3 target=\"202.120.32.2:6343\" header=128
sampling=64 polling=10 \-- set Bridge br4 sflow=@sflow
—.%H API

1. define address groups

curl -H "Content-Type:application/json" -X PUT --data '"{external:;, internal: }"
http://localhost:8008/group/json

example:

curl -H "Content-Type:application/json" -X PUT --data "{external:['0.0.0.0/0'],
internal:['10.0.0.0/8']}" http://localhost:8008/group/json

58 SURAT IR R G 7778, XA 530 € ST AN B A I flow B 1R«

2. define flows
curl -H "Content-Type:application/json" -X PUT --data "{keys: , value: , filter: }"
http://localhost:8008/flow/ (name) /json

example;

curl —H "Content-Type:application/json" -X PUT --data
"{keys:'ipsource,ipdestination,ipprotocol’,value:'frames’ filter:'sourcegroup=external&destinati
ongroup=internal'}" http://localhost:8008/flow/incoming/json

B 5E LT name A incoming) flow. Value FME N frames B bytes

3. define thresholds
curl -H "Content-Type:application/json" -X PUT --data "{metric;, value: }"

Page 8/10

http://localhost:8008/
http://localhost:8008/group/json
http://localhost:8008/group/json
http://localhost:8008/flow/

http://localhost:8008/threshold/(name) /json
example:

curl -H "Content-Type:application/json" -X PUT --data "{metric:'incoming', value:1000}"
http://localhost:8008/threshold/incoming/json

A5 X T name N incoming Y threshold, % &][JFR{E A 1000, 1E Sflow-RT H value
FRMH R E, At frames(bytes)/s. metric N T4 E G flow) name. It
threshold '] name 1% &)5 metric 1A,

4. receive threshold event
curl "http://localhost:8008/events/json
example:
curl "http://localhost:8008/events/json?eventID=4&timeout=60"
A7) E2HY events H eventD KT 4 1] events (55, 2% 45 60 FPHEEICHT il & 11 event {5 5
5. monitor flow
curl http://localhost:8008/metric/ (agent) /(datasource).incoming/json

example:
curl http://localhost:8008/metric/10.0.0.16/4.incoming/json

WAMAIET flow HI1E S AT LA event 24 i2H] .
PLEA T e D APL, BB 22 () REST API 1] L& 53 H: web &% -

=.Event filt R HLH|HIHER

7E Sflow-RT Hfili % event FE /M N =2

1.52 X flow
http//localhost:8008/flow/json
option:post value={name: ,key: ,value:bytes/frame,filter: }

REHCHNLT L8 T E RN Gp 405124 192.168.100.103, 192.168.100.105)

WA flow:

name:trace(J5 [l 1% & threshold [H iz % B) metric NMiZ 5t & X1 flow [] name)
key:ipsource,ipdestination,ipprotocol (/&3 X MM E TR B E, A UINRZ W%, AidEA L
i HGER A example A 7414 JSTHTBLECEIH] flow I top key N 2 ERINAE E LI
key F& X N[

filter:ipsource=192.168.100.103&ipdestination=192.168.100.105(F;7& A 192.168.100.103ping]
192.168.100.105 K= L&)

2.% & threshold

http://localhost:8008/threshold/json

option:post value={name: ,metric: ,value: Sfilter: }

PR B E BRI

name=nol ,metric=trace (JL/2NI74 & X flow i name), value=5000(22i FH 5k A1T)
filter (FUEE, EMAAUHE HIRE BIX B LU IE R AR EIR 2 28, AENKAE
2 HD

3120 event f5 5

http://localhost:8008/events/json

Page9/10

http://localhost:8008/threshold/incoming/json
http://localhost:8008/metric/
http://localhost:8008/threshold/json
http://localhost:8008/events/json

option:get

{agent: ,datasource: ,eventID: ,metric: ,threshold: ,thresholdID: ,timestamp: ,value: }
datasource MiZERMLE Ifindex HIZRTY, sflow XTFEA interface NMi%#EiA B IS . £
sflow-RT FHIE 2123 dsindex, MiZERE—FEH.
timestamp A7 (1) N 1% 2 fi & I ARSI, value J& 4R (ME . 7E Sflow-RT A2 ELE) value
HI AT E 2 bytes(frame)/so

RIS R, Bl 7 AN threshold A 2k, ANLECE S HIWT bRk H A
setarill (W, A7] RESE — B TRl I A B A, EE VRIS A GeAE . mHMR —E
I threshold FIi6 A2 — B il , T2 ZEAEE T F£ 3 threshold LA, W IR threshold
AR . BRI A E I EE BIEAS A R FIE .

N T A Sflow-RT filt & event J52x /231 controller /& i% message, X wireshark $I€1,
—i4ik sflow-RT AWrfif % event, —i ML . ZEHLT LA T controller 72 Floodlight, floodlight
x5 PN 11 6633 AT 8080

Forb 6633 b [= Z A RER ovs @15, @it HUE SLIG i O uESL.

8080 it I /& Floodlight [static flow pusher &5 F#u 1, R VFiE REST APl SRAECAL i3
fFE. SIS IR 8080 Ui I AAEVL &, (HIRAHT T RIFWA K message H.

VY. {5 F /NG

Sflow-RT & — N IIREIR e B MR /i TH, HA a7 BRI R R AR ML, 8
il event SKRFE/RECINE] 7 KGR (BRI 7% B 1 threshold) .

Sflow-RT [—/ M st 234t 7) se iR e M BB i . 75 Sflow-RT H1H) flow [I5E
XRAEFEITER), BT bR 0@ a4 175 20k E X flow LK threshold, 7EH: web 5%
IR TR E X730, SRR 7 (. [E web 51 o n AR I AL 52 %
A flow M5 R, EHABGHMIEAERER, AEFEW, BeX & flow KI5 B AN EN
%, EIMVEAN(E S AT Lol i _E TR B a2 1
H A7 7E 5 281 EAE PN 7
1. HTHRARHIEAI, event HIf LG, BHETIEA T, ik event Z G A KIE
message % controller UM RISt ? B A4 BIE AW — 2R RN KR 2 B ET#R
R
2. HFEVDE U SCRYS, 78 Sflow-RT HH—2E S50 1) 5 SUANH € » W datasource, dsindex,
H B2 Sflow-RT X RAE] interface K45 . XITE filter J& key 4+ mJ LS (1) S Bt st
/D FH IR) BE R

h.2% R

http://www.inmon.com/products/sFlow-RT.php

http://blog.sflow.com
DA R 2226 SCA S rh B AR R A

Page 10/ 10

	The detection of elephant flow in SDN
	He Sflow-RT

